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Abstract. Vortex-induced oscillation is a type of aeroelastic phenomenon, to which extended structures
such as long-span bridges are most susceptible. The vortex-induced vibration (VIV) behaviors of a
concerned bridge were investigated conventionally in virtue of wind tunnel tests on string-mounted sectional
models. This necessitates the building of a linkage between the response of the sectional model and that of
the prototype structure. Although many released literatures have related to this issue and provided
suggestions, there is a lack of consistency among them. In this study, some theoretical models describing the
vortex-induced structural motion, including the linear empirical model, the nonlinear empirical model and
the modified (or generalized) nonlinear empirical model, are firstly reviewed. Then, the concept of
equivalent mass density is introduced based on the principle that an equal input of energy should result in
identical structural amplitudes. Based on these, the theoretical linkages between the amplitude of a section
model and that corresponding to the prototype bridge are discussed with different analytical models.
Theoretical derivation indicates that such connections are dependent mainly on two factors, one is the
presupposed shape of deformation, and the other is the theoretical VIV model employed. The theoretical
analysis in this study shows that, in comparison to the nonlinear empirical models, the linear one can result
in obvious larger estimations of the full bridges’ responses, especially in cases of cable-stayed bridges.

Keywords:  bridge; vortex shedding; aeroelastic; oscillation; sectional model; full scale

1. Introduction

Vortex-induced oscillation of an elongated structure, such as a long flexible bridge, is one of the
most common aeroelastic phenomena due to wind-structure interactions at relative low wind
speeds. Most of the bridge deck configurations are aerodynamically bluff, and thus are prone to
vortex-induce resonances. The resonance generally occurs when there is a lock-in phenomenon.
That means the shedding of vortices in wakes would, over a range of wind speed, match one of the
structure’s natural frequencies. Many bridges have been reported in the recent decades suffering
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from perceptible vortex-induced oscillations (Kumarasena 1991, Irwin 2008, Fujino 2002, Larsen
2000, Dale 2006). Further, in some cases, this type of aeroelastic phenomenon has been reported to
be even capable of triggering the flutter instability (Matsumoto 2008). Generally, the aeroelastic
performances of a bridge concerned are investigated by section model testing in a trial-and-error
fashion, allowing for the selection of effective mitigation measures. However, to date, the relation
between the response of a sectional model in wind tunnel and that of the corresponding full bridge
has not yet been thoroughly understood. Conventionally, we scale up primarily sectional model
deflections by the ratio of the full scale length to the sectional model length; then, an additional
correction factor accounting for the difference in deformation shape between the rigid sectional
model and the full scale bridge is introduced to obtain the maximum response of the full bridge. To
date, a variety of “mode shape correction factors” have been suggested to determine the maximum
amplitude. Irwin (1998) calculated this correction factor with the assumption of perfectly
correlated vortex excitation force to be 1.4. The wind-resistant design manual for highway bridges
in Japan suggests it to be 4/z (Hiroshi 2003), with the assumption of a sinusoidal deformation
shape. Based on the linear empirical model, Zhu (2005) determined this factor to be modal-shape
dependent and 4/z in the context of a sinusoidal shape. On the other hand, it will be seen in this
study that different theoretical models should result in different “mode shape correction factors™.
In view of this and aiming at some analytical models that have been applied rather extensively,
theoretical linkages between the VIVs of section models with those of the full scale bridges are
discussed.

2. Analytical models

Although much attention has been paid to the turbulence effects to the vortex-induced
oscillations (Kawatani 1999, Utsunomiya 2001), this literature discusses only the cases of smooth
oncoming flows. There are two general families of analytical models relating to vortex-induced
oscillations. The earlier one centers on the so-called wake oscillator model; this kind of models
entail the solution of coupled two-degree-of-freedom equations, one describing the body motions
and the other describing the wake motions. Various models derived from this generic one were
reviewed by Scanlan (1995). Researches have borne out the accuracy of this family of models; but
these models need numerous parameters to support them, which generally involve a lot of
experiment based identifications and physical reasoning. Therefore, another family of models
centered on the single-degree-of-freedom equation of body motion have been developed, typical of
which are the linear empirical model (Scanlan 1986), the nonlinear empirical model (Ehsan and
Scanlan 1990) and the generalized nonlinear empirical model (Larsen 1995).

