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Abstract.    Vortex-induced oscillation is a type of aeroelastic phenomenon, to which extended structures 
such as long-span bridges are most susceptible. The vortex-induced vibration (VIV) behaviors of a 
concerned bridge were investigated conventionally in virtue of wind tunnel tests on string-mounted sectional 
models. This necessitates the building of a linkage between the response of the sectional model and that of 
the prototype structure. Although many released literatures have related to this issue and provided 
suggestions, there is a lack of consistency among them. In this study, some theoretical models describing the 
vortex-induced structural motion, including the linear empirical model, the nonlinear empirical model and 
the modified (or generalized) nonlinear empirical model, are firstly reviewed. Then, the concept of 
equivalent mass density is introduced based on the principle that an equal input of energy should result in 
identical structural amplitudes. Based on these, the theoretical linkages between the amplitude of a section 
model and that corresponding to the prototype bridge are discussed with different analytical models. 
Theoretical derivation indicates that such connections are dependent mainly on two factors, one is the 
presupposed shape of deformation, and the other is the theoretical VIV model employed. The theoretical 
analysis in this study shows that, in comparison to the nonlinear empirical models, the linear one can result 
in obvious larger estimations of the full bridges’ responses, especially in cases of cable-stayed bridges. 
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1. Introduction 
 

Vortex-induced oscillation of an elongated structure, such as a long flexible bridge, is one of the 
most common aeroelastic phenomena due to wind-structure interactions at relative low wind 
speeds. Most of the bridge deck configurations are aerodynamically bluff, and thus are prone to 
vortex-induce resonances. The resonance generally occurs when there is a lock-in phenomenon. 
That means the shedding of vortices in wakes would, over a range of wind speed, match one of the 
structure’s natural frequencies. Many bridges have been reported in the recent decades suffering 
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from perceptible vortex-induced oscillations (Kumarasena 1991, Irwin 2008, Fujino 2002, Larsen 
2000, Dale 2006). Further, in some cases, this type of aeroelastic phenomenon has been reported to 
be even capable of triggering the flutter instability (Matsumoto 2008). Generally, the aeroelastic 
performances of a bridge concerned are investigated by section model testing in a trial-and-error 
fashion, allowing for the selection of effective mitigation measures. However, to date, the relation 
between the response of a sectional model in wind tunnel and that of the corresponding full bridge 
has not yet been thoroughly understood. Conventionally, we scale up primarily sectional model 
deflections by the ratio of the full scale length to the sectional model length; then, an additional 
correction factor accounting for the difference in deformation shape between the rigid sectional 
model and the full scale bridge is introduced to obtain the maximum response of the full bridge. To 
date, a variety of “mode shape correction factors” have been suggested to determine the maximum 
amplitude. Irwin (1998) calculated this correction factor with the assumption of perfectly 
correlated vortex excitation force to be 1.4. The wind-resistant design manual for highway bridges 
in Japan suggests it to be /4  (Hiroshi 2003), with the assumption of a sinusoidal deformation 
shape. Based on the linear empirical model, Zhu (2005) determined this factor to be modal-shape 
dependent and /4  in the context of a sinusoidal shape. On the other hand, it will be seen in this 
study that different theoretical models should result in different “mode shape correction factors”. 
In view of this and aiming at some analytical models that have been applied rather extensively, 
theoretical linkages between the VIVs of section models with those of the full scale bridges are 
discussed. 

 
 

2. Analytical models 
 
Although much attention has been paid to the turbulence effects to the vortex-induced 

oscillations (Kawatani 1999, Utsunomiya 2001), this literature discusses only the cases of smooth 
oncoming flows. There are two general families of analytical models relating to vortex-induced 
oscillations. The earlier one centers on the so-called wake oscillator model; this kind of models 
entail the solution of coupled two-degree-of-freedom equations, one describing the body motions 
and the other describing the wake motions. Various models derived from this generic one were 
reviewed by Scanlan (1995). Researches have borne out the accuracy of this family of models; but 
these models need numerous parameters to support them, which generally involve a lot of 
experiment based identifications and physical reasoning. Therefore, another family of models 
centered on the single-degree-of-freedom equation of body motion have been developed, typical of 
which are the linear empirical model (Scanlan 1986), the nonlinear empirical model (Ehsan and 
Scanlan 1990) and the generalized nonlinear empirical model (Larsen 1995). 

According to the linear empirical model, the aerodynamic force per unit length due to the 
vortex shedding can be expressed as (here take the lift for example) 
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where Y1, Y2, CL are functions of the reduced frequency K=Dω/U , should be determined 
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experimentally; D is the characteristic size of the body section; U is the velocity of the oncoming 
flow; ω is the circular oscillation frequency in the case of vortex-induced resonance; y is the 
vertical motion of the body;  is phase angle. 

