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Abstract.   Modern design of long suspension bridges must satisfy at the same time spanning very long 
distances and limiting their response against several external loads, even if of high intensity. Structural 
Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and 
deformations in structural elements when extreme events occur. This positive aspect is very interesting when 
the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension 
bridge is developed in a commercial finite element work frame, starting from original data. This model is 
used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a 
simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a 
quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the 
wind-structure interaction forces in which wind actions are applied on the towers and the cables considering 
drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted 
to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the 
previously identified optimal passive configuration. 
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1. Introduction 
 

Long span and limited response under several different dynamic conditions are general 
requirements for modern suspension bridges design. An important contribution to the solution of 
this difficult task can be given by the Structural Control discipline.  

Pursuing this goal, the authors have in the past studied the feasibility of controlling wind 
induced vibration in long span suspension bridges through passive and semi-active control systems 
(Domaneschi and Martinelli 2009, 2011, 2013). These studies were based on a model of an 
existing suspension bridge, developed at the numerical level inside the ANSYS finite element (FE) 
framework. The wind loading was considered the main dynamic excitation, through drag forces 
applied on the towers, the cables and the deck of the suspension bridge in the framework of the 
quasi-steady theory.  
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a specific wind intensity, was studied at different levels of wind intensity to make the results 
general. 

The attention was initially focused on passive control systems, also known as self-defense ones, 
since they allow for dissipating energy and change the structural stiffness without using external 
active power. Also, they have the advantage of being robust, working independently from one 
another, and more stable than the active systems, by not injecting external power into the structural 
system. They are easier to implement, and enjoy lower operating and maintenance costs also. 

Such control strategies require the use of properly positioned structural elements, able to 
dissipate the energy fed into the structure by dynamic actions and to decouple the superstructure 
motion from the supports. Their main disadvantage is not to be able to adapt themselves to 
different levels of the dynamic loads. For this reason, semi-active control strategies were later also 
studied by the authors in an original decentralized configuration on the suspension bridge model. 
These semi-active strategies adopted as a starting point, the operating parameters for the devices 
associated to the passive control configuration previously identified as optimal.  

The response of suspension bridges to wind excitation is a problem of wide concern in 
literature and several studies on wind loading simulation through indicial functions have also been 
proposed.  

Salvatori and Spinelli (2006) recently studied a suspension bridge response to wind excitation 
by means of FE numerical simulations and Monte Carlo method on a simplified structural model. 
Self-excited effects are included through the indicial function formulation and the buffeting is 
considered according to the quasi-steady model. They observed the role of nonlinearities in 
deemphasizing the presence of a critical flutter wind velocity and also an underestimation of the 
structural response by a fully correlated flow.  

Chen and Kareem (2001) report on a time domain approach for predicting the buffeting and 
flutter responses with aerodynamic nonlinearities through static force coefficients and flutter 
derivatives. A slightly higher response, than the conventional linear analysis, is pointed out for the 
analysis involving the aerodynamic nonlinearity. A subsequent investigation by the same authors 
(Chen and Kareem 2003) investigates the effects of low-frequency components of turbulence on 
flutter and buffeting response for long span suspension bridges. Aerodynamic characteristics, 
sensitive to the angle of incidence, have been presented demonstrating their significance for 
accurately predicting the aeroelastic response, with respect to the static angle of attack of the 
bridge deck. 

Ubertini (2011) analyzed the aeroelastic stability of bridge decks by means of self-excited loads 
with the aid of aerodynamic indicial functions approximated by truncated series of exponential 
filters. The investigation is focused in particular on the implementation of tuned mass dampers for 
improving the bridge stability with particular care to multiple application of such devices.  