According to the linear empirical model, the aerodynamic force per unit length due to the
vortex shedding can be expressed as (here take the lift for example)

F=§pU2D{ BK) 24 1K) 242 6, () } 1)
and

C, (t) = C, (K)sin(et + @) )

where Yi, Y,, C; are functions of the reduced frequency K=Dw/U , should be determined
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experimentally; D is the characteristic size of the body section; U is the velocity of the oncoming
flow; w is the circular oscillation frequency in the case of vortex-induced resonance; y is the
vertical motion of the body; ¢ is phase angle.

The vortex-induced resonance occurs usually at a relative low wind speed and the vibrating
frequency is generally close to a natural frequency of the structure. Thus, the second term in the
square bracket of Eqg. (1), namely Y>, may be negligibly small and the final amplitude of oscillation
is dependent on the first and the third term. The main disadvantages of this linear empirical model
consist in that it fails to reflect typical properties of vortex-induced oscillations, such as
self-exciting and self-limiting. It seems that there are no substantial differences between this model
and the harmonic force model being used in early years (Li 1996).

Ehsan and Scanlan (1990) put forward a nonlinear empirical model as

1 Y v, 1z
F—szZD{ Yl(K)[l sDZJU+n(K)D+ZCL(t)} @3)

where the positive constant ¢ can be determined experimentally. It was shown by Ehsan’s work
that, in the case of lock-in, 5L(t) in Eqg. (3) could be negligibly small. The second term in the

square bracket, which represents the aerodynamic stiffness, was also suggested to be negligible
(Scanlan 1996). Thus, the vortex-induced lift of Eq. (3) degenerates to

2 .
FzépUzD{ I@(K)(l—g#}% } 4)

What actually described by Ea. (4) is a kind of nonlinear damping, depending on both the
oscillating velocity and amplitude. The expression exhibits features of a van der Pol oscillator,
allowing for negative and positive aerodynamic damping at low and high body displacements,
respectively. That means whether the energy is transferred from the flow to the structure or vice
versa would be determined by the magnitude of the displacement. Thus, small vibrating
amplitudes lead to negative aerodynamic damping and large amplitudes lead to positive damping,
corresponding to the self-exciting and self-limiting features of vortex-induced resonance.
According to this model, the steady oscillation (limit cycle oscillation) forms when the amplitude
reaches the point where the amount of energy transferred from the flow to the structure is just
balanced by that dissipated due to mechanical damping.

Larsen (1995) put forward the a generalized nonlinear empirical model, as

2v .
1 y y y 13
F==pU°D| Y(K)|1-¢| = —+ Y (K)=—+=-C,(t 5
Lo [1( )( 2] ]U (0228, ©
where v is another parameter which could be obtained experimentally. The generalized nonlinear
empirical model owns the same features similar to those of the nonlinear empirical model. Due to
the same reason of above mentioned, the second and third term of Eq. (5) can be ignored in the
case of lock-in; therefore it can be simplified to

Lo eANE]
F—ZpU D{ Yl(K)[l 8(D) ]U } (6)
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With the above reviewed analytical models, the linkages between motion amplitudes of a
sectional model and the corresponding full bridge are investigated in what follows.

3. Effective mass of the girders

Aerodynamic performances of the long-span bridges are usually investigated in wind tunnel
with section models rather than models of the full bridges. Reasons for that include tests on section
models being relatively inexpensive, facilitating the investigation of feasible mitigation measures
at design stage, etc. Tests on section models afford more flexibilities than on full bridge models,
which are generally being used to verify theoretical analyses or section model results. On the other
hand, the sectional models can be made at relatively large scales thus allowing for a better
modeling of important details and reducing the Reynolds number effects.

In the case of vortex-induced resonance, the bridge structure oscillates generally according
approximately to the fundamental modal shapes, vertical or torsional (see Fig. 1). This means that
all components such as the main girder, towers, stay cables, etc., are endowed with energy
proportional to their corresponding modal deflections. However, only the main girder is supposed
to absorb energy from wind during the process of wind-structure interaction. Such an effect
(energy accumulated by girder only but allocated and dissipated partially by other components)
should be considered when sectional models, instead of full bridge models, are adopted to
investigate the aerodynamic performances of prototype structures. The introduction of effective
mass would meet this requirement.

Fig.1 Modal shape of a full bridge

Fig.2. Modal shape of the main girder

Fig. 3 model of a rigid girder
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Fig. 2 shows a suppositional model that comprises the main girder only. It has the same
oscillating frequency and modal shape as the girder in the full bridge (Fig. 1). The modal shape
shown in Fig. 2 should be viewed as a reduced one of Fig. 1.

