Wind and Structures, Vol. 2, No. 3 (1999) 189-200 189

DOI: http://dx.doi.org/10.12989/was.1999.2.3.189

Non-spillover control design of tall
buildings in modal space
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Abstract. In this paper, a new algorithm for active control design of structures is proposed and
investigated. The algorithm preserves the decoupling property of the modal vibration equation and
eliminates the spillover problem, which is the main shortcoming in the independent modal space control
(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic
Riccati equation and the optimal actuator control force are obtained, and the control design procedure is
significantly simplified. A numerical example for the control design of a tall building subjected to wind
loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and
displacement responses of tall buildings under wind actions.
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1. Introduction

The modern high-rise buildings are constructed to be more flexible and lightly damped than
in the past. Therefore, the emphasis in the design of modern tall buildings has been shifted to
design the buildings to satisfy lateral drift requirements. The level of oscillations of tall
buildings during windstorm may not be significant enough to cause structural damage but
may cause discomfort to the building occupants. The structural control, thus, play a more and
more important role in reducing wind-induced vibrations during strong windstorms.

In recent years, great progress has been achieved in the field of active structural vibration
control. A variety of control algorithms have been developed specifically for civil engineering
structures (Yang, Akbarpour and Ghaemmaghami 1987, Yang, Li and Liu 1991, Yang, Li and
Liu 1992) and a number of full-scale active control systems have been installed in actual
structures and have performed well for the purposes intended (Soong, Reinhorn, Wang, and
Lin 1991, Soong and Reinhorn 1993). The IMSC algorithm, in which the control design is
carried out in the modal space, may be one of the simplest algorithms for structural control,
and has been widely used in the control design. However, there are intrinsic shortcomings in
this algorithm, in which one of them may be the spillover program, i.e., the control inputs
play the similar role as external excitation for the higher modes when the control design is
based on the lower modes. As a result, the responses of the controlled structure may be
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underestimated. The spillover problem of the IMSC algorithm has been extensively discussed
by several investigators, i.e., Soong (1990), Soong and Chang (1982). In this paper, based on
the LQR control law, a new control algorithm, non-spillover control law, is presented. In the
proposed algorithm, not only the decoupling property of the vibration equation in the modal
space is preserved, but also the vibration of higher uncontrolled modes is unrelated to the
control forces. The response of the controlled structure, thus, can be estimated more efficiently
and precisely. For specified weight matrices, the analytical solution of algebraic Riccati equation
is obtained, the computation cost is thus reduced significantly. However, it should be pointed out
that this study does not include the consideration of actuator dynamics since the main attention
herein is paid to the investigation of the control algorithm.

2. Control algorithm
2.1. Comments on IMSC algorithm

The vibration equation of controlled MDOF system is
Mz(t)+Cz(t)+Kz(t)=Du(t)+W(t) 1)

Where, M, C, K are nxXn mass, damping and stiffness matrices, respectively; z (f)=[z;, z,
-+, z,]" is n-dimensional vector of displacements; u(f) is an m-dimensional control-force
vector; D is an nXm matrix which denotes the location of the control forces; W(t)=[w,, w,,
-+, w,]" is an n-dimensional wind loading vector; the superscript T denotes vector or matrix
transpose.

Let z(f)=y(f), where @ is a modal matrix and q is the vector of modal displacements. Eq.
(1) may be rewritten as

M*g)+C*q(t)+K"q(t)=Hu(t)+E(t) )

where
H=dD, Et)=0"W() (3a)
M*'=d'M®P, C'=d'CP, K'=0'KO (3b)

Assume that the control design is only based on the first R modes, which are referred to
controlled modes, and higher modes are referred to uncontrolled modes. Rewrite Eq. (2) as

Mg (t)+C.q(t)+Kiq (t)=Hcu(t)+E. () (4a)
and

M;q,(t)+C/q(t)+K q,(t)=H - u(t)+E, (1) (4b)