In this paper the optimization process for passive control systems, previously applied within a 
simplified model of the buffeting excitation comprising only the drag forces, is reevaluated in 
association with a more refined description the wind-structure interaction forces. This refined 
description in time domain is based on modeling the drag force as completely non linear, within 
the quasi-steady theory, while adopting for the lift force and the aerodynamic moment a linearized 
form with corrections for frequency dependent loading using indicial functions (Scanlan et al. 
1974, Salvatori and Borri 2007). Finally, the field of turbulent wind velocities has been simulated 
as a spatially correlated process according to a literature model (Solari and Piccardo 2001). 
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2. Geometry and numerical model 
 

The suspension bridge model in this work is inspired by the Shimotsui-Seto Bridge, in Japan, 
spanning from the side of Mt. Washu to the Hitsuishijima Island. The length of the bridge is 1400 
m with a main span of 940 m. The towers are 149 m tall, while the vertical distance of the main 
girder from the towers foundation has been assumed at 31 m. Fig. 1(a) shows the main dimensions 
of the bridge, Fig. 1(b) depicts a general overview of the stiffened truss type steel deck. The main 
cables, the hangers and the main girder are in steel, the towers are assumed as built in concrete 
(Romano 2009). 

Two numerical models of the suspension bridge have been developed in the ANSYS 
framework at different refinement levels. A first, more detailed, model (Fig. 2(a)), implements an 
almost complete correspondence between structural and FE elements. Its geometrical and 
mechanical properties have been assessed by the match of the first four natural periods and modal 
shapes with those measured on the real structure. The purpose of this model was to aid in the 
development of a second, simpler, one (Fig. 2(b)). This last has been derived to perform 
numerically non linear transient analyses under wind loading.  

 
 

Fig.1 (a) Bridge geometry and (b) Detail of deck transversal section. Courtesy of Mr. M. Nishitani 
HBSE-JP 
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a)  b) 

 

 
 

(a) One to one representation               (b) Equivalent beam 

Fig. 2 Main girder FE details: complete (a) and simplified (b) version 
 
 

Table 1 Modal frequencies for the real (Courtesy of Mr. M. Nishitani HBSE-JP) and the simplified bridge 
model 

Mode 
Measured on 
the structure 

[Hz] 

From the 
detailed 
model 
[Hz] 

From the simplified
model 
[Hz] 

Modal shape 

1 0.104 0.099 0.089 Lateral symmetric 
2 0.157 0.149 0.160 Vertical anti-symmetric 
3 0.196 0.235 0.219 Vertical symmetric 
4 0.255 0.255 0.260 Lateral anti-symmetric 

 
Table 2 Modal frequencies of the simplified bridge model 

Mode Modal shape # Frequency [Hz] 
L1 Lateral symmetric 1 0.089 
L2 Lateral anti-symmetric 8 0.260 
L3 Lateral symmetric 14 0.405 
L4 Lateral anti-symmetric 27 0.696 
L5 Lateral symmetric 33 0.862 
T1 Torsional symmetric 14 0.405 
T2 Torsional anti-symmetric 23 0.582 
T3 Torsional symmetric 33 0.862 
V1 Vertical anti-symmetric 2 0.160 
V2 Vertical symmetric 6 0.219 
V3 Vertical symmetric 9 0.321 
V4 Vertical anti-symmetric 15 0.436 
V5 Vertical symmetric 25 0.630 
V6 Vertical anti-symmetric 32 0.844 

 
 
The accuracy of this simpler model was assessed by comparing its first modal frequencies, 

listed in Table 1, both against the experimental values of the same and those coming from the 
detail bridge model, while the higher modes were assessed against the results derived from the 
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detail bridge model only, since no experimental data was available. Modal shapes were validated 
by application (Allemang and Brown 1982) of the Modal Assurance Criterion (MAC). The 
frequencies of the higher modes are listed in Table 2. Intermediate modes not listed in Table 2 
involve mainly the main cables and the suspenders. The interested reader is pointed to 
(Domaneschi and Martinelli 2013, Romano 2009) for further details on the numerical models. 

In the following, the model will be referred to a system of global axis in which axis X is normal 
to the bridge span, axis Y is vertical while axis Z is along the bridge span. The aerodynamic forces 
and the turbulence, will instead be described with reference to the components parallel to an 
along-wind axis x, a cross-wind axis y and a vertical axis z, respectively. 

 
 

3. Aerodynamics forces and wind field 
 

In previous works by the authors (Domaneschi and Martinelli 2009, 2011, 2013) a control 
strategy has been proposed, and proven effective, for wind loading in conjunction with a 
simplified model of the buffeting wind forces which included, in the framework of the 
quasi-steady theory, the drag forces only. In this work a reevaluation of the control strategy is 
carried out adopting a more refined representation of the fluid interaction forces to assess if the 
one originally used was adequate. 