If, with an equal energy input, the amplitude of the model in Fig. 2 is expected to be equivalent
to that of in Fig. 1, the mass characteristics of the girder shown in Fig. 2 must then be altered and
be different from those of the original one in Fig. 1. The calculation of the effective mass is
expounded in the follow paragraphs.

Considering the case of lock-in state and supposing the modal shape of the full bridge can be
denoted with a vector {¢}, the structural deformation components can be represented in terms of
generalized coordinate as

{0} q(t) ={e} gy sin(at) )

where ¢(7) is the generalized coordinate; g, is the amplitude; w is the structural vibrating frequency;,
which equals now approximately to a natural frequency.

The velocity vector can be obtained by the first-order derivative of Eq. (7) with respect to time ¢,
as

{9} 4(t) ={¢}- g0 cos(ar) (8)
Thus, the maximal kinetic energy of the whole structure can be obtained as
1
E = a50f m(s)o*(s)ds (9)

where in the oscillating energy of the girder due to the vertical motion is

v 1
S a0’ [ m ()l (s (10)
and that due to torsional motion is
t 1 2 2
£y = 450 [ m (1097 () (11)

respectively. It is noted that L in Egs. (10) and (11) is the full length of the main girder, and
m,(x), m,(x)are the mass and mass moment of inertia per unit length of the main girder,
respectively.

The motion magnitude of the suppositional model (Fig. 2) should be equal to that of the full
structure (Fig. 1) if the same quantity of energy is inputted. Thus, according to the modal shape
function and the original mass density, the effective mass and mass moment of inertia per unit
length of the girder at x position can be determined as

§ m(s)@? (s)ds
> =m,(x) e ;
] [, m ()l ()dx

(12)

m,,(x)=m,

and
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§  ms)p’ (s)ds

[} m ()07 ()

ES
E,

me, (x) = m, (x)-—-=m,(x)- (13)

respectively, where m, (x) is the effective mass density and m,, (x) the effective density of mass

moment of inertia.
If a uniform girder and a modal shape function normalized to the mass matrix are involved, Egs.
(12) and (13) can be rewritten as

m,, = L; (14)
[, ot ()ax

m, = L; (15)
[, of ()

4. Amplitude connections between section model and full bridge

The modal shape shown in Fig. 2 is a suppositional one that represents approximately the actual
deformation of the girder in the case of vortex-induced resonance. Such a flexible model is not
available for wind tunnel testing; therefore it is replaced generally by a string-mounted rigid
section model, as shown in Fig. 3. It is noteworthy that the response of the two-dimensional rigid
sectional model in smooth flow is theoretically independent of the model length if only the effects
of the edge turbulence are neglected. In view of this, the length of the section model is generally
determined according to the size of the wind tunnel available and a proper ratio of width to length.
This string-mounted rigid model should own the same frequency, mass, and geometrical
characteristics as the flexible one. The only dissimilarity exists in the fact that the string-mounted
rigid model has unitary vertical and torsional deflections while the deformations of the flexible
model are not unitary. It is this dissimilarity that leads to the employment of mode shape correction
factors.

Taking the vertical oscillation for example, the governing equation of motion of the flexible
girder model (see Fig. 2) can be written as

L
i+ 260q + 0q = [ p()F (x)dx (16)
M g0
where the modal mass A, can be expressed, assuming uniformly distributed girder mass, as

M, = [ o* @, ()dx =m, [ 9 (x)ax (a7

On the other hand, the governing equation of motion of the string-mounted rigid section model
is
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y+2§cgy‘+a>2y=MiF=i (18)

ev ev

where L is the girder length,  the circular oscillation frequency, ¢ the damping ratio, F the

aerodynamic force per unit length due to vortex shedding. The amplitude linkage between a
sectional model and a full bridge can be determined by the comparison between the solutions of
Egs. (16) and (18). This will be illustrated in the subsequent sections.

