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Using neural networks to model and predict
amplitude dependent damping in buildings

Q.S. Li", D.K. Liu*, J.Q. Fang!, A.P. Jeary" and C.K. Wong"

Department of Building and Construction, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong

Abstract. In this paper, artificial neural networks, a new kind of intelligent method, are employed to
model and predict amplitude dependent damping in buildings based on our full-scale measurements of
buildings. The modelling method and procedure using neural networks to model the damping are studied.
Comparative analysis of different neural network models of damping, which includes multi-layer perception
network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and
discussed in detail. The performances of the models are evaluated and discussed by tests and predictions
including self-test, “one-lag’ prediction and “multi-lag” prediction of the damping values at high amplitude
levels. The established models of damping are used to predict the damping in the following three ways : (1)
the model is established by part of the data measured from one building and is used to predict the another
part of damping values which are always difficult to obtain from field measurements : the values at the high
amplitude level. (2) The model is established by the damping data measured from one building and is used
to predict the variation curve of damping for another building. And (3) the model is established by the data
measured from more than one buildings and is used to predict the variation curve of damping for another
building. The prediction results are discussed.

Key words: full-scale measurement; amplitude dependent damping; artificial neural networks; general
regression network, prediction.

1. Introduction

Damping in structures, which is a practical measure of the efficiency of a system to dissipate
the energy that it acquires in its attempt to return to quiescent conditions, is recognised as one of
the important parameters for assessing structural response at the design stage. The importance of
damping is becoming increasingly significant as buildings are become taller and relatively more
flexible. However, in most cases, the design value of the damping ratio is generally set at a fixed
value for special structures. For example in Japan, the design value of the damping ratio is
generally set at 2% and 3% for steel structures and reinforced concrete structures, respectively
(Tamura et al. 1994). This is not completely consistent with the practical cases, and the design
values of damping could be quite different from actual values. Unlike the mass and stiffness
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characteristics of a structural system, damping does not relate to a unique physical phenomenon.
The estimation of damping in buildings poses most difficult problems. Over the years, there has
Eeen considerable research work in pursuit of descriptions of inherent damping of structures.

everal investigations have shown that the damping of steel and concrete structures increases with
the amplitude of vibration. For example, based on a significant full scale measurement data base,
Jeary (1986) investigated the mechanism for the amplitude dependent damping in buildings, and
applied a random decrement technique (RDT) to evaluate damping in buildings. A RDT ranked
by peak amplitude was proposed by Tamura and Suganuma (1996) for directly and effectively
evaluating the amplitude dependence of dynamic phenomena, and was applied to the wind-
induced response data of three towers. The results were compared with those of the traditional
techniques. Kareem and Gurley (1996) presented the estimation of damping by the RDT in
detail and analysed the implications of the uncertainty of damping on system responses in terms
of a perturbation technique, second-moment analysis and Monte Carlo simulation. Li et al. (1996a,
1996b) and Fang et al. (1998a) investigated the effects of random factors on the damping values
in the different amplitude regions, and established an AR model of damping in a building and
predicted the damping values at higher amplitude levels. Because of the complexity of the
damping in buildings and the needs to aid designers in estimating damping ratios precisely,
some simple forecast models of damping have been established over the years. These models
are based on theoretical considerations and statistical analyses carried out based on a wide and
reliable experimental database. The forecast of structural damping is currently entrusted to two
classes of procedures : empirical methods and semi-empirical methods. The former methods are
general proposed by standards and consist of assuming constant values to the damping, eventually
differentiated in accordance with the building type and the structural material (Haviland 1976).
The latter methods use relationships based on the statistical analysis of experimental data from full-
scale tests. The formulae proposed are often qualitatively supported by theoretical considerations
that sometimes justify their use outside the experimentally investigated dominion. The model
proposed by Davenport and Hill Caroll (1986) and those by Jeary (1986) which is presented
in Section 2 in this paper represent the most important examples.