H. E. M0
H=|p | E=|g| M= | ,. (5a)

where
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, |cl o . | K50
C = K = . (5b)
0 C 0 K
Obviously, H=4 if all the DOF of the system are controlled.
The causal and linear controller G is designed to generate the control signal u(f), according to

u(t)=-G Lq}j:_GMIc_Gzéc (6)

in which G, and G, are sub-matrices of G with dimension m X R.
Egs. (4a,b) and be rewritten as

MG (t)+(C;+H. G)q, (t)+ (K +H: G,)q.(t)=E.(r) (7a)
and
Mq,(t)+C/q,(t)+K q,(t)= - H, [G1q.(t)+G»q.(1)] +E. () (7o)

In general the matrices H. G, and H.G,, in Eq. (7a), are not diagonal matrices, thus the
governing equations of the controlled modes are a set of coupling equations, this means that
the decoupling characteristics of the modal decomposition can not be kept in the conventional
IMSC algorithm. It can also be seen, from Eq. (7b), that both the external loading and the control
forces make contributions to the response of the uncontrolled modes, i.e., the responses of
uncontrolled modes are related to both the response of controlled modes and the external loading.
Fang et al. (1997) pointed out that, if the control design is based on the first mode, the modal
control force could increase the root mean square response of modal acceleration by 4.22%
for a base excited controlled structure. The similar conclusion has been also made by them
for wind excited structures. The structural acceleration response, thus, may be significantly
underestimated when the response estimation is based on the controlled modes due to the
spillover problem.

2.2. Non-spillover IMSC algorithm

Suppose that G is a linear and causal controller, both H.G, and H, G, are diagonal matrices
and H,G, = H,G,=0 in Egs. (7a,b), one yields

N dl
Sk s dr d
HGl= O 0 = 0 . HG2= 0 0 = 0 (8)
nx nxXR
0 0 0 0

Note that D = I, i.e., H= @” when all DOF of the system are controlled.
Egs. (7a,b) thus can be rewritten as
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M/q,(1)+(C +d)q, () +(K +s)q. (1)=E.(t) (9a)
and
M/q,(t)+C/q,(t)+K 'q,(t)=E. (1) (9b)

Eq. (9a) is a set of decoupling equations, and Eq. (9b) shows that the governing equations
of the uncontrolled modes are unrelated to the control forces. Therefore, the non-spillover
problem can be eliminated if the causal controller satisfies Eq. (8).

Consider a configuration in which all the DOF are controlled, i.e., H= @ as mentioned
above (Note that m >R must be satisfied for the proposed algorithm, see appendix I). Without
losing the generality, the following assumptions are made

G,=M®F, G,=MPF, (10)
Substituting Eq. (10) into Eq. (8) and using the orthogonality of mode shapes, one yields

d
F,=[M"]" m F,=[M"]" M (11)

Then
G,=M®.[M]"'s G,=M®.[M]"'d (12)

where @, = (D), .z, i.., D, is a partition matrix of @ formed by the first R modes.
It is easy to verify that the responses of the higher uncontrolled modes are unrelated to the
actuator control force because

H G =O/M®.[M]'s=0 H G,=®'M®.[M]]"'d=0 (13)
The entries of matrices G; = (g;),xz and G, =(g;),«x are obtained from Eq. (12) as

i Vi,joj - i ld . .
gijzm_’_’_’*fi gi,-=m—’i] (l=1,2,"'1’l; ]=1,2,-~~,R) (14)

m; m;

Eqgs. (10) and (14) show that the feedback gain matrices can be obtained indirectly from the
diagonal matrices s and d. In the following study, an attempt is made to propose an algorithm
for calculation the diagonal matrices s and d.

