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Abstract.    Past high speed wind events have exposed the vulnerability of the roof systems of existing 
light-framed wood structures to uplift loading, contributing greatly to economic and human loss. This paper 
further investigates the behaviour of light-framed wood structures under the uplift loading of a realistic 
pressure distribution. A three-dimensional finite-element model is first developed to capture the behaviour of 
a recently completed full-scale experiment. After describing the components used to develop the numerical 
model, a comparison between the numerical prediction and experimental results in terms of the deflected 
shape at the roof-to-wall connections is presented to gain confidence in the numerical model. The model is 
then used to analyze the behaviour of the truss system under realistic and equivalent uniform pressure 
distributions and to perform an assessment of the use of the tributary area method to calculate the 
withdrawal force acting on the roof-to-wall connections. 
 

Keywords:   wood structures; structural behaviour; finite element; wind damage 

 
 
1. Introduction 
 

Residential light-framed wood structures are very common in North America due to the ease of 
construction, the low cost, and the availability of materials and labour. The use of repetitive wood 
member, sheathing panels, and non-structural elements results in a structure with a high degree of 
redundancy, as well as complex and indeterminate load paths. Typical residential wood structures, 
subject to span and live load limits, are not analyzed by an engineer. Instead member sizes and 
connections details follow the prescriptive requirements of the local governing building code. Past 
extreme wind events have exposed the vulnerability of this type of structure to the uplift loading 
that results from high winds, with the sheathing-to-truss (STT) connections and the roof-to-wall 
(RTW) connections being identified as the most critical connections in the load path (FEMA 1993, 
Shanmugam et al. 2009). The damage that resulted to light-framed wood structures represented a 
large portion of the US$20-25 billion of economic loss that was caused by Hurricane Andrew in 
1992 (HUD 1993). Approximately 95% of this loss resulted from failures of materials of the roof 
system (Baskaran and Dutt 1997). While light-framed wood structures performed much better 
during Hurricane Katrina in 2005, the lack of a continuous load path from the roof to the 
foundation was still found to result in structural damage leading to economic loss (van de Lindt et 
al. 2007).  
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As extreme wind events expose the vulnerabilities of existing structures, building codes change 
to improve the capacity of new structures. For example, the most recent edition of the National 
Building Code of Canada defined high wind areas, in which the capacity required for both the STT 
and the RTW connections are increased above that of the previous edition (NRC 2010). Recent 
changes have also occurred to the Florida Building Code. Major improvements were made to the 
South Florida Building Code following Hurricane Andrew. These changes were adopted locally in 
1994 before becoming standard for the entire state of Florida in 2001 (Gurley et al. 2006). As 
building codes are improved, existing structures remain with known vulnerabilities, as they are 
built to the standard of an outdate code. Structures built before 1994 in the coastal regions of the 
United States are extremely vulnerable to the uplift forces caused by wind as the majority use 
insufficient nails for the STT connections (Datin et al. 2011). The large economic loss which has 
occurred, the frequent building code changes, and the vulnerability of existing structures all 
demonstrate the need to better understand the behaviour of light-framed wood structures in high 
speed wind events.   

In an attempt to better understand the behaviour of light-framed wood structures under uplift 
loading, researchers have used a combination of experimental and numerical studies. Morrison et 
al. (2012) loaded a full-scale structure built to the provisions of the Ontario Building Code with a 
realistic pressure distribution. The loading, which was developed from a wind tunnel study, was 
simulated using a system of 58 pressure bags, resulting in a spatially and temporally varying roof 
sheathing pressure. They found that the structure demonstrated significant load sharing, resulting 
in tributary area loads on the RTW connections that were significantly above the failure loads 
anticipated from experiments on individual toe-nail connections. Under the peak pressures of the 
realistic pressure distribution, the RTW connections were found to suffer permanent withdrawal, 
becoming increasingly damaged as the experimental loading progressed to higher wind velocities. 
This connection damage was confirmed in the individual connection testing completed by 
Morrison and Kopp (2011). The realistic wind loading applied during this study was unique, as 
previous studies had focused on the behaviour of the toe-nail connection under ramp loading. The 
testing of the individual connections found that permanent withdrawal occurred under the peak 
loads. During the unloading and reloading phases after damage, the stiffness of the connection 
remained similar to that of the initial stiffness of the connection. 