The vortex-induced resonance occurs usually at a relative low wind speed and the vibrating 
frequency is generally close to a natural frequency of the structure. Thus, the second term in the 
square bracket of Eq. (1), namely Y2, may be negligibly small and the final amplitude of oscillation 
is dependent on the first and the third term. The main disadvantages of this linear empirical model 
consist in that it fails to reflect typical properties of vortex-induced oscillations, such as 
self-exciting and self-limiting. It seems that there are no substantial differences between this model 
and the harmonic force model being used in early years (Li 1996).  

Ehsan and Scanlan (1990) put forward a nonlinear empirical model as 
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where the positive constant ε can be determined experimentally. It was shown by Ehsan’s work 
that, in the case of lock-in, )(

~
tCL

 in Eq. (3) could be negligibly small. The second term in the 
square bracket, which represents the aerodynamic stiffness, was also suggested to be negligible 
(Scanlan 1996). Thus, the vortex-induced lift of Eq. (3) degenerates to 
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What actually described by Ea. (4) is a kind of nonlinear damping, depending on both the 
oscillating velocity and amplitude. The expression exhibits features of a van der Pol oscillator, 
allowing for negative and positive aerodynamic damping at low and high body displacements, 
respectively. That means whether the energy is transferred from the flow to the structure or vice 
versa would be determined by the magnitude of the displacement. Thus, small vibrating 
amplitudes lead to negative aerodynamic damping and large amplitudes lead to positive damping, 
corresponding to the self-exciting and self-limiting features of vortex-induced resonance. 
According to this model, the steady oscillation (limit cycle oscillation) forms when the amplitude 
reaches the point where the amount of energy transferred from the flow to the structure is just 
balanced by that dissipated due to mechanical damping. 

Larsen (1995) put forward the a generalized nonlinear empirical model, as 
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where ν is another parameter which could be obtained experimentally. The generalized nonlinear 
empirical model owns the same features similar to those of the nonlinear empirical model. Due to 
the same reason of above mentioned, the second and third term of Eq. (5) can be ignored in the 
case of lock-in; therefore it can be simplified to 
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Fig. 2 shows a suppositional model that comprises the main girder only. It has the same 
oscillating frequency and modal shape as the girder in the full bridge (Fig. 1). The modal shape 
shown in Fig. 2 should be viewed as a reduced one of Fig. 1.  

If, with an equal energy input, the amplitude of the model in Fig. 2 is expected to be equivalent 
to that of in Fig. 1, the mass characteristics of the girder shown in Fig. 2 must then be altered and 
be different from those of the original one in Fig. 1. The calculation of the effective mass is 
expounded in the follow paragraphs. 

Considering the case of lock-in state and supposing the modal shape of the full bridge can be 
denoted with a vector {φ}, the structural deformation components can be represented in terms of 
generalized coordinate as 

)sin(}{)(}{ 0 tqtq                            (7) 

where q(t) is the generalized coordinate; q0 is the amplitude; ω is the structural vibrating frequency, 
which equals now approximately to a natural frequency. 

The velocity vector can be obtained by the first-order derivative of Eq. (7) with respect to time t, 
as 
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Thus, the maximal kinetic energy of the whole structure can be obtained as 
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respectively. It is noted that L in Eqs. (10) and (11) is the full length of the main girder, and 
)(xmv , )(xmt are the mass and mass moment of inertia per unit length of the main girder, 

respectively. 
The motion magnitude of the suppositional model (Fig. 2) should be equal to that of the full 

structure (Fig. 1) if the same quantity of energy is inputted. Thus, according to the modal shape 
function and the original mass density, the effective mass and mass moment of inertia per unit 
length of the girder at x position can be determined as 
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respectively, where )(xmev is the effective mass density and )(xmet the effective density of mass 

moment of inertia. 
If a uniform girder and a modal shape function normalized to the mass matrix are involved, Eqs. 

(12) and (13) can be rewritten as 
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4. Amplitude connections between section model and full bridge 
 
The modal shape shown in Fig. 2 is a suppositional one that represents approximately the actual 

deformation of the girder in the case of vortex-induced resonance. Such a flexible model is not 
available for wind tunnel testing; therefore it is replaced generally by a string-mounted rigid 
section model, as shown in Fig. 3. It is noteworthy that the response of the two-dimensional rigid 
sectional model in smooth flow is theoretically independent of the model length if only the effects 
of the edge turbulence are neglected. In view of this, the length of the section model is generally 
determined according to the size of the wind tunnel available and a proper ratio of width to length. 
This string-mounted rigid model should own the same frequency, mass, and geometrical 
characteristics as the flexible one. The only dissimilarity exists in the fact that the string-mounted 
rigid model has unitary vertical and torsional deflections while the deformations of the flexible 
model are not unitary. It is this dissimilarity that leads to the employment of mode shape correction 
factors.  