Rewrite Eq. (4a) as a state-space equation as follows

Y =AY +DE.(t)+Bu(t) (15)
in which
0 I
Y=[g,q], A= . . (162)
[— diag (0}) — diag(2&; o, )}

0 0
p=| .| B=|__ (16b)
[[MC] } [[Mc] dz]
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and diag (0?)=[M.]7"[K.], diag (2; ©;)=[M.]" [K.], respectively.
The quadratic performance index is

J=["(Y" QY +uT Ru)di 17)

0, 0
The weight matrix Q is as the form of Q = { 01 0, in which the sub-matrices @, and Q,
2

are diagonal matrices. The control force vector u(z) is obtained as

u(t)=-R'B'PY (18)
in which, P satisfies the following algebraic Riccati equation
PA+A"P-PBR'B'P+Q =0 (19)

P11P21

Matrix P has the apartition form P = , then Eq. (19) can be rewritten as
P 21 P 22

Pu[M]'K:+[M]" K. Py +P[M]" ®'R™ . [M,] p,-0,=0 (20a)
Po[M]7C:+ M7 C.Pp+P oM™ OTR D. [M!]"'Py— 2P, —0,=0 (20b)

and the control force vector is

u(t)=-R' DM Pyg. ~-R" D (M) P g (21)
By comparison of Eq. (10) with (21), one yields
M®.[M]'s=R"®. [M]"' Py (22)
M®.[M)]"'d=R"®. [M]" Py (23)
The weight matrix R is expressed as
R'=2* M (24)

1

where R, is a constant which can be chosen according to the control condition.
Substituting Eq. (24) into Egs. (22) and (23), one obtains

P21=R1S P22=R1d (25)
The solutions of Egs. (20a,b), thus, are

s =kt [ A 1421 g (26)
R, (kY
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L.m?
dy=c;| \J 1+~ 1 27)
Ri(c))
where
L~=M+Q2j (j=1,2,,R) (28)

! 2k; +s;
Therefore, the feedback gain matrices G, and G, can be obtained from Eq. (14) by using
Egs. (26) and (27).

3. Application of the proposed algorithm
3.1. Specifications of a building

The building used as an example for the control design is specified in Tsukagoshi, Tamura,
Sasaki and Kanai (1993). This high-rise building has a square plan, an aspect ratio H/D=4 (H=
160 m, both length and width are 40 m) and 40 storey as shown in Fig. 1. The building is
modelled as a mass-spring-damping system of 10 degrees of freedom. The stiffness is assumed to
have a trapezoidal distribution with the ratio of the value at the top to that at the bottom of 1:2,
and the fundamental damping ratio to the critical value is set as 1% on the assumption that the
damping ratio varies proportionally with the stiffness. Table 1 shows the specifications of the

building model.
3.2. Simulation of wind force

The wind velocity profile along the vertical direction is written as

Along-wind
direction

u )
~s

/4

Fig. 1 The configuration of a building
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Table 1 Specifications of the building model

Mass No. Height (m) Projected area (m’) Mass (t) Spring constant (KN/m?)
1 152 640 3920 2.60x 10°
2 136 640 3920 2.89%x10°
3 120 640 3920 3.18x10°
4 104 640 3920 3.47x10°
5 88 640 3920 3.76 X 10°
6 72 640 3920 4.05 % 10°
7 56 640 3920 4.34%10°
8 40 640 3920 4.63x10°
9 24 640 3920 4.91x10°
10 8 640 3920 5.20%x10°
Vi, )=V E)+v(z, 1) (29)
where V(z) denotes the mean wind speed at height z and is assumed to follow the power law as
V(2)=V,o (z/10)" (30)

in which V,, is the mean wind speed at 10 m height, & is a constant, and v(z?) is the
fluctuating component of wind velocity with a specified non-white noise spectrum.

