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Abstract.    In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a 
cable-stayed bridge is presented. Firstly, cable-stayed bridge with the wireless monitoring system is 
described. Wireless vibration sensor nodes are utilized to measure accelerations from bridge deck and stay 
cables. Also, modal analysis methods are selected to extract dynamic characteristics. Secondly, dynamic 
responses of the cable-stayed bridge under the attack of two typhoons are analyzed by estimating 
relationships between wind velocity and dynamic characteristics. Wind-induced variations of deck and cable 
vibration responses are examined based on the field measurements under the two consecutive typhoons, 
Bolaven and Tembin. Finally, time-varying analyses are performed to investigate non-stationary random 
properties of the dynamic responses under the typhoons. 
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1. Introduction 
 

Cable-stayed bridges are sensitive to wind because of the relative lightness, flexibility and low 
damping; therefore, the aerodynamic performance of the bridges is one of important concerns in 
their design processes (Zhou et al. 2008). In the design process, however, the performance is 
evaluated from numerical simulations and lab-scaled experiments with various assumptions. In 
order to verify the design assumptions and to monitor the structural performance of the bridges, 
many structural health monitoring (SHM) systems have been installed in the bridges (Atkan et al. 
2003, Ko and Ni 2005, Yi et al. 2013, Li et al. 2014, Huang and Nagarajaiah 2014).   

The installation of the conventional wired SHM systems requires very high costs. The cost can 
be greatly reduced through the adoption of wireless sensor. Many advantages of wireless sensor 
systems have been discussed by Spencer et al. (2004), Lynch and Loh (2006), Nagayama et al. 
(2007), Jang et al. (2010) and Kim et al. (2011). One of the advantages is the autonomous 
operation enabled by on-board computation units which allows the long-term health monitoring 
without off-line interference of experts (Cho et al. 2010).  
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A research team at Pukyong National University, Korea, has developed vibration sensor 
systems (Ho et al. 2012b, Nguyen et al. 2013, Ho et al. 2014). During the field experiments on a 
real cable-stayed bridge (Hwamyung Bridge, Busan, Korea), the long-term performance of the 
wireless sensor system has been evaluated with regarding to the measurement of vibration 
responses, the communication between wireless sensors, the solar-powered battery supply 
dependent on weather conditions, and the survivability of sensors with respect to usage period (Ho 
et al. 2012a). Just after the construction, the bridge experienced two consecutive typhoons, 
Bolaven and Tembin, in year 2012 (Evans and Falvey 2012). During the events, the wireless 
sensor system recorded data of wind speeds and vibration responses from a few survived sensor 
nodes. Kim et al. (2014) have examined the performance of the wireless monitoring of stay cables 
under the typhoons and also the effect of the typhoons on the variation of cable forces.  

Many researchers have investigated the wind effect on dynamic characteristics such as natural 
frequency and damping. The dynamic responses of the cable-stayed bridges are consistently 
associated with the aerodynamics such as turbulence, vortex, buffeting, galloping and so on 
(Bietry et al. 1995, Mishra et al. 2007, Zhou et al. 2008, Larsen and Larose 2015). Most 
researches have focused on analyzing wind-induced variation of dynamic characteristics of the 
cable-stayed bridges for the various wind conditions. As a remaining issue, the dynamic responses 
of the bridges become non-stationary since the wind velocity varies rapidly under the typhoon.  
Therefore, the non-stationary random vibration responses should be examined by time-varying 
analysis such as the short-time Fourier transform (STFT) or wavelet transformation. 

In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a 
cable-stayed bridge is presented. Firstly, cable-stayed bridge with the wireless monitoring system 
is described. Wireless vibration sensor nodes developed by Kim et al. (2013) are utilized to 
measure accelerations from bridge deck and stay cables. Also, modal analysis methods are selected 
to extract dynamic characteristics. Secondly, dynamic responses of the cable-stayed bridge under 
the attack of the two typhoons are analyzed by estimating relationships between wind velocity and 
dynamic characteristics. Wind-induced changes in deck and cable vibration responses are 
examined based on the field measurements under the two consecutive typhoons, Bolaven and 
Tembin. Finally, time-varying analyses are performed to investigate non-stationary random 
properties of the dynamic responses under the typhoons. 