Taking the vertical oscillation for example, the governing equation of motion of the flexible 
girder model (see Fig. 2) can be written as 
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where the modal mass Mq can be expressed, assuming uniformly distributed girder mass, as 
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On the other hand, the governing equation of motion of the string-mounted rigid section model 
is 
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where L is the girder length, ω the circular oscillation frequency,   the damping ratio, F the 
aerodynamic force per unit length due to vortex shedding. The amplitude linkage between a 
sectional model and a full bridge can be determined by the comparison between the solutions of 
Eqs. (16) and (18). This will be illustrated in the subsequent sections. 

 
4.1 Linear empirical model 
 
For the flexible model of Fig. 2, the governing equation of motion can be rewritten with the 

linear empirical model, Eq. (1), and Eq. (16) as 

 



 

L

q

dxtC
D

y
Y

U

y
YxDU

M
qqq

0
21

22 )sin()(
2

1
2 


          (19) 

Note in Eq. (19) y = y(x) = φ(x)q and dxxmM
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2 )( ; thus the following equation can 

be obtained 
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Moving the velocity and displacement related terms in the right side of (20) to the left side 
results in 
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For the string-mounted rigid model of Fig.3, the governing equation of motion can be written 
with (1) and (18) as 
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Moving the first and second term in the square bracket of (22) to the left side, one can get 
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It is noteworthy that Eq. (23) has the same damping and stiffness as those in Eq. (21) except for 
the loading term in the right side. It is also noted that even though the loading terms share a same 
sinusoidal form, they differs yet in the amplitudes. Thus, the ratio of the magnitude of modal 
response of Fig. 2 to that of Fig.3 can be expressed as 
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where q0 is the generalized amplitude of the model shown in Fig. 2 and y0  the amplitude of the 
model shown in Fig. 3, respectively. The ratio of the maximum response of the model of Fig. 2 to 
that of the section model of Fig. 3 may then be calculated by 




L

L

dxx

dxxx

y

q

y

y

0

2

0
max

0

0max
1
max

0
max

)(

)()(




                 (25) 

where 0
maxy denotes the maximum vertical response of the flexible model of Fig. 2; 1

maxy denotes 

that of the string mounted section model of Fig. 3. Particularly, the ratio will result in a constant of 
/4  in the case of harmonic modal shapes. 
 
4.2 Nonlinear empirical model 
 
If the nonlinear empirical model is employed for the loading of vortex shedding, the governing 

equation of motion of the girder can be expressed in terms of generalized coordinate of the 
reduced mode as 
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where y = y(x) = φ(x)q and dxxmM
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Substituting Mq into Eq. (26) yields 
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Eq. (27) can be rewritten as 
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Eq. (28) has the features of the van der Pul oscillator, and its final motion is limit cycle 
oscillation (LCO), which means the average energy dissipation per cycle is zero. Supposing 
q=q0sin(ωt) and so that  
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Eq. (29) yields 
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It is noteworthy Eq. (30) implies a necessary condition of vortex-induced resonance that the 
sum of the mechanical damping and the aerodynamic damping should be negative, namely 
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In the case of string-mounted section model of Fig. 3, the equation of motion is 
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which can be rewritten as the following quadratic linear homogeneous differential equation 
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By the same analytical procedure the steady amplitude can be obtained as 
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With Eqs. (30) and (34), the ratio of the maximum response of the model of Fig. 2 to that of the 
section model of Fig. 3 can be obtained as 
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Furthermore, when the modal shape of the girder )(x is harmonic (for example sinusoidal), 
Eq. (35) yields 
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It is obvious that this value is less than that derived from the linear empirical model, /4 , 
which is suggested by the wind-resistant design manual for highway bridges in Japan (Sato 2003) 
and also demonstrated by Zhu (2005). 
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4.3 Generalized nonlinear empirical model 
 
When the generalized nonlinear empirical model is involved, the equation of motion of the 

model shown by Fig. 2 can be rewritten as 
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In the light of the same procedure as described for the nonlinear empirical model, the average 
energy dissipation per cycle at LCO state can be expressed, supposing q=q0sin(ωt) , as 
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For string-mounted section model shown in Fig. 3, the equation of motion is 
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The average energy dissipation per cycle in the case of (39) is 
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Comparing (38) and (40), one may obtain a necessary condition that make both the two 
equations hold, as 
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Then, a sufficient condition that makes Eq. (41) hold is 
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Thus the ratio of the maximum amplitude of the flexible model (Fig. 2) to that of the section 
model (Fig. 3) can be determined as 
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Note that Eq. (43) would converge to the same result as the nonlinear empirical model when the 
parameter ν approaching to 1.0. 

