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Abstract.   A new method is proposed in this study for estimating the damping ratio of a super tall building 
under strong wind loads with short-time measured acceleration signals. This method incorporates two main 
steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet 
transform, then the dynamic characteristics including the natural frequency and damping ratio for the first 
vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical 
simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and 
stability to those values obtained from Welch’s periodogram spectrum. To verify the efficiency of the 
proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in 
the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The 
damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. 
This information is expected to be of considerable interest and practical use for engineers and researchers 
involved in the wind-resistant design of super-tall buildings. 
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1. Introduction 
 

In recent years, super-tall buildings have usually been constructed of light-weight, and high 
strength, materials and tend to be more flexible and lightly damped than those built in the past.  
Such buildings are thus sensitive to dynamic loads such as strong wind, which results in more 
emphasis on studies of wind effects on super-tall buildings than ever before (Li et al. 1998, Zhi et 
al. 2011, Fu et al. 2012). Natural frequencies and damping ratios are very important parameters 
affecting the dynamic response of structures, under wind load or earthquake excitation. The natural 
frequencies can be conveniently obtained from finite element analysis with reasonable accuracy. 
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However, it is very difficult, or impossible, to estimate the structural damping ratio accurately 
prior to construction (Wu et al. 2007). It has been recognized that the most reliable evaluations of 
dynamic characteristics can be obtained from experimental measurements of a prototype building, 
and the identified damping ratios from field measured acceleration data of constructed building are 
helpful for determining damping ratios of super-tall buildings in their design process (Wu et al. 
2007). In the past several years, field measurements of damping ratios were conducted for tall 
buildings throughout the world, and there had been many advances in the field of damping ratio 
identification (Wu et al. 2007, Li et al. 2006, 2003, Campbell et al. 2007), but overall, there is an 
obvious scarcity of damping data for super-tall buildings (building height > 300 m) under strong 
wind loads. 

On the other hand, modal parameter identifications from ambient vibration data have received 
considerable attention in recent years. A variety of methods have been developed for extracting 
modal parameters from ambient vibration tests on structures (Mahdi et al. 2013, Le et al. 2013). In 
their studies, it was usually assumed that the input excitation behaves as a broadband stochastic 
process which can be modeled by stationary filtered white noise (Le et al. 2013). However, the 
wind load acting on a super-tall buildings during a typhoon passage is usually non-stationary due 
to the variation of wind speed and wind direction, and thus the response of the building due to 
wind excitation is also non-stationary during a typhoon’s passage (Li et al. 1998, Zhi et al. 2011, 
Wu et al. 2007).  

It is noteworthy that the wind speed during a typhoon passage of a super-tall building is not 
always large during the landing and decay of the storm. In fact, the wind-induced response with 
large amplitude level usually lasts for a very short period of time, for instance 20 or 30 minutes 
(Zhi et al. 2011, Fu et al. 2012, Wu et al. 2007). Actually, the implicit damping information during 
this short-time period is a really important parameter for estimating of the wind effects on 
structures during their design process. In this paper, a new approach was proposed for evaluating 
damping ratios of a super tall building under strong wind loads. The acceleration data with a large 
amplitude level during a short-time period were extracted from the original measured acceleration 
data for dynamic characteristic analysis, the power spectral density of the extracted data was then 
obtained by an approach based on the wavelet transform. Finally, both the natural frequency and 
the damping ratio for the first mode were identified by curve-fitting on the power spectral density 
in the region near the first natural frequency. 

 
 

2. Methodology 
 

Since the wind-induced response of a super-tall building may usually be dominated by its first 
vibration mode (Tschanz and Davenport 1983, Gu et al. 2011), only the wind-induced response 
contributed from the first vibration mode was considered in this study. The wind-induced response 
of a super-tall building can be obtained by modal superposition method with its transformed form 
into the dynamic equation with single-degree-of-freedom as 

2
1 1 1 1( ) 2 ( ) ( ) ( )q t q t q t F t                         (1) 

where 1  and 1  are the undamped natural circular frequency and damping ratio for the first 

mode; ( )q t  and 1( )F t  are the generalized modal coordinate (or displacement) and generalized 

modal force for the first vibration mode, respectively. 
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The Fourier spectral density of the generalized modal displacement can be evaluated as: 
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where ( )qqS f  and 
1 1

( )F FS f  are the power spectral densities of ( )q t  and 1( )F t , respectively, 

and 1f  is the natural frequency for the first mode. 