 
 

2 Cable-stayed bridge with wireless monitoring system 
 

2.1 Description of Hwamyung cable-stayed bridge 
 
As shown in Fig. 1, the Hwamyung cable-stayed bridge, Busan, Korea, was selected for 

wirelessly monitoring typhoon-induced dynamic responses. The bridge was constructed by 
Hyundai Engineering & Construction Co., Ltd., from December 2004 to July 2012. As 
schematized in Fig. 2, the bridge consists of three spans including a 270-m central main span 
between two pylons and two 115-m side spans connecting east and west approaches. The height of 
two pylons is 65-m from deck level. The clearance of the deck is 14.7 m from the water level. The 
box girder is 27.8-m width and 4-m height. The bridge has total 72 cables, positioning 36 cables at 
each pylon. Details on the bridge are described in Ho et al. (2012a).  
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Fig. 4 Schematic of wireless monitoring for acceleration measurement 
 
 
Firstly, the recorded signal is transformed into the PSD according to Welch’s procedure using 

overlapping as follows (Bendat and Piersol 1993) 
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where Xi is the dynamic response transformed into the frequency domain (FFT transform); nd is the 
number of divided segments in the time history response; and T is the data length of a divided 
segment.  

Secondly, natural frequencies are obtained from the automated peak-picking algorithm. The 
basic concept of the algorithm is to search the local maxima of the PSD curve, which represent 
natural frequencies. The entire frequency range is divided into N number of user-selected 
sub-frequency ranges. By examining each sub-frequency range, the natural frequency is picked if 
its magnitude is the largest in the range. 

Thirdly, modal parameters (i.e., natural frequency, damping ratio and mode-shape) are 
extracted by a stochastic subspace identification (SSI) method. The SSI method utilizes the 
singular value decomposition (SVD) of a block Hankel matrix with cross correlation matrix of 
responses as follows (Overschee and De Moor 1996) 
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where H is the Hankel matrix; U, V are the unitary matrices; and 1Σ  is the singular value matrix. 
The modal parameters can be identified from a system matrix which is determined from the SVD 
algorithm. A stabilization chart is used to find a suitable system order with the criteria which 
classify a mode as stable mode, unstable mode, and noise mode (Yi and Yun 2004). Once the 
stable modes are detected, damping ratio (i) of the ith mode is identified from the eigenvalue (i) 
as follows: 

  iii  )Re(                 (3) 

Finally, the all data including raw data, PSD matrix, natural frequencies by peak-peaking and 
modal parameters by the SSI method is transferred to a data server. The raw data is used for 
post-processing. 
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As shown in Fig. 11, acceleration and frequency responses of the deck were recorded for five 
different wind speeds: 3.72 m/s, 5.05 m/s, 11.70 m/s, 17.92 m/s, and 19.36 m/s. Fig. 11(a) shows 
wind-induced changes in acceleration and PSD responses measured at the deck D2. Acceleration 
levels change about 17 times (e.g., 0.0002g - 0.0034g) due to the change in wind speeds. The PSD 
responses of the deck D2 indicate the first six resonance peaks and their changes due to the change 
in wind speeds. Fig. 11(b) shows wind-induced changes in acceleration and PSD responses 
measured at the deck D5 for the five wind speeds. Acceleration levels change about 17 times (e.g., 
0.0035g – 0.0052g) as the wind speeds vary 3.5~20 m/s. The PSD responses of the deck D5 
indicate the first six resonance peaks and their changes due to the change in wind speeds. 