Zisis and Stathopoulos (2012) studied the behaviour of an as-built, gable-style light-framed 
wood structure under environmental loading. The structure was implemented with load cells 
between the walls and foundation. Pressure taps on the structure and local weather monitoring 
stations provided information about the magnitude of the applied wind loading. The study found 
that approximately 30% of the total applied uplift force was transferred through the gable walls to 
the foundation. The experimental study was complemented with the dynamic analysis of a 
finite-element model consisting of frame, area and rigid link elements. Due to the energy 
dissipation within the structure, the wind load acting on the foundation was approximately 17 to 28 
% less experimentally than predicted by the numerical model.   

Shivarudrappa and Nielson (2013) developed a finite-element model of a gable roof structure, 
validated using the experimental work of Datin and Prevatt (2013). Linear frame and shell 
elements were used with nonlinear link elements to capture the behaviour of the structure. The 
model was used to study the sensitivity of the distribution of the applied load at the RTW 
connections on the properties of the materials and connections within the structure. The sensitivity 
analysis found that the stiffness of the RTW connections had a large effect on the load sharing 
behaviour of the structure. Increasing the stiffness of the RTW connections reduced the amount of 
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applied load shared to surrounding trusses. Increasing the bending stiffness of the sheathing was 
found to increase the load shared between the trusses. The study also found that the additional 
RTW connections created along the gable end truss reduced the forces acting on the RTW 
connections of the next closest truss. 

Li et al. (1998) created a finite-element model of a truss system using the commercial software 
ETABS. The trusses were modeled using frame elements with increased bending stiffness for the 
top chord members to capture the partially composite behaviour created by the sheathing. The 
behaviour of the sheathing was captured using beam elements. The moment transferred by the 
gusset plate connection between truss members was neglected. The developed model showed good 
agreement with the experimental results presented in previous literature in terms of deflection, 
member axial force, and load distribution.    

This paper further investigates the behaviour of light-framed wood structures under the uplift 
loading of a realistic pressure distribution. A three-dimensional finite-element model is first 
developed to capture the behaviour of a recently completed full-scale experiment. After describing 
the components used to develop the numerical model, a comparison between the numerical 
prediction and experimental results in terms of the deflected shape at the RTW connections is 
presented to gain confidence in the numerical model. The model is then used to analyze the 
behaviour of the truss system under realistic and equivalent uniform pressure distributions and to 
perform an assessment of the use of the tributary area method to calculate the withdrawal force 
resulting at each RTW connection. 

 
 

2. Discription of the conducted experiment 
 

An experiment has been recently conducted at the Insurance Research Lab for Better Homes at 
the University of Western Ontario to study the behaviour of a light-framed wood structure under a 
realistic wind pressure distribution. The tested structure, shown in Fig. 1, was built to the 
provisions of the Ontario Building Code (OBC 2006) and inspected to ensure that it matched the 
typical construction techniques of the area. A realistic pressure distribution was developed from a 
wind tunnel study and simulated using a system of 58 pressure bags, resulting in an applied 
pressure to the roof sheathing that varied in both time and space. The pressure bags ranged from 
0.36 m2 to 5.8 m2 in area. As shown in Fig. 2, the smallest bags were located at the windward edge 
of the structure, where the largest variation in the magnitude of pressure occurs for the selected 
wind angle. The magnitude of the realistic pressure distribution that was initially applied to the 
structure corresponded to a mean wind velocity of 20 m/s at roof height. The wind velocity was 
increased by 5 m/s until failure of the RTW connections, which occurred under the pressure 
corresponding to a 45 m/s wind velocity. As the pressures were applied, the resulting deflection at 
each RTW connection was recorded. Further details of the experimental procedure are available in 
Morrison et al. (2012). 