The wind induced response of a super tall building during a typhoon passage is usually 
non-stationary. With careful extracting the measured data during a short time with constant mean 
wind speed and constant wind direction, the acceleration samples extracted could be assumed to be 
stationary data. Therefore, the power spectral density of wind-induced acceleration could be 
expressed by the following equation  
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Many researches have indicated that the 
1 110log ( ( ))F FS f  decreases approximately linearly 

with the increase of 10log ( )f , when the frequency f  is located near the natural frequency for 

the first mode of the building (Fu et al. 2008, Liang et al. 2005, Solari 1985). Therefore, the 

1 1
( )F FS f  can be approximately expressed by the following equation in the limited range near the 

first natural frequency of the building. 

1 1
( )F FS f f                              (4) 

The parameters  and   in the above equation are undetermined coefficients related with the 
acting wind loads. Substituting Eq. (4) into Eq. (3) we get 
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Let 4(2 )    and 4   , then Eq. (5) can be rewritten as 
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If the power spectra density of extracted short-time acceleration data could be obtained with 
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adequate precision, the parameters including 1f , 1 ,  ,   can  therefore be evaluated by 

curve-fitting analysis method. So it is important to estimate the power spectrum of the exacted 
short-time acceleration data precisely. 

The Power Spectral Density (PSD) is commonly used to express the energy distribution of a 
random data in frequency domain, various methods have been developed for its estimation 
including the Welch's averaged modified periodogram method, the Yule-Walker Autoregressive 
(AR) method et al. (Stoica et al. 1997). When PSD is estimated by Welch’s method, the input 
signal is usually divided into several segments. With nfft samples in each segment during the Fast 
Fourier Transform (FFT) processing, the value of nfft must be as large as possible to obtain the 
adequate frequency resolution of the spectrum. On the other hand, the number of divided segments 
must be as large as possible to achieve a smooth spectrum by averaging the spectrum for each 
segment data. Therefore, the implementation of the Welch’s periodogram method requires a large 
amount of sampled data to ensure the adequate content and resolution in the frequency domain for 
the processed signal. Thus it is not suitable for the short-time signal analysis. The AR methods 
assume that the signal can be modeled as the output of an AR filter driven by a white noise 
sequence. The model order must be first determined. If the model order is too small, the spectrum 
will be highly smoothed but with low frequency resolution. If it is too high, false peaks from an 
abundant amount of poles begin to appear. It is necessary to specify an appropriate order in the AR 
model for accurate spectrum estimation, otherwise significant errors will be produced during the 
spectral estimation (Neumaier et al. 2001). 

To overcome the deficiency of the Welch’s periodogram and AR method, a simple method 
based on the continuous wavelet transform is presented in this paper for the spectral estimation on 
the short-time signals. The structural damping ratio was obtained by curve-fitting with nonlinear 
regression according to Eq. (6). Relevant applications illustrate the efficiency of this method. 

 
 

3. Spectral estimation based on wavelet transform 
 

The definition of continuous wavelet transform refers to Appendix A in this paper. In order to 
estimate the spectral estimation of a given signal, the relationship between continuous wavelet 
coefficients and power spectrum must be firstly specified. Eq. (A-3) in Appendix shows that the 
continuous wavelet transform can be regarded as a band-pass filter which passes frequencies 
within the range defined by ( )a  and rejects frequencies outside that range. If the energy of 

( )a  is concentrated near its center frequency, the continuous wavelet transform will represent 
the localized characteristics of the analyzed signal in the frequency domain.  

According to the physical definition of power spectrum, the average power of a given signal 
( )x t  is defined as 

/2 22

/2

1
lim ( )

T

TT
x x t dt

T 
                        (7) 

where T  is the sampling time, and 
2

( )x t  is the instantaneous power of ( )x t . The Plancherel 

theorem, a special case of the Parseval’s theorem, states that 
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2 22 1 1
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where ( )x t  and ( )X f  are a Fourier transform pair and 
21

( ) lim ( )xx T
S f X f

T 
  denotes the 

power spectral density of ( )x t . Based on the above analysis, it is shown by Eq. (A-3) in 
Appendix that the instantaneous power of the wavelet coefficient is 

2
( , ) ( , )P a b W a b                            (9) 

Therefore, the average power of the wavelet coefficients can be expressed as 

2
( ) [ ( , ) ]P a E W a b                          (10) 

where [ ]E   means the mathematical expectation of (  ). For each specified value of the scale 

factor a , there is a corresponding stretched or compressed wavelet function related with the value 
of a . The bandwidth and the center frequency of the wavelet function are 1/ a  of those values 
for the mother wavelet function respectively, as shown in Eq. (11). 