Modal parameters (i.e., natural frequency, damping ratio and mode-shape) were extracted by a 
stochastic subspace identification (SSI) method described in Eq. (2). Fig. 12 shows the SSI’s 
stability chart to identify natural frequencies of four modes: 1st frequency 0.419 Hz, 2nd 
frequency 0.692 Hz, 4th frequency 1.048 Hz, and 6th frequency 1.401 Hz (note that the mode 
order and noise modes follow the modes presented in Ho et al. (2012a)). Fig. 13 shows identified 
mode shapes of the four modes of the deck measured at wind speed 3.72 m/s. With the reference of 
the published mode shapes by Ho et al. (2012a), modal amplitudes of the four modes were 
extracted from only the deck D2 and D5 because other sensors located at deck D1, D3 and D4 
powered off during the typhoon events. Note that Ho et al. (2012a) extracted modal parameters 
from all five locations (e.g., D1 ~ D5). In order to compare with the modal amplitudes extracted by 
Ho et al. (2012a), they were normalized by norm of the amplitudes at deck D3 and D5.  
Considered difference of measurement conditions such as wind speed and temperature, the 
measured modal amplitudes show consistent results as compared to the mode shapes by Ho et al. 
(2012a) as shown in Fig. 13. 

 
 

 

Fig. 10 Wind speeds and maximum acceleration responses at the deck D2 and D5 during two typhoons 
Bolaven and Tembin 
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(a) Acceleration and PSD responses at D2 

(b) Acceleration and PSD responses at D5 

Fig. 11 Acceleration and frequency responses of the deck during typhoons 
 
 

 
Fig. 12 Modal identification of the deck by SSI’s stability chart 
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Fig. 13 Identified mode shapes of the deck at wind speed 3.72 m/s 
 
 
3.2.2 Wind velocity versus modal parameters of the deck 
Firstly, the relationship between wind speeds and natural frequencies of the deck were analyzed 

for the four bending modes to investigate the typhoon-induced changes in dynamic characteristics 
of the bridge, as shown in Fig. 14. The first mode’s natural frequency shows rather linear function 
with respect to the variation of wind speeds. For the second, fourth and sixth frequencies, the 
linear and quadratic functions are well-matched each other. Note that solid lines and equations in 
the figures are for the linear functions and dot lines represents the quadratic functions, and Rl and 
Rq are correlation coefficients for the linear and quadratic functions, respectively. Nonetheless of 
the slopes of those functions, it is clear that all four natural frequencies of the deck decrease as the 
increment of wind speeds. As evident by the slopes of the linear trends in Fig. 14, the changes of 
the first and the second frequencies (the lower-order modes) are more apparent than the fourth and 
the sixth frequencies (higher-order modes). Natural frequencies decrease up to about 0.6% as the 
wind speeds increase up to 20 m/s. 
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(a) 1st mode (b) 2nd mode 

(c) 4th mode (d) 6th mode 

Fig. 14 Relationships between wind velocity and four natural frequencies of the deck during typhoons 
 
 

(a) 1st mode (b) 2nd mode 

(c) 4th mode (d) 6th mode 

Fig. 15 Relationships between wind velocity and four modal damping coefficients of the deck during
typhoons 
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Secondly, the relationship between wind speeds and modal damping coefficients of the deck 
were analyzed for the four bending modes to examine the typhoon-induced changes in dynamic 
characteristics of the bridge. As shown in Fig. 15, the first and the second mode’s damping 
coefficients show rather quadratic functions with respect to the variation of wind speeds. The first 
mode’s damping coefficients increase up to about 1.3% as the wind speeds increase up to 20 m/s. 
The second mode’s damping coefficients fluctuate 0.5~2.5% as the wind speeds change 3~20 m/s. 
For the fourth and sixth modes, the linear and quadratic functions are well-matched each other.  
Those modes’ damping properties fluctuate 0.5~2.0% as the wind speeds change; however, there 
are no apparent trends of decrement or increment as the wind speeds change. 