 
 

3. Numerical modeling of the roof structure 
 

The experimental structure is numerically modeled using the finite-element program SAP 2000 
(Computers and Structures, Inc. 2009). A plan view of the structural skeleton of the roof system is 
provided in Fig. 3, followed by a description of the various components of the numerical model. 

605



 
 
 
 
 
 

Ryan B Jacklin, Ashraf A. El Damatty and Ahmed A. Dessouki 

 

 

Fig. 1 Full-scale experimental set-up with steel reaction frame (http://www.eng.uwo.ca/irlbh/) 

 

Fig. 2 Plan view of pressure box distribution for the full-scale experiment (Morrison 2010) 
 

 

Fig. 3 Plan view of structural skeleton of roof system 
 

606



 
 
 
 
 
 

Finite-element modeling of a light-framed wood roof structure 

3.1 Interior trusses 
 
Linear frame elements are used to model the wood members of the truss system. The structure 

contains 14 interior, Howe-style trusses spaced at 600 mm (2ft) centers with the dimensions shown 
in Fig. 4. Top and bottom chords of the trusses are 39 mm x 89 mm (2x4) members. Interior 
webbing of the trusses are constructed of 39 mm x 64 mm (2x3) members. The material properties 
for the frame elements are provided by the Canadian Wood Design Manual (CWDM) (CWC and 
CSA 2010) assuming dry, SPF, No. 1/No. 2 lumber. 

Physical connections between the members within each truss are made with metal “gusset” 
plates. Li et al. (1998) conducted numerical modeling of a wood truss system and concluded that 
neglecting the moment transfer of the gusset plate connection resulted in accurate force 
distribution within truss members when compared to experimental literature. Moment is assumed 
to be transferred through a gusset plate when the member is continuous through the connection, as 
is the case on the top and bottom chords of the truss. Fig. 5 shows the locations of the moment 
releases applied to the numerical model to capture the behaviour of the truss described by Li et al. 
(1998). 

 
3.2 Gable truss  
 
The two exterior trusses, identified as the gable trusses in Fig. 3, contain modifications when 

compared to the interior trusses. Each gable truss has additional vertical webbing for the support of 
the exterior vertical sheathing. Also, as the gable truss is continuously supported by an external 
wall, extra RTW connections are made along the length of the truss.  
 

 

Fig. 4 Elevation view and dimensions of interior Howe-style truss 
 
 

Fig. 5 Moment releases included in the finite-element model 
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Fig. 6 Gable end trusses of numerical model with additional external RTW connections 
 

Depending on the method of construction, either the vertical sheathing or the additional RTW 
connections could be the major contributor to the increase in stiffness of the gable end compared 
to the interior trusses. If the vertical sheathing is continuous past the RWT connection and 
connected to the wall below, the connection between the roof and the walls would be dependent on 
nail shear. The uplift behaviour of the gable truss would not rely on the withdrawal capacity of 
nails and would be extremely rigid relative to the interior roof trusses. In this case, the sheathing 
would be the primary contributor to the increase in stiffness of the gable truss. If the vertical 
sheathing is not continuous past the RWT connection, while the sheathing would increase the 
bending stiffness of the top chord of the truss, it would have negligible effect on the global uplift 
behaviour of the truss. In this case, the primary contributor to the additional stiffness would be the 
brick facade or additional RTW connections installed along the length of the truss. The second 
case is modeled in this paper.  

As shown in Fig. 6, four additional vertical members are included in the numerical model of the 
gable trusses, with additional RTW connections at each location that a vertical member intersects 
the bottom chord of the truss. Similar to the numerical formulation of the interior trusses, moment 
releases are applied to each member of the gable trusses unless the member is continuous through 
the gusset plate connection. 

 
3.3 Plywood sheathing 
 
A total of 2112 shell elements are used to model the plywood sheathing of the roof. Shell 

elements have membrane and bending capabilities allowing them to deform in and out-of-plane, 
simulating the realistic behaviour of the sheathing. Each element has an approximate area of .05 
m2. The smallest pressure boxes in the full-scale experiment are represented by 8 area elements in 
the finite-element model.   