1
a cf f

a
                               (11a) 

1
af f

a                                (11b) 

where cf  and f  are the center frequency and bandwidth of the mother wavelet, and af  and 

af  are the center frequency and bandwidth of the wavelet function specified by the scale factor 

a. 
 If f  denotes the bandwidth of the wavelet function, we get the following equation:  

2
( ) [ ( , ) ] ( )Wf

P a E W a b G f df


                       (12) 

in which  ( )WG f  denotes the power spectral density of the wavelet coefficients. As mentioned 

before, the wavelet transform can be regarded as a band-pass filter.  If the scale factor a is 
specified, the output of the wavelet transform contains only the frequency components in the range 
of f . If ( )WG f  remains constant as ( )W aG f  when the frequency f  is located in the 

frequency range f , Eq. (12) can be approximately rewritten as (Bai et al. 2010) 

2
[ ( , ) ] ( ) ( )W W af

E W a b G f df G f f


                    (13) 

Therefore, the power spectral density of the wavelet coefficients can be expressed as the 
following equation: 
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21
( ) [ ( , ) ]W aG f E W a b

f



                      (14) 

According to the definition of wavelet transform, the wavelet coefficients can be regarded as 
the output of the original signal by wavelet transform. Therefore the power spectral density of the 
original signal ( )f t  can be expressed as (Bai et al. 2010) 

2

1
( ) ( )

( )
x a W a

a

G f G f
H f

                      (15) 

where ( )H   denotes the transfer function. Eq. (15) expresses the relationship between the input 
and output of a linear time-invariant system in frequency domain with zero-initial conditions and 
zero-point equilibrium. Eq. (15) illustrates that the transfer function must be determined to 
evaluate the power spectral density of the input signal. 

The transfer function is the Fourier transform of the impulse response function (IRF) of a 
dynamic system, as shown in Eq. (16) 

2( ) ( ) i ftH f h t e dt 


                         (16) 

in which ( )h t  denotes the impulse response function. Let ( )x t  be the input of a linear dynamic 

system, the output ( )y t  can be expressed as the convolution of ( )x t  and the IRF ( )h t , as 
shown in Eq. (17) 

*( ) ( )* ( ) ( ) ( )y t x t h t x u h t u du



                     (17) 

Comparing Eq. (A-2) with (17), it can be found that the transfer function of the wavelet 
transform can be expressed as (Bai et al. 2010) 

2( ) ( 2 ) i fbH f a a f e                          (18) 

Hence, we obtain,  

2 2
( ) ( 2 )H f a a f                         (19) 

In this study, the complex Morlet wavelet function was selected as the mother wavelet function.  
It is expressed as 

2

21
( ) c b

t

i f t f

b

t e e
f
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

                         (20) 

where cf  and bf  are the center frequency and bandwidth parameter, respectively. The 

bandwidth parameter bf  controls the shape of the basic wavelet. The Fourier transform of the 

complex Morlet wavelet can be expressed as 
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2 2( )( ) b cf f ff e                           (21) 

Thus the transfer function for the wavelet transform can be obtained by substituting Eq. (21) 
into Eq. (19). Now, Eq. (15) can be employed to evaluate the power spectrum of a given signal 
based on the wavelet transform. 
 
 
4. Simulation 
 

A numerical simulation was conducted to demonstrate the effectiveness of the proposed method 
in this study. Firstly the power spectral density of a simulated acceleration signal is defined in the 
form of Eq. (6), and three specified sets of parameters in the equation, as shown in Table 1. 

Once the power spectrum of an acceleration signal is given, the times series of the signal can be 
simulated by the series superposition method in the following form 

1
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      (22) 

where f , t  denotes frequency and time, respectively, ( )S f  is the simulated  power spectral 

density which is specified by 3 sets of parameters illustrated in Table 1, f is the frequency 

interval, n is the random phase angle which distributes uniformly in the interval of [0,2 ] , and 

( )a t  is the time series of simulated acceleration. 
It should be clarified that the power spectrum of the simulated signal may not fit with the target 

spectrum very well on the basis of one simulation process. The simulation quality can be achieved 
through averaging with more simulation times. Fig. 1 showed the comparison of the averaged 
spectrum through 100 simulation tests with the target spectrum. It is seen that the spectrum of 
simulated signal is in good agreement with the target spectrum, which demonstrated the validity of 
the simulation method shown in Eq. (22).  