 
3.3 Typhoon-induced variation of dynamic characteristics of the cables 

 
3.3.1 Acceleration and frequency responses of the cables 
During the strong wind events of the two consecutive typhoons, the maximum wind speeds and 

the maximum accelerations of the cables C3 and C5 were monitored by the wireless vibration 
sensor nodes (Imote2/SHM-A). The magnitudes of the acceleration responses observed during the 
typhoons’ passing were very larger than those recorded in normal wind condition. As shown in Fig. 
16, wind speeds and vibration responses are proportionally well matched each other. As shown in 
the figure, the shortest cable C3 of the side-span had the maximum acceleration response about 
0.095 g at the maximum wind speed during the typhoon Bolaven. The cable C5 of the mid-span 
had the maximum acceleration response about 0.10 g at the maximum wind speed during the 
typhoon Bolaven. 

 
 

 

Fig. 16 Wind speeds and maximum acceleration responses of the cable C3 and C5 during two typhoons 
Bolaven and Tembin 
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(a) Acceleration and PSD responses at C3 

(b) Acceleration and PSD responses at C5 

Fig. 17 Acceleration and frequency responses of the cable during typhoons 
 

 
As shown in Fig. 17, acceleration and frequency responses of the cables were recorded for five 

different wind speeds: 3.72 m/s, 5.05 m/s, 11.70 m/s, 17.92 m/s, and 19.36 m/s. Fig. 17(a) shows 
wind-induced changes in acceleration and PSD responses measured at the cable C3. Acceleration 
levels change about 25 times (e.g., 0.0015g – 0.038g) due to the change in wind speeds. The PSD 
responses of the cable C3 indicate the first three resonance peaks and their changes due to the 
change in wind speeds. Fig. 17(b) shows wind-induced changes in acceleration and PSD responses 
measured at the cable C5 for the five wind speeds. Acceleration levels change about 25 times 
(0.002 g – 0.05 g) due to the change in wind speeds. The PSD responses of the cable C5 indicate 
the first three resonance peaks and their changes due to the change in wind speeds. 

 
3.3.2 Wind speeds versus modal parameters of cables 
Natural frequencies of the cables during the attack of Bolaven and Tembin were extracted from 

the acceleration signals by using the automated peak-picking algorithm. For the shortest cable C3 
and the longest cable C5, the relationships between the wind speeds and the natural frequencies of 
the first two modes were analyzed, respectively, as shown in Fig. 18 (i.e., the cable C3) and Fig. 
19 (i.e., the cable C5). The first and second modes show linear functions with respect to the 
variation of wind speeds. There seems to be clear trends between the cable frequencies and the 
wind velocities.  
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(a) 1st mode (b) 2nd mode 

Fig. 18 Relationships between wind velocity and two natural frequencies of the cable C3 during typhoons 
 
 
Generally, results reveal that the natural frequencies decrease as the wind speeds increase.  

The first mode’s natural frequencies decrease up to about 0.8% (2.98 Hz~2.96 Hz) in the cable C3 
and 0.1% (1.679 Hz~1.678 Hz) in the cable C5 as the wind speeds increase up to 20 m/s. The 
second mode’s natural frequencies decrease 0.2% in C3 and 0.04% in C5 as the wind speeds vary 
1~20 m/s. The change of natural frequencies is more apparent in the shortest cable C3 than the 
longest cable C5 in which natural frequencies almost did not change due to the variation of wind 
speeds. 

Modal damping coefficients of the cables during the attack of Bolaven and Tembin were 
extracted from the acceleration signals by using the SSI algorithm. For the shortest cable C3 and 
the longest cable C5, the relationships between the wind speeds and the modal damping properties 
of the first two modes were analyzed, respectively, as shown in Figs. 20 and 21. For the shortest 
cable C3, the first mode shows linear function but the second mode shows quadratic functions with 
respect to the variation of wind speeds. There seems to be clear trends between the cable’s 
damping properties and the wind velocities. The results reveal that the damping coefficients 
increase as the wind speeds increase. The first mode’s damping coefficients increase up to about 
0.7% as the wind speeds increase up to 20 m/s. The second mode’s damping coefficients fluctuate 
0.05~2.5% as the wind speeds change 3~20 m/s. 