In the quasi-steady theory the drag force D0, the lift force L0 and the aerodynamic moment M0 
are expressed as a non-linear function of the attack angle α as 

 

 

 

























M

L

D

CBUM

BCUL

BCUD

22
0

2
0

2
0

2

1
2

1
2

1

       (1) 

The angle of attack α is the angle between the relative wind velocity Vr with respect a reference 
direction on the bridge cross-section (here, the horizontal direction in the equilibrium 
configuration under gravitational loads). The aerodynamic coefficients CD, CL and CM are 
measured in the wind-tunnel in steady conditions. 

The lift force L (normal to Vr) and drag force D (along Vr) in the cross-section reference are 
related to the forces in the global reference system by a transformation involving a projection (e.g., 
Martinelli and Perotti 2001). 

In this work the drag force D(α) is modeled as completely non linear, within the quasi-steady 
theory (see D0 in Eq. (1)). The lift force L(α) and the aerodynamic moment M(α) are expressed in 
time domain in a linearized form starting from the quasi-steady equations (Stoyanoff 2001), with 
added correction coefficients for frequency dependent loading using the indicial functions 
approach (Scanlan et al. 1974, Salvatori and Borri 2007). 

  
3.1 Indicial functions approach 

 
For the sake of simplicity we initially consider the lift force only; a similar approach and results 

can be applied to the aerodynamic moment as well. From the quasi-steady theory, the lift force L(α) 
is a function of the angle of attack α 　　 
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It can be shown that it is often possible within a limited range of variation for α (e.g. -5°,+5°) to 
assume the derivatives of the aerodynamic force coefficients as constants. Exploiting this, with a 
Mc Laurin expansion of CL around α = 0, we have 
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In general, a sudden (step) change in α at time t = 0 (here denoted as α0) will produce its full 
effect only after some time is elapsed since the flux around the body needs some time to stabilize 
again. In 1925 Wagner showed that the lift can also in this case be considered as a liner function of 
α , and gave for the thin airfoil case the theoretical expression for the indicial growth function φ(s) 
of the lift as a function of a non dimensional time s=2Ut/B, where U is the average velocity of the 
stream and B the chord length of the airfoil 
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The indicial function describes the evolution in time of the lift force induced by a step change 
of the angle of attack. A similar function can be defined for a step change of the vertical velocity 
z of the cross-section. We will initially consider only a change of α. 

Linearity of L in α in Eq. (3) allows to obtain the lift force at time s as a convolution of the 
increments of α 
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Which, assuming σ1 = s - σ, can be recast as 
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In 1974 Scanlan et al. proposed a similar form for the aerodynamic forces of non-streamlined 
bodies 
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Where Φi are the equivalent of φ for the buff body and q = ½ρU2 is the dynamic pressure. Eqs. 
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(8) and (9) will be followed herein to express the lift force and the aerodynamic moment; the last 
with respect to the centroid of the bridge cross-section. The different behavior of φ and Φ can be 
appreciated in Fig. 3 (redrawn from Scanlan et al. 1974). In this picture it is emphasized as the 
indicial functions are asymptotic to 1 and, for a buff body, can become initially larger than 1. 

Normally, the functions Φi(s) are approximated by one or more exponential groups of the type 
)(

,2
)(

,1,0
,2,1 sb

i
sb

iii
ii eaeaa             (10) 

which depend on five constants each. The coefficients a0,i, a1,i, b1,i, a2,i b2,i are estimated by 
minimizing the differences in case of a harmonic variation of α, x, y between the aerodynamic 
forces computed in time domain using Eqs. (7) and (9), with Φ as in Eq. (10), and the same forces 
computed in frequency domain using the so called “flutter derivatives”, which are experimentally 
extracted from measurement (normally in a wind tunnel) of a sectional model of the bridge 
cross-section. 
 

Fig. 3 Indicial function φ by Wagner and indicial function Φ for a bridge deck; redrawn from (Scanlan et 
al. 1974) 

 
In using Eqs. (7) and (9) a practical problem arises in that the aerodynamic forces have to be 

computed with a convolution integral starting from -. Due to φ(s) or Φ i(s) rapidly converging to 
1, the system is rapidly loosing memory of previous variations of α, that can then be readily 
included in the first term in parenthesis in Eq. (3). The convolution integral can then be computed 
only on the past interval of the order of 10 units of non-dimensional time (Borri and Hoeffer 2000). 
Furthermore, whenever a representation through exponential groups is adopted the convolution 
integral from - to the present time can be further simplified, see (Leishman 2000). 