The sampling frequency was set to be 25 Hz for all test cases. The sampling lengths for the 
three cases were set to be 16384, 32768 and 65536 to investigate the effect of the sampling length 
on the accuracy of the dynamic characteristics parameter identification. The power spectra of the 
simulation signals were estimated by two methods: the continuous-wavelet-transform-based 
method as described in Eq. (15) (CWT) and the most commonly used Welch's Averaged Modified 
Periodogram method (WAMPS). The selected Morlet wavelet parameters were set as 4bf   and 

2cf   to ensure the frequency resolution. After obtaining the power spectral density by the above 

two methods, the parameters including 1f , 1 ,  ,   in Eq. (6) can be estimated by 

non-linear curve-fitting in least-square sense.  
The identified results for modal parameters for the simulated signals are shown in Table 2. It is 
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seen that the estimated results for natural frequency from the two methods are in good agreement 
with the target value. As the customized natural frequency was 0.19 Hz and the identified natural 
frequencies varied from 0.189 to 0.191 Hz, giving a maximum relative error for estimated results 
of about 5%. However, the identification accuracy of damping ratios by WAMPS method dropped 
significantly when the sampling length decreased from 65536 to 16384. However, the 
identification accuracies by the CWT method are maintained at a relatively high level, regardless 
of different sampling lengths. When different sampling lengths were selected from 65536 to 16384, 
the relative errors of identified damping ratios were 10%, 30% and 40% for the WAMPS method.  
The corresponding values for CWT dropped to 10%, 10% and 20% respectively. The effect of 
sampling lengths on the estimated accuracy by WAMPS method was clearly demonstrated through 
this example, especially for the identified damping ratios. However, the continuous wavelet 
transform can express the signal characteristic in both time and frequency domain, with different 
resolution scales. Therefore it is suitable to identify the dynamic characteristics in frequency 
domain for short-time signals. In order to reduce the unfavorable edge effects of CWT, the 
sampling length should not be too short. The minimum sampling length for CWT was 16384 in 
this study. 

It should be noted that the damping ratio was always overestimated by both the CWT and the 
WAMPS methods; the reason might be that the estimated spectra by both methods have limited 
frequency resolutions, and could not reproduce all the features in the frequency domain for the 
target spectrum. The shape of estimated spectrum was then not such sharp as that of the target 
spectrum, leading to an overestimation of the damping ratio. 

Since the identification of damping ratio is much more difficult than other dynamic parameters 
such as natural frequencies or mode shapes, relative error within 20% might be acceptable for 
practical applications. Therefore the proposed method might be regarded as a valid approach for 
damping ratio identification for short-time wind-induced vibration signals. 
 
 

 

Fig. 1 Comparison of the target spectrum and spectrum of simulated signal 
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Table 1 Customization of parameters in Eq. (6) for simulation 

Case number     1f (Hz)   

1 1 1.7 0.19 0.01 

2 1 1.7 0.19 0.02 

3 1 1.7 0.19 0.03 

 
 

Table 2 Results of modal parameter identification of simulation data 

Case 
number 

Identified 
modal 

parameters 

Sampling length 
65536 32768 16384 

Wavelet 
spectrum 

Modified 
periodogram 

spectrum 

Wavelet 
spectrum

Modified 
periodogram 

spectrum 

Wavelet 
spectrum 

Modified 
periodogram 

spectrum 

1 
1f  

0.190 0.190 0.190 0.191 0.191 0.191 

1  0.011 0.011 0.011 0.014 0.012 0.013 

2 
1f  

0.190 0.190 0.190 0.190 0.189 0.189 

1  0.021 0.022 0.022 0.022 0.021 0.024 

3 
1f  

0.190 0.190 0.190 0.191 0.191 0.191 

1  0.032 0.033 0.034 0.036 0.033 0.036 

 
 

5. Application and discussion 
 
In order to validate the effectiveness of the proposed method for damping ratio identification 

for super-tall building under strong wind loads, field measurements of wind characteristics and 
wind-induced acceleration on the Guangzhou West Tower were conducted when Typhoon Usagi 
affected this tall building on September 22, 2013. The measured acceleration data were used to 
identify the damping ratio for the first mode of the building. 