If the maximum response of a prototype bridge is expected to be evaluated from that tested on a 
sectional model in wind tunnel, another parameter reflecting the ratio of prototype length to model 
length should be introduced, and the bearing can be expressed as 

MLS yy                              (44) 

where Sy  is the expected maximum amplitude of the prototype, vertical or torsional, and My  is 

that of the section model tested in wind tunnel; L  is the ratio of prototype length to model 
length,   denotes the modal shape factor and 
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when the linear empirical model is adopted, or 
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when the nonlinear empirical model is adopted, or 








2

1

0

)1(2

0

2

max

)(

)(
)(





















L

L

dxx

dxx
x                      (47) 

when the generalized nonlinear empirical model is involved, respectively. 
The linkages between the amplitudes of a sectional model and a full-scale bridge due to vortex 

excitation, in the context of smooth oncoming flow, are summarized in Table 1. It is emphasized 
that the application of the linkages should be confined to situations of vortex-induced resonances 
and, moreover, the effects of wind turbulence are not included. It is also worthy of noting that the 
linkages are dependent apparently on the adopted analytical models and the vibrating shapes of the 
girder. 

 
 

5. Numerical examples 
 
Some long-span bridges in China are selected as numerical examples to investigate the above 

discussed linkages. They are the Qing-lan bridge in Hainan province (cable-stayed bridge, under 
construction and with a main span of 300 m), the Jin-yue bridge in Hubei province crossing the 
Changjiang river (cable-stayed bridge under construction, with a main span of 816 m), the Su-tong 
bridge in Jiangsu province crossing the Changjiang river (cable-stayed bridge, with a main span of 
1088 m), the Lie-de bridge in Guangzhou city (self-anchored suspension bridge, with a main span 
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of 219 m), the Ai-zhai bridge in the west of Hunan province (suspension bridge across a deep 
valley, with a main span of 1176 m) and the Xi-hou-men bridge (suspension bridge, with a main 
span of 1650 m), respectively. 

The η values of a series of typical modes of the above mentioned bridges can be calculated with 
Eqs. (45), (46) and (47). Table 2 presents the η values as well as the corresponding modal shapes 
and analytical models. Note that only vertical oscillations are considered. 

It can be seen in Table 2 that the linear empirical model, among others, yields the largest modal 
shape factor mounting up to 1.649 while most of the values derived from the other two are limited 
to a range from 1.1 to 1.3. It can also be seen from values regarding the generalized nonlinear 
empirical model that η decreases slightly as the parameter ν increases from 0.25 to 1.5 (η 
corresponding to ν = 1.0 equals that of the nonlinear empirical model). One may also notice that, 
for cable-stayed bridges, the factor η is not sensitive to the main span length, especially for the 
linear empirical model, of which the η keep almost the same value of about 1.6 from span length 
of 300m up to 1088 m. This value is much larger than the one based on sinusoidal-modal-shape 
assumption, /4 . Finally, It can also be noticed in Table 2 that the anti-symmetric mode of the 
1176m-span bridge is nearly sinusoidal; therefore it results in the η with the values of 1.275 and 
1.16 corresponding to the linear and nonlinear empirical model, which are very close to the 

theoretical values derived from sinusoidal modal shapes, /4  and 3/32 , respectively. 
 
 
 
 

Table 1 Conversions of amplitude corresponding to theoretical models 
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date has been paid to this issue, and there doesn’t see a uniform criterion to describe it. In another 
aspect, some design codes, such as the current wind-resistant design manual for highway bridges 
in China, don’t provide such a linkage. The research described in this study indicates that such a 
linkage depends not only on the employed analytical models but also on the deformation shapes. 
Linkages derived from three different analytical models are discussed and provided. Among them 
the one derived from the linear empirical model could be rather conservative in comparison to 
those derived from the nonlinear and the generalized nonlinear empirical models. An investigation 
of some typical long-span bridges in China as to this type of linkages indicates some interesting 
characteristics with respect to bridge styles and modal shapes. Finally, it is worthy of mention that 
what presented in this study cannot provide judgment as to which VIV model is superior to another; 
however, due to theoretical models could differ in the linkages, future investigations on 
well-designed sectional and aeroelastic models could in turn result in judgments as to which model 
is of more physical significance. 
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