At present, these forecast formulae of damping in buildings give a deterministic value for a
building, they can not give the changing process of the damping with the increase of amplitude,
especially in the high amplitude plateau of the curve. The amplitude dependent damping in
buildings can be described as shown in Fig. 1 (Jeary 1986). The changing curve of damping
with amplitude will help researchers and engineers to analyse the dynamic response of buildings,
and to design the passive and active damper for control of the structural response under the
excitation of external loading such as strong wind and earthquake actions. Therefore, it is important
and useable to forecast the variation of damping with amplitude, especially in the high amplitude
plateau in which the values of damping can not be obtained easily in full-scale measurements.
The main purpose of this paper is to propose effective methods to model and forecast the
variation curve of damping of tall buildings with amplitude.

From Fig. 2 it can be seen that the variation curve of damping with amplitude takes on
distinct non-linearity. And it can be also see from the figure that the amplitude dependent
damping data obtained from full-scale measurements shows that the damping has distinct time
series properties (here the time series is the amplitude series), i.e., the past damping values in
the series may influence the future damping values. In order to predict the variation of
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Fig. 2 Damping curve measured from building 1

damping with amplitude effectively, it is necessary to establish an accurate model of damping.
But at present, there is no widely accepted method available for modelling the damping in
buildings. A traditional statistical treatment of time series would include a test for randomness,
analysis of series into component parts, seasonal adjustments, smoothing, and the class of
autoregressive forecasting. However, direct test for randomness can be fraught with problems.
Techniques in non-linear modelling have been developed, particularly in control theory and
engineering. But most of these techniques rely on polynomial series. For general problems that
are not polynomial in nature, high orders of the polynomial are required, and the method may
become unwieldy as the number of coefficient increases. Currently, there is a new challenger for
these methodologies-artificial neural networks (ANNS).

ANNs may be considered as a data processing technique that maps, or relates, some type of
input stream of information to an output stream of data, and thus they belong to the class of data-
driven approaches, as opposed to model-driven approaches. Neural networks encompass many
desirable features as a data analysis tool. The most important advantages of neural networks
may be generalisation, flexibility and non-linear modelling. Thus, they have strong capability
to construct non-linear relationships between the input data and the target output. In recent



28 0.S. Li, DK. Liu, J.Q. Fang, A.P. Jeary and C.K. Wong

years, a number of publications which concern forecasting and modelling problems have appeared
in the literature (e.g., Tiao et al. 1989, Harvey 1989, Chakraborty et al. 1992, Refenes et al. 1993,
Hill et al. 1994, Gorr et al. 1994, Azoff 1994, Pham et al. 1995). ANNs and traditional time
series techniques have been compared and studied. The results of these research works show that
neural networks have several potential advantages over statistical methods in modelling and
prediction. These advantages include (1) ANNs can be mathematically shown to be universal
function approximators (Homik er al. 1989), which means that they can automatically approximate
whatever functional form best characterises the data. (2) ANNs are also inherently non-linear
(Rumelhart and McClelland 1986), which means not only can they estimate non-linear functions
well, but they can also extract any residual non-linear elements from the data after linear terms
are removed. (3) With ANNs using one or more hidden layers, the networks can partition the
sample space automatically and build different functions in different portions of that space. This
means that ANNs have a modest capability for buildings piece-wise non-linear models. On the
other hand, although the future looks bright for ANNs applications in forecasting and decision-
making, it is still necessary to rigorously evaluate these applications in many fields.