4.1 Linear empirical model

For the flexible model of Fig. 2, the governing equation of motion can be rewritten with the
linear empirical model, Eq. (1), and Eq. (16) as

§+2lwf+ g = 1 pUszL(p(x)[Yll +Y, 2L+ C-sin(ot + ¢)}1x (19)
2M, 0 U ‘D
Note in Eq. (19) y = y(x) = p(x)g and M, = mevLL @’ (x)dx ; thus the following equation can
be obtained

pU’D - CL.sizn(a)t +¢) J‘OL¢)(x)dx (20)
ZmeVJ‘O o°(x)dx

. . 1 q q
+20wi + wq = U?D| Y, L+v, L |+
G+ 28mq 9=75—F {1U zD}

ev

Moving the velocity and displacement related terms in the right side of (20) to the left side
results in

2 2 :
i +[2§a) _ pUDY, Jq +(a)2 _pUY, Jq _ pUD- CL.Sln(a)t+ @) J-L(p(x)dx (1)
2 2me, 2m,, [ o*(ax

ev

For the string-mounted rigid model of Fig.3, the governing equation of motion can be written
with (1) and (18) as

2 .
j}+2§wy+w2y=/)ZZD[IG%J%%“LC'SM(@H@} (22)

ey

Moving the first and second term in the square bracket of (22) to the left side, one can get

2 2 H
j}+[2§w_p2UDY1Jy+(w2 _pU YZ)y: pU?D-C-sin(wt + @) 23)
mev

2m 2m

ev ev

It is noteworthy that Eq. (23) has the same damping and stiffness as those in Eq. (21) except for
the loading term in the right side. It is also noted that even though the loading terms share a same
sinusoidal form, they differs yet in the amplitudes. Thus, the ratio of the magnitude of modal
response of Fig. 2 to that of Fig.3 can be expressed as
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9 J‘0L|(o(x)|dx
Yo J-OL @ (x)dx

where ¢ is the generalized amplitude of the model shown in Fig. 2 and y, the amplitude of the
model shown in Fig. 3, respectively. The ratio of the maximum response of the model of Fig. 2 to
that of the section model of Fig. 3 may then be calculated by

(24)

L
_ Puuts P (X)I0 lp(x)|dix

0
Ymax

(25)
Ymax Yo J;L @ (x)dx

where y?_ denotes the maximum vertical response of the flexible model of Fig. 2; yr._ denotes

that of the string mounted section model of Fig. 3. Particularly, the ratio will result in a constant of
4/ 7 inthe case of harmonic modal shapes.

4.2 Nonlinear empirical model
If the nonlinear empirical model is employed for the loading of vortex shedding, the governing

equation of motion of the girder can be expressed in terms of generalized coordinate of the
reduced mode as

, . U’D (L 25
j+2lwf+w°q = pZM .[o ¢()0{Y{1—5#J%}dx (26)
q

where y = y(x) = p(x)qg and M = mevLL @° (x)dx .
Substituting A, into Eq. (26) yields

. : UD- L 2(x)-¢°

j+200w§+0°q = #J‘o @° (x){Yl(l— SMJ:ICZ)C (27)
ZmevI @ (x)dx D

0
Eqg. (27) can be rewritten as
UDY,  pUY,sq rﬁf(x)dx
q+{ 2L PO S }q'+a)2q:0 (28)

2m,, 2m,,D J’O 02 (x)dx

Eqg. (28) has the features of the van der Pul oscillator, and its final motion is limit cycle
oscillation (LCO), which means the average energy dissipation per cycle is zero. Supposing
q=qosin(wt) and so that

L

271w 2 - 2 (p4(x)dx

J' { 20w - pUDY, i pUY eqq sin” (o) ) J.OL }a)cosz(a)t)dt -0 (29)
0 Zmev 2mevD .[0 (pZ (x)dx
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Eqg. (29) yields

L
2
o° (x)dx
- (pUDYl L wJ 8m,D_ Io 30)

L
2mev pUYlé‘ _[0 ¢4 (x)dx

It is noteworthy Eqg. (30) implies a necessary condition of vortex-induced resonance that the
sum of the mechanical damping and the aerodynamic damping should be negative, namely
_puDY;

m,,

20w <0 (31)

In the case of string-mounted section model of Fig. 3, the equation of motion is

. . U’D (L 25
y+2§a)y+a)2yzpzm j{ﬂ(l—g#}%}dx (32)

0
ev

which can be rewritten as the following quadratic linear homogeneous differential equation

2
4| 200-LYPL  PURS” 1 2 g (33)
2m,, 2m,,D
By the same analytical procedure the steady amplitude can be obtained as
) pUDY, 8m,, D
= = || —/—-2w |- —= 34
yO ymax \/[ 2m€v é’ pUYlg ( )

With Eqgs. (30) and (34), the ratio of the maximum response of the model of Fig. 2 to that of the
section model of Fig. 3 can be obtained as