For the longest cable C5, the first mode shows linear function but the second mode shows 
quadratic functions with respect to the variation of wind speeds. There seems to be clear trends 
between the cable’s damping properties and the wind velocities. The results reveal that the 
damping coefficients increase as the wind speeds increase. The first mode’s damping coefficients 
fluctuate 0.1~0.8% as the wind speeds increase up to 20 m/s. The second mode’s damping 
coefficients fluctuate 0.05~0.9% as the wind speeds change 3~20 m/s. The change of modal 
damping properties is not apparent both in the shortest cable C3 than the longest cable C5. 

 
 

4. Time-frequency analysis by STFT 
 
4.1 STFT analysis of the deck 
 
To identify typhoon-induced variation of dynamic characteristics, time-frequency analyses 

were performed for the deck vibration signals. The STFT method described in Eq. (4) was utilized 
to analyze non-stationary random acceleration signals induced by the two typhoons. A rectangular 
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window with the length of 8196 was used for the STFT and the time resolution was set to one 
second (e.g., data length of 25). Fig. 22 shows time-frequency STFT analysis of the deck D5 
acceleration signals recorded for 10 minutes under wind velocity 4.04 m/s. For the four modes (1st 
mode, 2nd mode, 4th mode, and 6th mode), natural frequencies are plotted as functions of time. 

 
 

(a) 1st mode (b) 2nd mode 

Fig. 19 Relationships between wind velocity and two natural frequencies of the cable C5 during typhoons 
 
 

(a) 1st mode (b) 2nd mode 

Fig. 20 Relationships between wind velocity and two modal damping coefficients of the cable C3 during 
typhoons 

 
 

(a) 1st mode (b) 2nd mode 

Fig. 21 Relationships between wind velocity and two modal damping coefficients of the cable C5 during 
typhoons 
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(a) 1st Mode (b) 2nd Mode 

(c) 4th Mode (d) 6th Mode 

Fig. 22 Time-frequency STFT analysis of the deck D5 vibration responses under wind velocity 4.04 m/s 

 
 
The 4th mode was selected to examine the effect of wind velocity on the natural frequencies.  

For the 4th mode, the STFT analyses on the deck D5 acceleration signals were performed for three 
wind speeds (i.e., 5.05 m/s, 11.70 m/s, and 19.36 m/s). As shown in Fig. 23, time-frequency results 
were analyzed and also compared with those from Welch’s and SSI methods described in the 
previous section. It is observed that natural frequencies decrease as the wind speed increase. It is 
also observed that the STFT analyses produce natural frequencies fluctuating along with the short 
period while other two methods (i.e., Welch’s and SSI) estimate constant values for the time 
period. The fluctuating variation in natural frequencies quite increase as the wind speed reaches 
about 20 m/s. 

 
4.2 STFT analysis of the cables  
 
Time-frequency analyses were performed to identify typhoon-induced variation of dynamic 

characteristics of the cable. Fig. 24 shows time-frequency STFT analysis of the cables’ vibration 
signals recorded for 10 minutes under wind velocity 4.04 m/s. For the shortest cable C3 and the 
longest cable C5, natural frequencies of the first mode are plotted as functions of time. The 1st 
mode was utilized to examine the effect of wind velocity on the cables’ natural frequencies. The 
STFT analyses on the cables’ acceleration signals were performed for three wind speeds (i.e., 5.05 
m/s, 11.70 m/s, and 19.36 m/s).   
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(a) Wind velocity 5.05 m/s 

(b) Wind velocity 11.70 m/s 

(c) Wind velocity 19.36 m/s 

Fig. 23 Mid-span (D5) deck vibration analysis by STFT and frequency variation: 4th Mode 
 
 
For the cables C3 and C5, time-frequency results were analyzed for each wind-speed case and 

also compared with those from Welch’s and SSI methods described in the previous section, as 
shown in Figs. 25 and 26. It is observed that natural frequencies decrease as the wind speed 
increase. It is also observed that the STFT analyses produce natural frequencies fluctuating along 
with the short period while other two methods (i.e., Welch’s and SSI) estimate constant values for 
the time period. Relative to the longest cable C5, the shortest cable C3 shows quite high variation 
in natural frequencies as the wind speed reaches about 20 m/s. 
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(a) 1st Mode at C3 (b) 1st Mode at C5 