Non-stationary nonlinear time series are more suitable for analysis by the general nonlinear
mapping provided by a neural network, than by linear based autoregressive models. The ability
and the advantages of neural networks to model and forecast non-linear data makes them a good
candidate to model the amplitude dependent damping in buildings. In this paper, artificial neural
networks are employed to model the amplitude dependent damping in buildings. The modelling
method, modelling procedure and modelling parameters using neural networks to model the
damping are studied. Comparative analysis of different neural network models of damping,
which includes multi-layer perception network (MLP), recurrent neural network, and general
regression neural network (GRNN), is performed and discussed in detail. The performances of
the models are evaluated through tests and predictions. The established models of damping
are used to predict the damping in the following three ways : (1) the model is established by
part of the data measured from one building and is used to predict the another part of
damping values, the values in the high amplitude level. (2) The model is established by the
damping data measured from one building and is used to predict the variation curve of
damping for another building. And (3) the model is established by the data measured from more
than one buildings and is used to predict the variation curve of damping for another building. The
prediction results are discussed.

2. Damping in buildings

Based on a significant full scale measurement data base, Jeary (1986) suggested that the
amplitude dependent damping in buildings can be described, as shown in Fig. 1 and pointed
out that damping values can be estimated by the following expression :

G=6+8 (X, VH (1)

where & is the low-amplitude damping, {; is a rate of increase of damping with amplitude, £,
is the absolute value of damping at amplitude X;, H is the height of the building. The data
presented in Fig. 2 were measured from a 120 metres steel building (building 1) with rectangular
shape. Two accelerometers were placed orthogonally at one corner on the top of the roof, one
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was placed along the longer side (direction 1) with the other along the shorter side (direction 2).
A record of the response of the building was continuously acquired and digitized at 30 Hz and
was amplified and low pass filtered at 5 Hz before the digitization. The spectra of acceleration
responses demonstrate that the wind-induced vibration of building is mainly dominated by the
first natural frequency (Li et al. 1996b, Fang et al. 1998b). In order to obtain the damping
estimates, the fundamental mode of the response was then band-pass filtered with an 8 pole filter
and a random decrement process was performed with 200 threshold levels. The selection method
for this particular test was chosen at response peak only. The random decrement signature on the
graph is based on a 30 days accumulation of results with minimum 1000 averages so that each
point of the curve converges before performing a curve filtering,

3. Neural network models of damping for building 1
3.1. Neural networks and their structures

Multilayer perception neural network (MLP) may be perhaps the best known feedfoward
network, which has been deeply studied and widely used in many fields. But in fact, MLP has
some shortcomings due to its learning process. In the past few years, many advanced neural
network architectures and learning algorithms have emerged and have been successfully applied
to practical problems. Examples are recurrent neural network (RNN), probabilistic neural network
(PNN) (Specht 1990), general regression neural network (GRNN) (Specht 1991), etc. PNN and
GRNN perform stochastic modelling, but they do not operate in a probabilistic manner, as in the
case of the Boltmann Machine. The networks are constructed through the addition of inner-layer
nodes that represent the statistical properties of the training patterns. PNN is based on concepts
used in classical pattern recognition problems, it leams complex decision boundaries for category
classification tasks. The GRNN, on the other hand, learns the regression function relationship
(linear or nonlinear) between the dependent and independent variables. Thus, in order to
investigate the application of neural networks to modelling the damping, three kinds of neural
networks are used in this study : MLP network, recurrent network and general regression
neural network (GRNN).

Fig. 3(a) shows a time-delay MLP neural network architecture with three layers : an input layer,
an output layer and an intermediate or hidden layer. The input vectors are DER", D=(d,, d;, -*-,
d,.)"; the outputs of g neurons in the hidden layer, ZER®, Z=(zy, z,, **, Z,y) ": and the outputs
of the output layer are YER”, Y=(yy, Y1, - » Yn1 ) . Assuming that the weight and the threshold
between the input layer and the hidden layer is w; and 6, respectively, and the weight and the
threshold between the hidden layer and output layer is w, and 6, respectively, the outputs of each
neuron in a hidden layer and output layer are :

n
z=f z w; d; — 6; 2
i=1
q
=Y wyz -6 G)

j=1
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Fig. 3 The structures of neural networks (a) time-delay feedforward neural network (MLP), (b) recurrent
network, (c) general regression neural network (GRNN)