The horizontal wind force acting on the ith floor is the drag force and can be expressed as
Simiu and Scanlan (1996)

Wy (@, 1)= % pCo A @) Viz , 1)= % pCp AV @) +v(, OF (31)

Since in high winds v(z, 1)/ V(z,) rarely exceeds 0.2 (Simiu and Scanlan 1996), Vi(zi, 1)
may generally be neglected with small error yielding

Wp(z , t)=Wp (2)+ Wi, 1) (32)
where Wy(z) and W(zi, f) are the steady and turbulent components of the drag force,
respectively

Wo(a)=3 pA*@) Co [V @) +viar . 1)] (332)

Wy (@, t)=pV (@)A*@)Co vz, 1) (33b)

in which V(z) is mean wind speed at elevation z, Wz, f) is turbulent component of wind
speed, p is air density(1.225 kg/m®), C, is drag coefficient that equals to 1.18 in the current
calculation, A(z) is structural area (reference area) perpendicular to the wind at height z;.

The method developed by Shinozuka and Deodatis (1988) for simulating the time series of
the turbulent component of wind speed is as

viz,t) =\/§§§\/25(a),- , k) AwAk [ cos (@it +k;z +6;)+cos(wt —k;z +¢;;)] 34)

i=1 j=1

where S(@, k) is spectral density function of turbulent wind; Aw= @,/ N,; Ak=k,/N,, @, and k,
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are cut-off frequency and cut-off wave number, respectively; N, and N, are samples number in
the frequency domain and wave number domain, respectively; 6;, ¢, are random phase angles
which are uniformly distributed between 0 and 27

The spectral density function suggested by Davenport (1961, 1962) for turbulent wind was

expressed as

K' & | o] | o)
- — > (35)
2T 1+ @ /QrV 2] (€ +k7)
where @=scale of turbulence, K' is surface drag coefficient, £ is a constant. Fig. 2 shows a

simulated wind speed time history at 10 meter height with £=0.046 m/s, @=470 m, a=0.16,
Vio=30m/s and K'=2.5x 107, respectively.

S(o, k)=

3.3. Control design
The governing equations of the controlled modes are

§,(0)+28 @, ¢, + 02, ()=Y 4, [uO)+FG,0]  (=1,2,-,R)  (36)

in which A;=¢,/m,, and ¢, is the ith element of the jth modal shape.
Let R=1, i.e., the control design is based on the first mode, Eq. (36) may be rewritten as

Y(t)=AY(t)+DF (t)+Bu(t) (37)
in which
Y =] 1, A 0 1 38
- 611 ’ 41 H - 0)12 2510)1 ( )
B B ¢1,1/mI ¢n—1,1/mr ¢n,n/mT ( )

0, 0
Let Q= { 01 0, and R" =R,'M, Eq. (14) is as
2

N
[=]

(5]

Wind speed(mlséc)
OO o

100 200 300 400 500 600
Time(sec)

Fig. 2 The time history of fluctuating wind speed
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o _ . d
g =——m’ ¢”*1S1 i:——m' (p'i ! i=1,2, -, n) (40)
my m,
and s,, d, are
si=k" 1+—Q—1m*—12~ 1 1)
R(k}))
L *
di=c; | \J1+—2 -1 42)
Ri(cy)
where
miQ,
L=——=—+ 43
! 2k +s, Q: “3)

Eq. (37) is then rewritten as

Z¢i,1 éi z¢i,1 8i .
g.(t)+ 2§1w1+‘=1—m*— g.(t)+ w12+z_:17 q;(t)=Y A4, F (@, 1) (44)
i=1

1 1

Let Q,=0Q,=10 and R, =0.1, one gives d, =2.049x 106 and s, = 2.005 X 10°. The feedback
gain matrices, from Eq. (40), are

G,=[1.062, 2.167, 3.293, 4.421, 5.524, 6.570, 7.520, 8.328, 8.938, 9.284 "% 10*
G,=[1.086, 2.216, 3.367, 4.520, 5.648, 6.717, 7.688, 8.514, 9.138, 9.492 "% 10°