Since the flutter derivatives for the Shimotsui Seto Bridge were not available in literature, in 
this work the coefficients of the exponential groups identified from the flutter derivatives of the 
Akashi Kaikyo bridge have been adopted. This bridge has a girder section which is geometrically 
similar to that of the bridge under study (see Fig. 1(b) and Kitagawa 2004) although it presents a 
slot and a stabilizer in the center of the truss girder that are not present in the Shimosui Seto bridge 
cross-section. 

Finally, it is worth remembering that the coefficient a0,i in Eq. (10) must be set equal to one in 
all considered indicial functions to make consistent this approach, when s is very large, with the 
quasi-steady theory results (Zhang et al. 2011). The remaining coefficients for the lift force and the 
aerodynamic moment are as reported in (Caracoglia and Jones 2003) for a step change of the 
attack angle α or of the vertical velocity z  of the bridge cross-section, and are listed in Table 3. 
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Table 3 Coefficients of the Indicial Functions 

Function a1 b1 a2 b2 

　ΦLz -0.365 0.021 -11.652 7.235 

　ΦLα　 -0.392 0.008 -3.653 1.155 

　ΦMz 0.039 0.000 0.000 0.000 

　ΦMα　 0.073 0.025 1.758 7.098 

 
 

 

Fig. 4 Scheme of wind forces application on the deck and main cables 
 

(a)                          (b)                        (c) 

Fig. 5 Wind tunnel test curves of the bridge deck: drag (a), lift (b) and moment (c) coefficients as function 
of attack angle. Courtesy of Mr. M. Nishitani HBSE-JP 

 
 

3.2 Drag forces 
 

The external wind load is applied to the towers, the deck and the cables in the horizontal 
direction, transversal to bridge span (Fig. 4). The contribution of only the drag forces is accounted 
for according to Eq. (1) for the towers and the cables. For the deck the drag force is computed 
from the quasi-steady theory with Eq. (1) while the lift force and the moment are computed with 
the indicial function formulation of Eqs. (8) and (9). Drag force on the suspenders is split into two 
parts applied respectively to the main cable (top) and to the main girder (bottom), see Fig. 4.  

 

Nodes where the wind forces are applied 

 

Windward wind 
forces   

Leeward wind forces with
  screening effect 
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The values of the drag coefficients for the towers, the hangers and the main cables are 
evaluated from literature (ESDU 81027 1988, ESDU 71012 1971, CNR-DT 207 2008), taking into 
account the screening effect of the windward elements. Evaluation of the coefficients for the deck 
is performed from the original wind tunnel test curves as depicted in Fig. 5. In particular, the 
relation between the attack angle and the bridge deck drag coefficient is shown in Fig. 5(a).  

The adopted values of drag coefficients are listed in Table 4. From these, the drag forces are 
computed and applied at the nodes of the numerical model by knowledge of the tributary areas of 
the nodes and the wind velocities at the same. 

 
 

Table 4 Drag coefficients 

 CD Screening effects 
Deck Wind tunnel tests (Fig. 5) - 

Suspenders 0.65 - 
Main cables 0.7 Considered 

Towers 1.84 Considered 
 
 
3.3 Simulation of the wind field 

 
To compare the results of this study to those of the previous ones (Domaneschi and Martinelli 

2009, 2011, 2013) the reevaluation of the control strategy design is performed assuming the 
structural model is subjected to the same turbulent wind field that was used previously. The mean 
velocity is transversal to the longitudinal bridge axis and a mean wind velocity of 45.8 m/s  has 
been considered in the required transient dynamic analyses. 

The wind velocity field is simulated as a 3D spatially correlated process, non-homogeneous in 
space to consider the atmospheric boundary layer. The turbulent velocities are computed at the 
initial position of each node of the FE model in the generated 3D turbulent wind field. 