Ymax _ 90Prac(X) _

1 = (35)
Ymax Yo

Furthermore, when the modal shape of the girder ¢(x) is harmonic (for example sinusoidal),
Eq. (35) yields

n

72 2 . o y
yr?]ax :AO J-O AO SN xdx — 2\/5 (36)
1 nxl2
Ymax J- Ag sin4 xdx 3
0

It is obvious that this value is less than that derived from the linear empirical model, 4/,

which is suggested by the wind-resistant design manual for highway bridges in Japan (Sato 2003)
and also demonstrated by Zhu (2005).
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4.3 Generalized nonlinear empirical model

When the generalized nonlinear empirical model is involved, the equation of motion of the
model shown by Fig. 2 can be rewritten as

2(1+v)
pUDY,  pUDY,z4™ f¢’ " (x)dx
2v
2m,, 2m, D J' 0% (x)dx

+ { 200 - }q +w’q=0 (37)

In the light of the same procedure as described for the nonlinear empirical model, the average
energy dissipation per cycle at LCO state can be expressed, supposing g=gosin(wt) , as

2rle { 20— LUDY, , PUDY,ag?" sin® (o) [} 924 (@)ax

> }a) cos’ (wt)dt =0 (38)
2m,, 2m, D J‘ 0% (x)dx

0
For string-mounted section model shown in Fig. 3, the equation of motion is

pUDY, pUDYley
2m 2m, D%

ev

y{zgm })'H—a)zy:O (39)

The average energy dissipation per cycle in the case of (39) is

2 D7 }a)cosz(a)t)dt =0 (40)
m m,

ey

2r o { 2 pUDY, pUDYl.gygvsmzv(a)t)
0

Comparing (38) and (40), one may obtain a necessary condition that make both the two
equations hold, as

27l @ j ¢2(1+V)(x)dx 27l @
q§” L sin® (wr)wcos’ (at)dt = J' y2 sin® (wt)wcos® (wt)dt (41)
[ 0*(ax
Then, a sufficient condition that makes Eq. (41) hold is
2v L 2
¢”(x)dx
Yo J- ¢2(1+v) (x)dx

Thus the ratio of the maximum amplitude of the flexible model (Fig. 2) to that of the section
model (Fig. 3) can be determined as

x)dx 2
ym*’x = P (X) j¢()

= R (43)
max j P*™ (x)dx



Vortex-induced oscillations of bridges: theoretical linkages between sectional model tests ... 243

Note that Eq. (43) would converge to the same result as the nonlinear empirical model when the
parameter v approaching to 1.0.

If the maximum response of a prototype bridge is expected to be evaluated from that tested on a
sectional model in wind tunnel, another parameter reflecting the ratio of prototype length to model
length should be introduced, and the bearing can be expressed as

Ys =4, 0 Yy (44)

where y, is the expected maximum amplitude of the prototype, vertical or torsional, and y,, is

that of the section model tested in wind tunnel; A, is the ratio of prototype length to model
length, 7 denotes the modal shape factor and

L
J.O |go(x)|dx
1 = Prnax (X) I (45)
L o (x)dx
when the linear empirical model is adopted, or
L
N INACT )
max L
[ 0" ()dx
when the nonlinear empirical model is adopted, or
. 1
[ 0 (x)x
1= Py (X)| o (47)

L
IO ¢2(l+v) (x)dx

when the generalized nonlinear empirical model is involved, respectively.

The linkages between the amplitudes of a sectional model and a full-scale bridge due to vortex
excitation, in the context of smooth oncoming flow, are summarized in Table 1. It is emphasized
that the application of the linkages should be confined to situations of vortex-induced resonances
and, moreover, the effects of wind turbulence are not included. It is also worthy of noting that the
linkages are dependent apparently on the adopted analytical models and the vibrating shapes of the
girder.

5. Numerical examples

Some long-span bridges in China are selected as numerical examples to investigate the above
discussed linkages. They are the Qing-lan bridge in Hainan province (cable-stayed bridge, under
construction and with a main span of 300 m), the Jin-yue bridge in Hubei province crossing the
Changjiang river (cable-stayed bridge under construction, with a main span of 816 m), the Su-tong
bridge in Jiangsu province crossing the Changjiang river (cable-stayed bridge, with a main span of
1088 m), the Lie-de bridge in Guangzhou city (self-anchored suspension bridge, with a main span
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of 219 m), the Ai-zhai bridge in the west of Hunan province (suspension bridge across a deep
valley, with a main span of 1176 m) and the Xi-hou-men bridge (suspension bridge, with a main
span of 1650 m), respectively.