Wood is an anisotropic material, with strength dependent on the direction of the grains. The 
stiffness of plywood sheathing is dependent on the layout of the grains of the plys. To account for 
this, a modification factor is used to reduce the bending stiffness of the sheathing in the direction 
perpendicular to the face grains to match the properties given by the CWDM. For 12 mm CSP 
plywood constructed with 4 plys, the bending stiffness is 9 times larger in the direction of the face 
grains than that in the direction perpendicular to the face grains (CWC and CSA 2010). Thus, a 
factor of 0.11 is applied to reduce the bending stiffness of the shell element in this weak axis.  

The plywood sheathing increases the bending stiffness of the top chord of the truss as partially 
composite behaviour occurs and a “T” beam is created. To capture this behaviour, the center line 
of the shell elements have been offset from the centerline of the top chord of the truss. The nodes 
of the top chord are connected to the nodes of the sheathing using a body constraint to model 
composite behaviour.    
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3.7 Load input data 
 
The comparison between the experimental and numerical results is carried out by conducting 

quasi-static analysis. The natural period of the structure is well below the period of the loading, as 
such, the dynamic effect should have negligible effect on the behaviour of the truss system. The 
nonlinear behaviour of the tested structure is found to occur mostly at the RTW connections, 
where permanent, nonlinear damage occurs as the peak pressures are applied. Before application 
of the first damaging peak pressure, the behaviour of the connection can be approximated as linear 
elastic (Morrison and Kopp 2011). As such, the load cases considered for this analysis are selected 
before the first damaging peak pressure so that nonlinear behaviour of the RTW connections is not 
anticipated and quasi-static analysis is justifiable. For each selected load case, an instantaneous 
snap shot of the non-uniform pressure distribution that was applied to the experimental structure is 
applied to the numerical model. The deflection resulting at the RTW connections at this time is 
compared to the numerical results assuming no initial deflection. To compare the numerical and 
experimental results at higher wind levels, after nonlinear damage to the RTW connections has 
occurred, time-history analysis becomes necessary.  

Twelve load cases have been selected from the experiment before damage occurred. The 
loading of the selected time steps results in the largest global uplift forces applied to the structure 
before the connections sustain damage. Tables 1 and 2 show the time steps selected from the 
full-scale experiment to validate the finite-element model. The global uplift force acting on the 
structure is larger than the dead load of the roof (approximately 15 kN) for each selected pressure 
distribution.  

Two pressure distributions, load case 5 and load case 12, are shown below in Figs. 8 and 9, 
respectively. The distribution of pressure in load case 5 shows a strong positive pressure in the 
windward corner, with a nearly uniform negative pressure applied over the remainder of the 
structure. The distribution of pressure in load case 12 shows a negative pressure applied over the 
entire roof system with stronger pressures above the east gable end. Load case 12 results in the 
largest experimental deflections for the critical connection before nonlinear damage initiates. The 
pressure distributions applied experimentally and numerically neglect the positive pressures acting 
on the underside of the overhangs.  

 
 

Table 1 Load case selection from 20 m/s TLP experiment 

Load Case 1 2 3 4 5 6 

Time in TLP test (sec)  57.10 96.96 279.32 361.48 651.76 755.46 

Global Uplift Force (kN) -21.3 -21.9 -22.3 -27.8 -22.0 -28.9 

 
 

Table 2 Load case selection from 25 m/s TLP experiment 

Load Case 7 8 9 10 11 12 

Time in TLP test (sec)  47.76 75.92 95.66 102.66 132.38 166.72 

Global Uplift Force (kN) -30.2 -30.8 -34.5 -30.2 -30.7 -32.4 
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Fig. 8 Pressure distribution for load case 5 (Maximum = 720Pa , Minimum = -570Pa) 

 

 

 

Fig. 9 Pressure distribution for load case 12 (Maximum = 0 kPa, Minimum = -1.54 kPa) 
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The numerical model tends to predict smaller forces in the connections on the interior trusses of 

the structure due to the increased load transferred through the gable ends. Due to this additional 
load shared to the gable truss, the force in every north connection is overestimated by the tributary 
area method for the selected pressure distribution. 