Turbulence is modeled by generating artificial velocity time-histories, according to the 3D 
turbulence model by Solari and Piccardo (2001). This model is based on the definition of direct 
spectral densities and coherency functions. The latter can relate different components at the same 
points (‘point’ coherencies) or equal components at different points (‘space’ coherencies). Decay 
of space coherencies with distance is of exponential type. The model is completely defined when 
the average velocity, the terrain factor, the roughness length and the minimum height are given, 
here by assuming the values in Eurocode 1 (2005) for sea or coastal areas (terrain category 0). 

In this turbulence model, the component ε = u, v, w in the along-wind axis x, the cross-wind 
axis y and the vertical axis z, respectively, of the turbulence at a point at height z above the ground 
is defined in the frequency domain by its Power Spectral Density (PSD) function as 

  3/5
2

)(/)(5.11

)(/)(
),(

zuzfLd

zuzLd
fzS




 


           (11) 

where 2
  is the variance of the turbulent component ε, L  is the integral length scale for that 

component and d  is a coefficient (having value: 868.6ud , 434.9 wv dd ) and f is the 

frequency. 
The model relates two different components, ε and  , of the turbulence acting at two different 
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point in space, Mk and Ml, by the cross-Power Spectral Density function 

 fMMSSS lkklkl ,,coh ,,         (12) 

where            fMMfMMfzfzfMM lklklklkkl ,,,,,,sgn,,coh ,   . 

is the coherency function that depends on the point coherence (z,f) and on the spatial coherence 
Λε(Mk, Ml, f). Only the along wind component and the vertical one are assumed correlated, hence 
　uv = vw = 0.  

The wind velocity records are generated, according to the procedure by Hao et al. (1989), in 
series of nst points starting from the time history at a starting node. Based on the analysis of the 
preliminary results for a limited number of cases, the along-wind component only has been 
retained in completing all the subsequent analyses of this study.  

The velocity time histories ui at the nodes in the numerical model are obtained by the finite 
series 

ui (Mi, t) =     
 


i

m

N

n
mnnimnnim tA

1 1

cos          i = 1...nst    (13) 

where the circular frequencies are assumed varying in the interval –N    N ,is the Nyquist 
frequency, ψmn are the phase angles, described as random variables with uniform probability 
density between 0 and 2π which are statistically independent from ψrs for m  r and n  s. The 
amplitudes Aim and the phase angles βim are selected so as to satisfy Eqs. (11) and (12). 
 
 
4. Reevaluation of the optimal passive control system 
 

In previous works by the authors (Domaneschi and Martinelli 2009, 2011, 2013) a control 
strategy has been proposed, and proven effective, for wind loading. The strategy comprised finding 
the optimal parameters for the hysteretic devices of a passive control system, in conjunction with a 
model of the buffeting wind forces based on the quasi-steady theory. Here, a reevaluation of the 
optimization procedure and the performance of the control strategy is carried out adopting the 
more refined representation of the fluid interaction forces, previously described, to assess if the 
simpler description, originally used, was satisfactory. 

When designing the additional hysteretic damping for a structure, the number, the size and the 
location of the dissipative devices should be decided in order to achieve a desirable response level. 
Any procedure developed for sizing and placing the control devices should be characterized by 
simplicity, efficiency and practicality (Garcia and Soong 2002, Zhang and Soong 1992). It follows 
that any algorithm for the devices optimization should require analytical techniques normally in 
use by design engineers (simplicity), minimizing the amount of devices (efficiency) and the 
number of different damper sizes (practicality).  

The buffeting, low frequency, vibrations passive control on the Shimotsui-Seto Bridge is 
performed in (Domaneschi and Martinelli 2013) by the application of a methodology inspired by 
the Sequential Placement Algorithm (Zhang and Soong 1992). The identification of the optimal 
system requires the definition of objective functions, the position of the control elements and the 
identification of the devices optimal parameters.  

The whole optimization procedure is characterized by means of : 

10



 
 
 
 
 
 

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge 

 

 variables, represented by devices positions and damping,  
 restraints, consisting in the lowest number of different devices,  
 targets, the optimal damping values for the control dampers (relative minimum point of 

the objective functions).  
The control system designed following the proposed optimization methodology presents also 

limitations: one wind velocity is exclusively selected, so, for different wind intensities, the passive 
system protection cannot be the optimal one. However, as the control theory postulates, this limit 
characterizes all passive control systems for structural applications (Domaneschi 2010, 2012). 