where f() is transfer function, which is the rule for mapping the neuron's summed input to its
output, and by a suitable choice, is a means of introducing a non-linearity into the network design.
The backpropagation (BP) training process requires that the activation functions be bounded,
differentiable functions. A range of possible active functions may be utilised such as Sigmoid
function, hyperbolic tangent, sine and cosine function, etc. In practice the functions are also
chosen to be monotonic and to saturate at the two extremes of [0, 1] or [-1, 1]. One of the
most commonly used functions satisfying these requirements is the Sigmoid function, and it is
monotonic increasing and ranges from O to 1 which is consistent with the range of the
damping values. Thus, the Sigmoid function is chosen for the active function.

f(x)=1/(1+exp(-fx)) Q)

where [ is a constant that determines the steepness of the S Shape curve; x is the input to the
transfer function, being the part in brackets of the above Eq. (2) and Eq. (3).

The second network investigated in this paper is recurrent network. Differing from the
feedforward networks, in a recurrent network, the outputs of some neurons are fed back to the
same neurons or to the neurons in preceding layers. Thus, signals can flow in both forward and
backward directions. An example is the Hopfield network. Recurrent networks have a dynamic
memory : their outputs at a given instant reflect the current input as well as previous inputs and
outputs, and thus they have been successfully used in predicting financial markets. Because
recurrent networks can learn sequences, they are excellent for time series data. In terms of
network training, recurrent networks are trained in the same way as a standard backpropagation
network, except that patterns must always be presented in the same order. There are three types
of recurrent networks : input layer fed back into the input layer, hidden layer fed back into the
input layer and output layer fed back into the input layer. In this paper, the second type of
recurrent network is used.

The third network used in this paper is the general regression neural networks (GRNN)
(Specht 1991), which is a three-layer network where there must be one hidden neuron for
each training pattern. There is no training parameter such as a learning rate and momentum as
in backpropagation, but there is a smoothing factor that is applied after the network is trained.
GRNN works by measuring how far a given sample pattern is from patterns in the training set in
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N dimensional space, where N is the number of inputs to the problem. When a new pattern is
presented to the network, that input pattern is compared in N dimensional space with all of the
patterns in the training set to determine how much it deviates from those patterns. The output that
is predicted by the network is a proportional amount of all the outputs in the training set. The
proportion is based upon how far the new pattern is from the given patterns in the training set.
GRNN is known for the ability to train quickly with sparse data sets.

3.2. Design of training data set, test data set and the structures of neural networks

The design stage of working with neural networks involves a number of aspects : (1) designing
the network structure; (2) Selecting neuron transfer functions; (3) A method for updating the
weights and (4) A training cessation scheme. Before doing this, determination of the input vectors
is the most important step since it will strongly affect the design of the networks, and may even
affect the performance of the neural network models. For modelling a time series, the previous
data will affect the current value, thus it is necessary to determine the optimum number of input
units and this must be investigated by experiments for some cases. In this paper, two different
numbers of input units are used and a comparative analysis of their results is performed. The first
uses 2 input units, which predicts the current value of damping d(k) using the past two values d
(k-1) and d(k-2), and the second uses 4 input units to predict the d(k) using the previous 4 values
d(k-1), d(k-2), d(k-3) and d(k-4), where k is the step number in the data series. After determining
the input units, the network structure can be evaluated by the estimation software according to the
minimum acceptable training error, maximum number of iterations and the training data set.

Momentum coefficient and “learning rate” are the principal parameters in BP learning
algorithm, which roughly describe the relative importance given to the current and past error
values in modifying connection strengths. In our analysis, we have chosen the initial learning
rate to be 0.2 and an associated momentum term to be 0.7. According to the different number
of inputs, two structures, 2-13-1 and 4-13-1, of MLP network are adopted corresponding to
the 2 inputs and 4 inputs, respectively. In the recurrent network, the structure of the hidden
layer feeding back into the input layer is adopted, as shown in Fig. 3(b). The number of units
in each layer is 4-13-1, and the transfer function of the neurons is Sigmoid function. The
architecture of general regression neural network is shown in Fig. 3(c), and a structure of 4-
115-1 is adopted, this notation signifies that there are 4 units, 115 units and 1 unit in the
input, hidden and output layer, respectively.