Fig. 24 Time-frequency STFT analysis of the cables’ vibration responses under wind velocity 4.04 m/s 
 
 

 
(a) Wind velocity 5.05 m/s 

 
(b) Wind velocity 11.70 m/s 

 
(c) Wind velocity 19.36 m/s 

Fig. 25 Short cable (C3) vibration analysis by STFT and frequency variation: 1st Mode 
 

Time (s)

F
re

q
ue

nc
y 

(H
z)

50 100 150 200 250
2.93

2.94

2.95

2.96

2.97

2.98

2.99

3

Time (s)

F
re

q
ue

nc
y 

(H
z)

50 100 150 200 250
1.64

1.65

1.66

1.67

1.68

1.69

Time (s)

F
re

q
ue

n
cy

 (
H

z)

50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

0 50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

Time (s)

F
re

q
u

e
n

cy
 (

H
z)

 

 

STFT
Welch's
SSI

Time (s)

F
re

q
u

e
n
cy

 (
H

z)

50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

0 50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 

STFT
Welch's
SSI

Time (s)

F
re

q
ue

nc
y 

(H
z)

50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

0 50 100 150 200 250
2.95

2.96

2.97

2.98

2.99

3

Time (s)

F
re

q
u
e
n

cy
 (H

z)

 

 

STFT
Welch's
SSI

311



 
 
 
 
 
 

Jae-Hyung Park, Thanh-Canh Huynh and Jeong-Tae Kim 

 

 
(a) Wind velocity 5.05 m/s 

 
(b) Wind velocity 11.70 m/s 

 
(c) Wind velocity 19.36 m/s 

Fig. 26 Long cable (C5) vibration analysis by STFT and frequency variation: 1st Mode 
 

 
5. Conclusions 

 
In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a 

cable-stayed bridge was presented. Firstly, cable-stayed bridge with the wireless monitoring 
system was described. Wireless vibration sensor nodes were utilized to measure accelerations from 
bridge deck and stay cables. Secondly, dynamic responses of the cable-stayed bridge under the 
attack of the two typhoons were analyzed by estimating relationships between wind velocity and 
dynamic characteristics under the two consecutive typhoons, Bolaven and Tembin. Finally, 
time-varying analyses were performed to investigate non-stationary random properties of the 
dynamic responses under the typhoons. 

Vibration responses were wirelessly monitored from a few survived sensor nodes of the deck 
(the side-span and the mid-span ones) during the two consecutive typhoons. The relationship 
between wind velocity and dynamic characteristics of the deck were analyzed as follows: firstly, 
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acceleration levels change about 17 times as wind speeds varied 3~20 m/s; secondly, natural 
frequencies decreased up to about 0.8% as the wind speeds increased up to 20 m/s; finally, modal 
damping coefficients fluctuated 0.5~2.5% as the wind speeds varied 3~20 m/s. 

Vibration responses were also monitored from two cables (the shortest and the longest ones). 
The relationships between wind velocity and dynamic characteristics of the cables were analyzed 
as follows: firstly, acceleration levels change about 25 times due to the change in wind speeds; 
secondly, natural frequencies decreased up to about 2.4% in the shortest cable and 0.1% in the 
longest cable as the wind speeds increased up to 20 m/s; and finally, modal damping coefficients 
fluctuated 0.05~2.5% in the shortest cable and 0.05~0.9% in the longest cable as the wind speeds 
changed 3~20 m/s.  

The STFT analyses on acceleration signals of the deck and cables produced natural frequencies 
fluctuating during the short period while other two methods (i.e., Welch’s and SSI methods) 
estimated constant values for the period. The fluctuating variation in natural frequencies quite 
increased as the wind speed reaches about 20 m/s. Relative to the shortest cable, the longest cable 
in the middle of the bridge had less variation of natural frequencies. 
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