 
 

Fig. 6 Devices positioning on the bridge deck, top view
 
 
The natural choice for placement of the devices was to set them at the deck-tower connection 

points, characterized by the higher stiffness of the towers in comparison to the main girder of the 
bridge. Those positions are directly next to the maximum deck displacements sites at the mid-span.  

The inclination of the dampers with respect to the longitudinal axis of the bridge has been 
specifically considered as an additional variable through the use of two classes of dampers, 
transversal deck dampers, denoted by ST, and longitudinal deck dampers, indicated with SL as 
shown in Fig. 6. For the last type, two deck stiffening beams need to be introduced with the task of 
creating a support for the insertion of the longitudinal dampers. 

Dampers ST give the largest contribution to the control of the system while dampers SL play a 
secondary role in which they create a dissipative torque which reduces part of the transverse 
displacements due to the rotation of the deck around the vertical axis at the towers. Two device 
typology results from the general symmetry which characterizes the structural scheme of the 
Shimotsui-Seto suspension bridge. 

Therefore, the optimization procedure for the passive control system of the Shimotsui-Seto 
bridge can be summarized in the following steps: 

1. find the positions where to place transversal (ST) and longitudinal (SL) devices; 
2. consider only the SL devices and find the parameters that maximize the structural 

damping; 
3. consider the SL devices with the configuration fixed by step 2 and find the parameters of 

the ST devices that minimize the objective functions. 
The performances and the effectiveness of this control design can be found in (Domaneschi and 

Martinelli 2009, 2011, 2013) for the case of wind interaction forces limited to drag forces 
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described within the quasi-steady theory and devices simulated by the Bouc-Wen model (Wen 
1976). 

After presenting the model of the control devices, in the following we will next summarize the 
choice of the objective functions and the reevaluation of the control strategy within the refined 
description of the wind forces. 

 
4.1 Model of control devices  

 
The numerical simulation of control devices allows for the evaluation of their efficiency into 

complicated structural systems under stochastic external forces. Among the others, the Bouc-Wen 
model (Wen 1976) has been often selected for the simulation of dissipative passive and 
semi-active devices (Domaneschi 2010, 2012), such as metallic dampers, rubber bearings, 
piezoelectric dampers (Low and Guo 1995), magneto-rheological dampers (Spencer et al. 1997) 
and electro-inductive devices (Casciati and Domaneschi 2007).  

The choice we made to idealize passive and semi-active devices by the Bouc-Wen law is 
supported by the physical and mathematical consistency of this model (Erlicher and Point 2004) 
and the excellent correspondence between the experimental and numerical results. More recently, 
the dynamic stability of the model has been investigated in (Ikhouane et al. 2007a), where the 
domain limits for the model parameters are fixed, while the model passivity, among other general 
properties, is established in (Ismail et al. 2009). In light of these considerations, the Bouc-Wen 
model has been adopted for simulating control devices on the suspension bridge model and their 
optimization procedure. 

According to the Bouc-Wen endochronic hysteretic model, the equations governing the 
restoring force produced in each passive devices are given as 

1 n
hhr

n
hrrh zzxzxxAz                            (14) 

rrhr xckxkztx   )1(),(                           (15) 

where xr is the relative displacement between the device ends, x r the relative velocity, zh is an 
auxiliary variable allowing one to introduce a smooth hysteretic behaviour, k the pre-yielding 
stiffness, α the ratio between post and pre-yielding stiffness (α=1 provides an elastic response and 
α=0 an elastic-perfectly-plastic behaviour) and A, β, γ, n are time invariant parameters defining the 
amplitude and the shape of the cycles, the linearity in unloading and the smoothness of the 
transition from the pre- to the post-yield region. In particular, A is related to the initial stiffness, β 
regulates the cycle amplitude and consequently the dissipation level (β0 for low energy 
dissipation), γ defines the unloading path in the hysteresis, n the smoothness of the transition. The 
relationship between the parameters that appear in the differential Eq. (14) and the shape of the 
obtained hysteresis loops is deepen in (Ikhouane et al. 2007b),  using a normalized form of the 
model.  

Variable Φ(xr,t) in Eq. (15) is the control force (axial) provided by the device at its ends. The 
problem related to the model identification can be solved by considering the physical meaning of the 
parameters: in particular the axial yielding force Φy, for value A = 1 and α close to zero, descends 
from some algebra and assumes the following form 

ny

k
/1)(  


      

 (16) 
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For the identification procedure of the Bouc-Wen model, the interested reader is pointed to 
(Domaneschi 2012).  