The training data set and the test data set are arranged as follows : training data set consists
of 115 input patterns which corresponds to the range of amplitude from 1.8 mm to 13.3 mm.
The test data set is composed of 8 patterns, which corresponds to the range of amplitude from
13.4 mm to 14.1 mm. Each pattern is generated based on the format : “d(k-2) d(k-1) d(k)" or “d
(k-4) d(k-3) d(k-2) d(k-1) d(k)" for the 2 inputs or 4 inputs, respectively. The training results of
the three networks are tabulated in Table 1.

3.3 Test and analysis of ANNs models of damping

In order to test the trained neural networks, three testing strategies were adopted in this
paper : self-test, “one-lag” prediction and “multi-lag’ prediction. The results of self-test which
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Table 1 Network structures and parameters, as well as training and test values

MLP network MLP network Recurrent network GRNN
Structure 4-13-1 2-13-1 4-13/13-1 4-115-1
Training learning rate : 0.2  learning rate : 0.2  learning rate : 0.2 L
parameters momentum : 0.7 momentum : 0.7 momentum : 0.7 smoothing : 0.3
Training patterns 117 117 117 117
Test patterns 8 8 8 8
Training time 4'50" 4'40" 1'45" 1
MSE 0.34E-03 0.37E-03 0.57E-03 0.5E-04
Mean absolute 0.0148 0.016 0.0196 0.0038
error
Min/max absolute 4 6002/0.0484 0.0002/0.046 0.0005/0.0484  0.00001/0.0456
0.7
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Fig. 4 Actual, test and prediction curve of damping using MLP network (4-13-1)
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Fig. 5 Actual, test and prediction curve of damping using MLP network (2-13-1)

uses the training input data set as the test set are shown in Fig. 4~Fig. 7. The part of these
curves from 1.8 mm to 13.3 mm of amplitude is the result of the self-test. From these figures
it can be seen that there is little error between the outputs of the network and the actual target
values in the input training data. The values of errors are listed in Table 1.
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Fig. 6 Actual, test and prediction curve of damping using recurrent network (4-13-1)
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Fig. 7 Actual, test and prediction curve of damping using GRNN (4-115-1)

The results of the self-test can only confirm the performance with which the network maps
the input data, but is not by itself enough to illustrate the abilities of the network. The
ultimate purpose of using neural networks is to solve new problems using the trained network,
and thus, the test of the performance of the network to predict the new data is an important
task. The second stage of testing the network is carried out by using the test data set which is not
included in the training data set. In this stage, both “one-lag” and “multi-lag” (Chakraborty et al.
1992, Pham et al. 1995) output predictions for the test samples are carried out with the given
lmodels In the one-lag prediction, the mputs to the network are historical values obtained from
the field measurements, and the network is expected to predict a new value. In the multi-lag
1pred1ct10n on the other hand, the predicted values, which are the output of the network, are
appended to the input database and these values are used to predict future values. For instance, if
the network is used to predict a value d'(k) from real measurement data d(k-4), d(k-3), d(k-2) and
d(k-1), then the next network prediction d'(k+1) is made using inputs data d(k-3), d(k-2), d(k-1)
and d'(k). In both cases, the one-lag prediction provides short-term forecasts and the multi-lag
prediction provides long-term forecasts. The results of prediction using the one-lag method and
the real target value are shown in Fig. 4~Fig. 7 and in Tables 1 and 2. From these curves and
data it can be seen that the maximum error of prediction using MLP with 4 inputs MLP with 2
unputs recurrent network and GRNN network is 0.0484, 0.046, 0.0484 and 0.0456, respectively,
and the mean square error (MSE) is 0.34E-03, 0.37E-03, 0.57E-03 and 0.5E-04, respectively. It
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Table 2 Predictor at high amplitude of damping (building 1)
Prediction values of damping (%)