The Guangzhou West Tower (GZWT, now called “Guangzhou International Finance Centre” 
after its completion in 2010), which is 432 m high with 103 stories, is located in Guangzhou and 
was the tallest building in South China after its construction. The GZWT was designed and 
constructed with an innovative structural style which comprised a reinforced concrete core in 
conjunction with the perimeter concrete-filled steel tube (CFT) to provide its overall stiffness and 
stability. It was difficult to determine the damping ratio value in wind-induced vibration analysis 
during the design stage for such a new kind of building, therefore it is necessary to accumulate 
vibration data under strong wind actions and identify its damping ratio for the purpose of verifying 
the adopted damping ratio value in its design stage, and providing a reference for the damping 
ratios of other similar buildings. 

A wind- and structural-monitoring system was installed at the GZWT to monitor its 
wind-induced response and wind characteristic around the building. Two ultra-low frequency 
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accelerometers were placed orthogonally along the two main axes on the 102th floor of the 
building, to record the acceleration of the building during the  passage of the typhoon, as shown 
in Fig. 2. Also, a propeller anemometer (R. M. Young Model 05106) and a 3D ultrasonic 
anemometer were installed on the mast erected above the roof of the building, as shown in Fig. 3.  

Typhoon Usagi (international designation: 1319) was one of the most intense tropical cyclone 
in the northwest Pacific Ocean in 2013. Developing into a tropical storm to the east of the 
Philippines late on September 16, Usagi began explosive intensification on September 19, and 
ultimately became a violent and large typhoon. Afterwards, the system weakened slowly, crossed 
the Bashi Channel on September 21, and it made landfall over Guangdong, China on September 
22. The moving path of Typhoon Usagi is shown in Fig. 4. During the GZWT was affected by 
Typhoon Usagi (from 22:00 on September 22 to 20:00 on September 23, 2013), data including 
wind speed, wind direction and wind-induced acceleration were recorded by the monitoring 
system for about 20 hours.  

 
 

Fig. 2 The installed accelerometer along two main-axis of the GZWT 
 

 

Fig. 3 The installed 2D and 3D anemometers 
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Fig. 4 Moving path of Typhoon Usagi
 
 
5.1 wind speed and wind direction 
 
Data on wind speed and wind direction were recorded by a 2D propeller anemometer and a 3D 

ultrasonic anemometer. For the 2D propeller anemometer, the measured data were wind speed and 
wind direction in the horizontal plane. For the 3D ultrasonic anemometer, recorded data included 
the wind speed ( )u i , azimuth angle ( )i and elevation angle ( )i . The results of horizontal 
wind speed and wind direction from the 2D propeller and 3D ultrasonic anemometer were in good 
agreement with each other. Here only results obtained from the 2D anemometer are presented for 
the sake of brevity. Acceleration data were measured by two accelerometers simultaneously with 
the sampling frequency of 25.6 Hz. The wind speed maintained a relatively large value for about 
five hours; the mean horizontal wind speed was 18.47 m/s and the corresponding horizontal wind 
direction varied slightly around 320°. The measured wind speed, wind direction and acceleration 
during the five hours are shown in Figs. 5 and 6, respectively. 

According to the simulated results described in the previous section, 32768 samples from the 
recorded acceleration data were selected to analyze the natural frequency and damping ratio. The 
selected data along two main axes were shown in Figs. 6(a) and 6(b), and their measured and fitted 
wavelet spectrums are shown in Figs. 7(a) and 7(b) respectively. According to the fitted curve, the 
natural frequencies for the first mode in direction 1 and 2 are 0.1460 Hz and 0.1457 Hz, and the 
corresponding damping ratios in two directions are 0.41% and 0.36%, respectively.  

An amplitude-dependent damping ratio model for super-tall buildings has been proposed by 
some researchers from field measured data (Wu et. al, 2007); the relationship between the 
structural damping ratio and the vibration amplitude was also studied in that paper. Some 
researchers selected the displacement as a description of vibration amplitude in damping 
estimation (Wu et al. 2007, Fu et al. 2012), However the displacement is not easy to obtain from 
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the measured acceleration data. Thus the root mean square (RMS) value of the acceleration data is 
chosen as an indicator of the structural vibration amplitude in this paper. The measured 
acceleration data were divided into many short-time segments; for each segment the measured 
acceleration was regarded as stationary with the assumption that the RMS value remained constant 
during this time duration. The variation of the identified damping ratios with their RMS 
accelerations are illustrated in Figs. 8(a) and 8(b). It shows that when the RMS acceleration was 
less than 2.0 mm/s2, the damping ratios vary randomly from about 0.2% to 0.9%, which might 
mean that this method cannot produce stable identification results from vibration signals with a 
low amplitude level. The reason may be inadequate sign-noise-ratio existed in the recorded signals 
with low vibration amplitude, which reduced the accuracy of damping ratio identification results. 
However, the identified damping ratios were much more stable when the vibration amplitudes 
were greater than 0.2 mm/s2. The identified damping ratios varied from 0.38% to 0.61% in 
direction 1, and 0.22% to 0.59% in direction 2 within a relatively narrow range. 