To carry out the computations required by this work, the constitutive law given by the 
Bouc-Wen model has been implemented into the commercial ANSYS FE framework by an 
external user element. It consists in a Fortran executable called, at each step of analysis, by the 
script governing the ANSYS analysis. The procedure is carried out writing special routines in the 
ANSYS parametric language (APDL), capable of extracting the kinematics of the nodal points 
joined by Bouc-Wen elements, write appropriate interface files, call the external executable, read 
and then apply to the structural model the externally computed control forces. In particular, the 
process of calling the external executable from the main script was carried out using the ANSYS 
command “/SYS”. More details on the Bouc-Wen model implementation in ANSYS can be found 
in (Domaneschi and Martinelli 2012, Domaneschi et al. 2010). 

The damping provided to the whole bridge system by the control devices is evaluated at each 
stage of the optimization procedure by tuning the model parameters. Particularly, fixed the device 
pre-yielding stiffness k, the axial yielding force Φy (Eq. (16)) is tuned by changing parameters β 
and γ, while the remaining ones are kept fixed (α = 0.02, n = 1 and A = 1).  

The Bouc-Wen parameters, selected by the abovementioned procedure, reproduce the 
hysteresis signature coming from an innovative electro-inductive device characterized in 
laboratory for structural control applications on long span bridges (Casciati and Domaneschi 2007). 
It represents a fascinating solution for the feasibility of larger passive devices of this type to be 
installed in long span bridges. This is of interest due to two facts: that they are much shorter than 
passive hydraulic dampers of identical maximum stroke and that they can easily be converted into 
the semi-active type, adapting themselves to different seismic intensity levels (Domaneschi 2010, 
Domaneschi and Martinelli 2012) by using specific control laws (Domaneschi 2012). An 
additional aspect to underline is the self-centering ability after an extreme loading event, 
realigning the deck with its original axis and the towers.  

In this light, the presented results are also intended as a realistic validation of such innovative 
damper implementation on a suspension bridge by using accurate models of the structure, the 
devices and the wind loading conditions. 

 
4.2. Objective functions and results 

 
Standard deviation is a valuable parameter for directly identifying peak values of structural 

variables, such as internal forces and displacements, and indirectly also for a statistical estimation 
of the peak value of a variable. 

In this light, the objective functions from the adopted optimization procedure, were fixed as the 
standard deviation of the internal forces at the base of the towers and of the transverse mid-deck 
displacement: identified respectively as the shear Tx, the bending moment Mz and the displacement 
Ux in the global frame of reference (Domaneschi and Martinelli 2013). These functions are 
minimized by varying the damping contribute, due to the passive control system implementation, 
through a change of the variables that govern the control devices constitutive law.  

The optimization procedure was carried out considering a single excitation having a mean wind 
speed Um = 45.8 m/s according to the following steps: 

1. evaluation of the optimal parameters for the longitudinal devices SL that maximize their 
contributes to the structural damping; 
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2. investigation of the optimal characteristics for the transversal dampers ST when the SL 
devices have parameters coming from step 1.  

Step 1 was carried out considering the bridge controlled only by the contribution of the SL 
devices. Step 2 consists in the identification of the damping characteristics that minimize the 
objective function, by varying the parameter Φy of the ST devices.  

The optimal configuration of the whole passive control system was identified in (Domaneschi 
and Martinelli 2013), considering the quasi-steady model of the buffeting forces, by the Bouc-Wen 
parameters: A = 1, n = 1, α = 0.02, β = γ = 330, k = 40000 kN/m, Φy = 60 kN for the SL devices; A 
= 1, n = 1, α = 0.02, β = γ = 250, k = 150000 kN/m, Φy = 300 kN for the ST devices (Domaneschi 
and Martinelli 2013). 