Amplitude Actual MLP network MLP network  Recurrent GRNN GRNN
(mm) damping (%)  (4-13-1) (2-13-1) network (one-lag) (multi-lag)
13.4 0.574 0.5368 0.528 0.5256 0.5614 0.5626
135 0.531 0.5536 0.5535 0.5269 0.5329 0.5643
13.6 0.488 0.5202 0.5247 0.5267 0.5003 0.5403
13.7 0.466 0.5072 0.4928 0.5227 0.5116 0.5693
13.8 0.495 0.5066 0.4752 0.5143 0.5178 0.5456
13.9 0.549 0.5179 0.503 0.5045 0.53 0.55
14.0 0.515 0.5342 0.5406 0.5074 0.525 0.555
14.1 0.549 0.5006 0.5142 0.5127 0.5419 0.5256

can be also seen that the prediction curve is consistent with the actual damping curve, and the
error between these two curves is small.

Comparing the results shown in Fig. 4, Fig. 5, Fig. 8(a), Fig. 8(b), Table 1 and Table 2,
which were obtained form the 4 input MLP network and the 2 input MLP network, respectively,
it is interesting to observe that the 2 input MLP network obtains a little better results than the 4
input MLP network in the prediction of damping under the same learning rate and momentum
coefficient. This illustrates that the 4 input network (4-13-1) is oversized for the given damping
data set, the 2 input network is more suitable for the modelling and prediction of damping than
the 4 input network. This can be verified by observation of Fig. 8(a) and Fig. 8(b), from which it
can be seen that the contribution factor of the nearest input d(k-1) is much larger than the other
inputs, such as d(k-2), d(k-3) and d(k-4), and that every output in the series is strongly dependent
on the past two values. This result gives us a useful indicator for the modelling of the amplitude
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Fig. 9 "Multi-lag” prediction curve of damping using GRNN (4-115-1)

dependent damping in buildings. However, this is not the case for the recurrent network, as
shown in Fig. 8(c), in which there is no distinct difference among the 4 inputs. This suggests that
different networks should use their corresponding training data structures. In a wide range of
application of neural networks to time series, four inputs are adequate. In the training and testing
of recurrent network and GRNN, four inputs are also used.

From Fig. 7, and from Tables 1 and 2, it can be seen that the mean square error of the
GRNN is 0.5E-04, and the network output curve (one-lag prediction) closely approximates the
actual target curve. Comparing with the other networks, it can be concluded that the performance
of the GRNN is better than the MLP network and the recurrent network for modelling the
damping in buildings, which can be seen from Fig. 4~Fig. 7 and Table 1.

The results obtained by the GRNN for the multi-lag prediction test are presented in Fig. 9
and Table 2. Both the one-lag prediction and multi-lag prediction results for the trained
GRNN reflect their ability to predict damping using new data. However, in the multi-lag
prediction, the predicted results of damping deviated from the actual values, and the error
becomes larger than the one-lag prediction as the prediction process proceeds. The maximum
absolute error value reached to 0.1033. Furthermore, from the first step to the last step of the
prediction, corresponding to the range of amplitude from 13.4 mm to 14.1 mm, the MSE
steeply increases from 0.4E-04 to 0.18E-03. It can be seen from Fig. 9 that the performance
of multi-lag prediction is not as good as that of the one-lag prediction.