The # values of a series of typical modes of the above mentioned bridges can be calculated with
Egs. (45), (46) and (47). Table 2 presents the # values as well as the corresponding modal shapes
and analytical models. Note that only vertical oscillations are considered.

It can be seen in Table 2 that the linear empirical model, among others, yields the largest modal
shape factor mounting up to 1.649 while most of the values derived from the other two are limited
to a range from 1.1 to 1.3. It can also be seen from values regarding the generalized nonlinear
empirical model that # decreases slightly as the parameter v increases from 0.25 to 1.5 (y
corresponding to v = 1.0 equals that of the nonlinear empirical model). One may also notice that,
for cable-stayed bridges, the factor # is not sensitive to the main span length, especially for the
linear empirical model, of which the » keep almost the same value of about 1.6 from span length
of 300m up to 1088 m. This value is much larger than the one based on sinusoidal-modal-shape
assumption, 4/ . Finally, It can also be noticed in Table 2 that the anti-symmetric mode of the
1176m-span bridge is nearly sinusoidal; therefore it results in the » with the values of 1.275 and
1.16 corresponding to the linear and nonlinear empirical model, which are very close to the

theoretical values derived from sinusoidal modal shapes, 4/z and 24313, respectively.

Table 1 Conversions of amplitude corresponding to theoretical models

) ) Maximum response of
Analytical ~ Section model ] ] . .
Maximum response of full-scale bridge full-scale bridge (harmonic

model response dal shape)
modal shape
Li L
inear .[ |¢(x)| dic 4
empirical Yur ALY bt Prnax (X) iz—d ALVm =
model IO @7 ()
Nonlinear
empirical Vi ALV %
model
Generalized L
nonlinear % oL(DZ(x)dx Dependent upon v
- M A Y11 Prax (X) YN
empirical L L o)
[ 0" (x)ax

model
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Table 2 Modal shape factors of some example bridges

Main span ; ;
Modal shapes of bridges Linear Nonfinear Generalized nonlinear

(m) empirical model
empirical  empirical

v=0.25 v=0.5 v=1.5

1 300 1.636 1.288 1.403 1.356 1.241
2 816 1.624 1.248 1.353 1.308 1.209
3 1088 1.649 1.223 1.320 1.277 1.189
4 AN L, ~ 167+219 1.462 1.259 1.329 1.302 1.228
5 4 ..... . 167+219 1.267 1.132 1.169 1.154 1.116
6 1176 1.275 1.160 1.198 1.183 1.143
7 1176 1.493 1.189 1.267 1.233 1.162
8 1650 1411 1.217 1.273 1.250 1.194
9 1650 1.331 1.203 1.246 1.229 1.184

6. Conclusions

Although vortex-induced oscillations are self-limiting in amplitude, the magnitude could be a
critical issue concerned by designers. Bridges are judged by many design codes or criteria to be
serviceable or not, according to whether the vortex-induced motions exceed a given displacement
or acceleration. Such judgments are generally based on experimental studies in wind tunnel with
string-mounted sectional models. In contrast with full bridge models, sectional models are
generally more reasonable in determining the mitigation measures and in minimizing the influence
of Reynolds number. In view of this, it is valuable to investigate linkages between the amplitudes
of a sectional model and the expected response of the full scale bridge. Insufficient attention to
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date has been paid to this issue, and there doesn’t see a uniform criterion to describe it. In another
aspect, some design codes, such as the current wind-resistant design manual for highway bridges
in China, don’t provide such a linkage. The research described in this study indicates that such a
linkage depends not only on the employed analytical models but also on the deformation shapes.
Linkages derived from three different analytical models are discussed and provided. Among them
the one derived from the linear empirical model could be rather conservative in comparison to
those derived from the nonlinear and the generalized nonlinear empirical models. An investigation
of some typical long-span bridges in China as to this type of linkages indicates some interesting
characteristics with respect to bridge styles and modal shapes. Finally, it is worthy of mention that
what presented in this study cannot provide judgment as to which VIV model is superior to another;
however, due to theoretical models could differ in the linkages, future investigations on
well-designed sectional and aeroelastic models could in turn result in judgments as to which model
is of more physical significance.
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