 
 
 

 
(a) 

 
(b) 

Fig. 5 (a) Time history of wind speed measured by 2D propeller anemometer and (b) Time history of wind 
direction measured by 2D propeller anemometer 
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(a) 

(b) 

Fig. 6 (a) Selected data from acceleration response in Direction 1 and (b) Selected data from acceleration 
response in Direction 2 

 
 
Other researchers had measured the wind-induced acceleration response of GZWT when 

Typhoon Megi affected this building on October 22, 2010 (Fu et al. 2012). It was reported from 
their studies that the identified damping ratios increased nonlinearly with the increase of the 
vibration amplitude. They varied from 0.24~0.36% in direction 1 and 0.20~0.35% in direction 2.  
Compared with the results of Fu et al., the identified damping ratios of the GZWT seems to have 
no direct relationship with the structural vibration amplitude in this study. Even though in the Fu et 
al. study, some of the identified damping ratios were distributed discretely beside the fitted curve, 
and a non-linear relationship between damping ratios and the structural vibration amplitude was 
not very clear. For a steel-concrete composite structure such as GZWT, a constant of damping 
value of 1% is widely adopted for wind-induced human comfortability threshold check, and a 
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damping ratio of 3% is normally selected for the ultimate limit state design according to current 
many design codes and specifications; however, the identified damping ratios for the GZWT in 
this study are based on the measured data with low serviceability amplitudes. It is therefore 
desirable to accumulate more field measured data, under strong wind actions, to further the 
understanding of damping ratios of super-tall buildings. 

 
 
 

 
(a) 

 
(b) 

Fig. 7 (a) Measured and fitted wavelet spectrum of the selected data in Direction 1 and (b) Measured and 
fitted wavelet spectrum of the selected data in Direction 2 
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(a) 

 
(b) 

Fig. 8 (a) Relationship between the identified damping ratio and the root- mean-square acceleration in 
Direction 1 and (b) Relationship between the identified damping ratio and the root- mean-square 
acceleration in Direction 2 

 
 
 

5. Conclusions 
 

In this study, a new method is proposed for estimation of the damping ratios of super-tall 
buildings under wind loads, with short-time recorded acceleration data. This method contains two 
main steps including: (1) estimating the power spectral density of the short-time signal by the 
continuous wavelet transform, and (2) identify the dynamic characteristics including the natural 
frequency and damping ratio for the first mode by curve-fitting analysis on the estimated power 
spectral density by the CWT.  
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The results from numerical simulation data illustrate that the damping ratios identified from 
CWT are superior to those estimated values from the Welch’s periodogram spectrum, in both 
precision and stability.  Higher frequency resolution for estimated power spectrum are obtained 
from the CWT method by adjusting the scaling factor during wavelet transform, and this method 
could provide more data points for curve-fitting than the Welch's averaged modified periodogram.  
Thus, it enabled more precise results from CWT method to be obtained. 

The proposed method was further employed to estimate the natural frequencies and damping 
ratios for the first mode of a practical super tall building under the effect of typhoon. The identified 
damping ratios varied from about 0.38% to 0.61% in direction 1 and from about 0.22% to 0.59% 
in direction 2, and no obvious relationship seems to exist between the identified damping ratios 
and the vibration amplitudes. More field-measured data should be collected and analyzed, in order 
to further the understanding of damping characteristics in super tall buildings subjected to strong 
wind loads. 
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Appendix A:  Definition of continuous wavelet transform 
 

Consider a function ( )f t  with finite energy , that is 

2
( )f t dt




                            (A-1) 

The continuous wavelet transform of ( )f t  is defined as (Spanos et al. 2004) 

*1
( , ) ( )

t b
W a b f t dt

aa






   
                   (A-2) 

where ( )t , a , b  are the so-called mother wavelet, the scale parameter and the time parameter, 

respectively, and ( , )W a b
 is the continuous wavelet coefficient. The symbol (*) denotes complex 

conjunction.  
Eq. (A-2) can be rewritten in frequency domain as:  

( , ) ( ) ( )
2

j ba
W a b F a e d  





                   (A-3) 

in which ( )F  , ( )  are the Fourier transform of ( )f t  and ( )t , respectively. 
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