4. Neural network model of damping for building 2

The building 2 is also a steel building with 68 stories, the structural form is similar with
the building 1. Two accelerometers were installed at the top floor to provide the measurement of
accelerations. The accelerometers are placed orthogonally along the major axes of this building at
one corner. Acceleration responses are continuously acquired and digitized at 20 Hz and were
amplified and low pass filtered at 10 Hz before digitization. The spectra of acceleration responses
demonstrate that the wind-induced vibration of building is primarily dominated by the first natural
frequency (Fang et al. 1998b). In order to obtain the damping estimates, the fundamental mode
responses were band-passed with a 4096 pole filter before processing the random decrement. The
random decrement signature on each graph represents a one-month accumulation of results with
minimum 1000 averages. The damping estimates for the two channels were obtained from
September 1995 to January 1998.
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Table 3 The prediction results of neural network model of damping (building 2)

Amplitude Actual damping  Network output A=Actual-
(mm) (%) (%) Network
19.1 0.505 0.496 0.009
19.2 0.446 0.447 -0.001
19.3 0.421 0.443 -0.021
194 0.441 0.43 0.011
19.5 0.495 0.445 0.05
19.6 0.422 0.437 -0.015
19.7 0.493 0.483 0.01
19.8 0.461 0.445 0.016
19.9 0.492 0.504 -0.012
20.0 0.463 042 0.043

0.6
0.5 [ L) ; °' 'C
g 0.3 P —_— 7
13 & prediction
3 02 ‘:‘ o Actual value
0.1 _! |+ Network output [ i
0 3 . ——

09 23 37 51 65 7.9 93 10.712.1 13.514.916.3 17.7 19.1
Amplitude {(mm)

Fig. 10 Actual damping curve measured from building 2 and neural network prediction curve

Based on the results obtained in Section 3, the GRNN is also used to model the damping
of the tall building. 4 input units have been used to predict the d(k) using the previous 4
values d(k-1), d(k-2), d(k-3) and d(k-4). The network structure can be determined based on
the criteria set by the minimum acceptable training error, the maximum number of iterations
and the training data set. The network structure of GRNN was determined as 4-182-1, that is,
there are 4 units, 182 units and 1 unit in the input layer, hidden layer and output layer,
respectively. There are 192 input vectors in the data set, and from these the first 182 vectors
were used as a training set and the remaining 10 vectors were used as a test set. This corresponds
to an amplitude range from 0.9 mm to 19.0 mm and from 19.1 mm to 20.0 mm, respectively.
The test results of the trained GRNN are listed in Table 3 and showed in Fig. 10. From the
test results and curves it can be seen that the maximum absolute error of prediction value is 0.05,
the mean absolute error of prediction is less than 0.011. From these results it can be seen that
the output of the neural network model of damping is closely consistent with the actual
damping value.

5. Prediction of amplitude dependent damping in buildings

As presented above, the neural network models of damping established using part of the
damping data measured from one building is capable of predicting the damping values in the
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high amplitude level which are not included in the training data set. The following part of
this paper will investigate the prediction function of the established damping model. Two
cases will be investigated: the first case is to predict the damping curve of building 1 using
the damping model established based on the measured data from building 2; the second case
is to predict the damping curve of building 1 using the model established based on two buildings'
damping data (buildings 2 and 3).

5.1. Predicting the damping values for building 1 using the neural network model of
damping established based on the measured data from building 2

In order to test the modelling methods and the performance of the established models of
amplitude dependent damping in buildings, the damping model established in Section 4 for
building 2 was used to predict the variation curve of damping for building 1. In this case, the
damping data of building 1 were not included in the training data set and the test data set.
The prediction results are shown in Fig. 11 and Table 4. From these results it can be seen
that there are relatively large errors between the actual damping data and the prediction values
comparing with the errors in Table 2. But from Fig. 11 it can be seen that the variation trend
of the damping values with amplitude coincides with the actual measurements of damping,
and in the low amplitude plateau and non-linear region the variation trend of prediction curve
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Fig. 11 Prediction curve of damping for building 1 using the damping model established based on

building 2

Table 4 Part of the preduction values of damping for building 1 obtained from the application of
damping model established based on building 2

Amplitude(mm) Actual damping(%) Network output(%) Error
13.4 0.574 0.459 0.115
135 0.531 0.431 0.1
13.6 0.488 0.443 0.045
13.7 0.466 0.429 0.037
13.8 0.495 0.443 0.052
13.9 0.549 0.457 0.092
14 0.515 0.446 0.069

14.1 0.549 0.443 0.106
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is coincident closely with the actual damping curve. As for the relatively large errors in the
high amplitude plateau, the main reason is that the training data set is quite small (only the
damping data of one building).