3.4. Results analysis

Fig. 3 and Fig. 4 show the comparison of the responses (in the first 5 minutes) of Mass No.
1 and Mass No. 2 corresponding to the controlled and uncontrolled configurations. It can be
seen that, due to the control, the maximum displacement and maximum acceleration are
reduced significantly. The peak acceleration and displacement responses corresponding to
each mass are shown in Fig. 5. For the top mass, the maximum acceleration is decreased by
65.8%, and the maximum displacement is reduced by 50%, respectively. The peak acceleration
and displacement corresponding the second mass are decreased by 50% and 76.9%, respectively,
as shown in Table 2. These results show that the vibration of the building has been suppressed
significantly when the control design is carried out based on the proposed algorithm. For
comparison purpose, the control design of the same building is re-carried out using the
conventional IMSC algorithm. The responses of the building are given in Table 2. It can be seen
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Fig. 5 The peak responses of the building (Uncontrolied + Controlled o)



Non-spillover control design of tall buildings in modal space 199

Table 2 The peak values of the responses

Controlled Uncontrolled Reduced ratio (%) IMSC

Acceleration No. 1 A_,, 0.1888 0.5522 65.8 0.2017
(m/s%) No. 2 A 0.1270 0.2540 50.0 0.1302
Displacement No. 1 D_,, 0.1817 0.5617 67.6 0.1846
(m) No. 2 D, 0.1223 0.5317 76.9 0.1296

Table 3 The comparison of the control forces

Mass No. IMSC Proposed Increasing ratio(%)
Control force No. 1 221.1 238.6 7.91
(KN) No. 2 183.5 196.2 6.92

that the proposed algorithm is more efficient than the conventional IMSC algorithm. In order to
compare the energy consuming of the two algorithms, the peak values of the control forces acting
on the mass 1 and mass 2 are given in Table 3. The control forces required by the proposed
algorithm are greater than those needed by the conventional IMSC algorithm. This is due to the
fact, for the proposed algorithm, that the feedback matrices have to satisfy Eq. (8), there is less
freedom in selecting the weight matrices in the proposed algorithm. However, the increase of
control forces in the proposed algorithm is not significant. Considering the control efficiency, this
increase is acceptable. It should be pointed out that the control of the cross-wind vibration is not
studied herein because the scope of this paper is focused on the algorithm studies.

4. Conclusions

In this paper, a new algorithm for structural control implementation is proposed on the basis of
the elimination of spillover effects of the IMSC algorithm. The decoupling property of the
governing equations of the controlled structure in modal space is preserved since the proposed
algorithm is based on the diagonal matrix. With LQR control design, the analytical solution of
algebraic Riccati equation and the optimal actuator control force have been obtained for the
proposed algorithm. Thus, the proposed algorithm significantly simplifies the control design
procedure. A numerical example for control design of a tall building subjected to wind loading
has been given for verifying the effectiveness of the proposed algorithm. The results of the
numerical simulations have demonstrated the effectiveness of the proposed algorithm in reducing
the acceleration and displacement responses of tall buildings under wind actions.
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Appendix

Proposition: When the control design is carried out by the proposed algorithm, the following
relation must be satisfied
m>R 1)
where m is the number of the control forces and R is the number of the controlled modes

Proof:
In the MIMSE, Eq. (36) must be held, then, one has

rank (HG ;)=rank (¥’ DG )=R (12a)
rank (HG ,)=rank (&' DG ,)=R (I2b)
rank(@®)=n since @ is a nonsingular matrix, there are finite elementary matrices L; (i=1, 2, -~ r)
to make the following equation bold
&' =L,L, L, (13)
therefore
o'D=L,L,- LD (I14)
Because the rank of the matrix remains the same when it is multiplied by the elementary matrices,
then

rank (&' D)=rank(L,L, - L, D )=rank(D )=m (I5)

If m<R, then rank (G,) =rank (G,) = m, so that
rank (¥ DG )=m <R (16a)
rank (&' DG ,)=m <R (16b)

Egs. (12) is not satisfied, so as to m>R must be satisfied, as claimed.

( Communicated by Giovanni Solari’)