Tables 3 and 4, which present the uplift force withheld by the RTW connections of the east 
gable truss for the 12 selected load cases, show that the numerical model predicts that the gable 
truss transfers much more uplift load to the walls than predicted by the tributary area method. The 
largest difference between the two analysis methods is under the pressure distribution applied in 
load case 5, where the tributary area method predicts that the dead load of the east gable truss is 
larger than the applied uplift load. Due to the load sharing demonstrated under this pressure 
distribution, the numerical model predicts that an uplift force is transferred to the walls by the 
RTW connections of the gable end. For the load cases analyzed from the 25 m/s experiment, the 
numerical model predicts that the gable end transfers 46% to 94% more uplift force than the 
tributary area method prediction. 

 
 
 

Table 3 Total uplift force transferred by the RTW connections of the east gable for load cases selected from 
20 m/s wind speed experiment 

Load Case 1 2 3 4 5 6 

Tributary Area Prediction (kN) 2.2 1.7 1 2.9 -0.1 3.7 

Finite-Element Prediction (kN) 3.1 2.4 2.3 4.4 1 5.1 

Percent Increase 45% 45% 135% 54% 1158% 38% 

 
 
 

Table 4 Total uplift force transferred by the RTW connections of the east gable for load cases selected from 
25 m/s wind speed experiment 

Load Case 7 8 9 10 11 12 

Tributary Area Prediction (kN) 2.8 2.8 2.3 2.8 2.8 3.9 

Finite-Element Prediction (kN) 4.6 4.8 4.5 4.5 4.2 5.6 

Percent Increase 64% 70% 94% 61% 51% 46% 

 
 
The tributary area method is not capable of capturing either the load sharing that occurs in the 

truss system or the effect of the increased stiffness of the gable end truss. The tributary area 
method is most accurate in sections of the house with a uniform truss stiffness without large 
variation in loading from truss to truss. The inability of the tributary area method to capture the 
effect of the gable truss results in a very conservative force approximation for the critical 
connection. 
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The increased demand could result in progressive overloading of the connections and removal 
of the roof sheathing, which has been identified as the most common failure in wood homes during 
high speed wind events. The effect of differential stiffness of the truss system has yet to be studied 
in the analysis of the failure of the roof sheathing. As the numerical model suggests unequal force 
transfer by the sheathing connections in this critical area, more analysis should be completed on 
this topic. 

 
 

6. Conclusions 
 
A finite-element model of the roof system of a light-framed wood structure is developed using 

the software SAP 2000. The model simulates the full-scale experiment conducted under simulated 
wind loading at the Insurance Research Lab for Better Homes. Frame, area and link elements are 
used to model the roof of the structure. 

The validation of the numerical model is conducted by comparing the deflections along the 
length of the roof obtained numerically and experimentally under multiple realistic pressure 
distributions. The comparison between the full-scale test results and the finite-element analysis 
shows good agreement in magnitude of deflection and trend of the deflected shape. In the author’s 
opinion, discrepancies are acceptable.  

In a comparison to the numerical results, the tributary area method has not provided an accurate 
prediction of the loads acting on the RTW connections along the length of the structure. The 
tributary area method is shown to be not capable of capturing either the load sharing that occurs in 
the truss system or the effect of the increased stiffness of the gable end truss. The numerical model 
predicts that a large amount of load sharing occurs to the gable truss. For loading applied from the 
25 m/s experiment, the gable truss carries between 46-94% more uplift numerically than the 
tributary area prediction depending on the pressure distribution. Load sharing to the gable is larger 
when peaks are applied closer to the gable.  

A comparison of the structural behaviour under a realistic pressure distribution and an 
equivalent uniform pressure distribution shows that the load sharing that occurs in a wood 
structure is not sufficient to create a similar behaviour between the two load cases. 

 The behaviour in the numerical model suggests that the differential stiffness of the truss 
system around the gable end will increase the vulnerability of the sheathing to truss connections in 
the critical location. A further investigation should be completed on the effect of the increased 
stiffness of the gable end and the effect of this on the withdrawal failure of the STT connections.  
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