5.2. Predicting the damping values of building 1 using the damping model established
based on building 2 and 3

The neural network model of damping is established based on two buildings : building 2
and building 3. The building 3 is a 30-storey steel building with the similar structural form as
the building 1. The variation of damping with amplitude is shown in Fig. 12. The model of
damping is established using the same method as described for building 2, but the training
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Fig. 12 Damping curve measured from building 3
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Fig. 13 Prediction curve of damping in building 1 using the damping model established based on the
damping data of buildings 2 and 3

Table 5 Part of the prediction values of damping in building 1 obtained from the application of the
damping model established based on buildings 2 and 3

Amplitude(mm) Actual damping(%) Network output(%) Error
134 0.574 0.524 0.05
13.5 0.531 0.537 -0.006
13.6 0.488 0.525 -0.037
13.7 0.466 0.517 -0.051
13.8 0.495 0.511 -0.016
13.9 0.549 0.506 0.043
14 0.515 0.512 0.003

14.1 0.549 0.506 0.043
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damping data are consisted of the building 2 and the building 3. The established damping
model is used to predict the damping curve of the building 1, the prediction results are shown
in Fig. 13. The errors between the actual values and prediction values are listed in Table 5, the
maximum and mean absolute error is 0.103 and 0.015, respectively. From these results it can
be seen that the prediction curve is consistent with actual damping curve, and the prediction
error is small.

6. Discussion

Comparing the results in 5.1 with those in 5.2 it can be seen that the error in the later case
is much smaller than that in the former case. This can be explained from the following two
reasons: the first and the most important reason is that neural networks learn from examples,
the performance of neural network model of damping strongly depends on the quality and
number of examples. The more the examples are, the less the prediction error. Second, the
building 3 is similar with the building 1 in the structural form and material, thus their damping
curves are similar under the similar external excitation and measurement conditions. When the
damping data measured from the building 3 is used to model the damping model, and the
established model is used to predict the damping curve for the building 1, the error should be
small.

Many factors may affect the damping of buildings, in this paper, the structural form and
material of the three buildings are similar, and so there exist comparable conditions which
reduce the complexity of establishing the damping model. For a more general or wider problem
of damping modelling, the results obtained in this paper are still feasible. And then, there are two
approaches may be considered in the future studies : one way is that the damping models are
established based on different classes of buildings, each class corresponds to a damping model. In
this way, buildings must be classified as different classes according to some conditions such as
structural systems, building material, building height and foundation conditions etc. The another
way is that a model is established based on damping data measured from many buildings. For
this case, the measurement data as well as the structural parameters such as material, structural
form and so on are all used as the input parameters of neural networks.

7. Conclusions

A neural network approach has been presented for modelling and predicting the amplitude
dependent damping in buildings. Field measurements of damping made by the authors have
been used to train and test the neural networks. Remarkable success has been achieved in
training the networks to learn the variation curves of damping with the amplitude of vibration,
and thereby to make accurate damping predictions, including the prediction of damping values in
high amplitude level and damping curve for new building. The results show that neural network
is an effective approach to modelling non-linear relationships between damping and vibration
amplitude. Additionally in the techniques and methods using neural network to establish damping
models, it has been found that the 2 inputs of the time series of damping is good enough to
model the field data of damping using an MLP network model. It has been also found that the
general regression neural network is more suitable for modelling the damping than the MLP
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network and the recurrent network.
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