This process is herein carried out for the bridge structure with the refined model of the wind 
interaction forces described in the Section 3. The results are compared in Figs. 7-9 to the original 
ones from (Domaneschi and Martinelli 2013), obtained using a much simpler model of wind 
interaction forces. Such figures describe the variation of the standard deviation (Figs. 7(a)-9(a)) 
and of the mean values (Figs. 7(b)-9(b)), respectively for Tx, Mz and Ux, as functions of yield force 
Φy and stiffness k of the ST devices. From these results we have, on the one hand, that the standard 
deviation of the transverse displacement UX (Fig. 9(a)) upholds, reaching its minimum at a value 
of the ST dampers elastic limit Φy = 300 kN, while the standard deviations of the internal forces 
(Figs. 7(a)-8(a)) still reach their minima at Φy = 200 kN.  

This is in accord with the concept of Pareto (Pareto 1927) optimal points, that the values taking 
to the minimum of an objective function do not imply necessarily that the remaining ones do attain 
their minima as well. On the other hand, the mean values (Figs. 7(b)-9(b)) change, albeit only 
slightly, showing less severe values for the tower base shear force and bending moment when the 
wind loading forces are computed through the quasi-steady approach.  

In light of the results from Figs. 7-9, a fist outcome is obtained: the optimal passive control 
parameters coming from use of the quasi-steady model of the buffeting loading rest confirmed also 
when reevaluated by adopting a more refined version of the fluid interaction forces. 

Furthermore, it has to be noted as the standard deviation of the internal forces at the base of the 
towers and the deck mid-span displacement (Figs. 7(a)-9(a)), are always lower than those obtained 
with the simplified approach, consistently with the results in (Chen et al. 2000). This is 
additionally confirmed by looking at Table 5, which compares the results in terms of mean, 
standard deviation and maximum intensity values, for the optimal passive control systems, 
between the two considered approaches to buffeting forces. In addition to TX, MZ at the towers base, 
and UX at the mid-span, the deck bending moment MY around the vertical axis has also been listed 
at the mid-span and quarter-span of the deck. The simplified approach shows higher maximum and 
standard deviation values for all reported structural variables.  

These results, which consider the additional internal force MY, with respect to the objective 
functions, confirm how the simplified wind loading model can lead to an overestimation of the 
structural response. The consequence is that this simpler wind loading model can be used to design 
solution that will have a good chance to be satisfactory also when the refined model will be used. 

Fig. 10 depicts the comparison, in the frequency domain, of the two considered approaches to 
buffeting forces in terms of base tower shear force TX (Fig. 10(a)), base tower bending moment MZ 
(Fig. 10(b)), mid-span displacement UX (Fig. 10(c)), quarter-span bending moment MY (Fig. 
10(d)).  
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Fig. 7 Standard deviations and means of the shear force TX, acting in direction X, at the tower base as 
function of Φy and k (device yield force and stiffness, respectively) 

 
 
 
 

Fig. 8 Standard deviations and means of the bending moment MZ, acting along direction Z, at the tower 
base as function of Φy and k (device yield force and stiffness, respectively)
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Fig. 9 Standard deviations and means of the displacement UX, in direction X, at the deck mid-span as 
function of  Φy and k (device yield force and stiffness, respectively). 

 
 
 

 
(a) (b) 

 
(c) (d) 

Fig. 10 Frequency domain comparison between the two approaches to wind buffeting (simplified one = 
point lines, indicial functions = solid line): base tower shear force TX (a), base tower bending 
moment MZ (b), mid-span displacement UX (c), quarter-span bending moment MY (d) 
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Table 5 Comparison in terms of mean, standard deviation and maximum intensity values, for the optimal 
passive control systems, between the two considered approaches to buffeting forces 

 Quasi-static Indicial Functions 
 Mean Standard 

Dev. 
Max Mean Standard 

Dev. 
Max 

Tower base  
FX [kN]  -3870 530 -5998 -4250 482 -5543 

Tower base 
MZ [kNm] 30960 6400 56419 35470 5798 51107 
Mid-span  
UX [m] 0.55 0.13 0.93 0.51 0.10 0.79 

Mid-span  
MY [kNm] 163180 44990 269700 142660 32430 234700 

Quart.-span 
MY [kNm] 74380 21110 173200 72280 13380 155500 
 
 

Table 6 Mean and standard deviation values of the cross-section displacement along global axis X and 
rotation around global axis Z at the quarters and the middle of the bridge span (L) 

Position 1/4L 3/4L 1/4L 
Displacement along X [m] 

Mean 0.521 0.390 0.386 
Standard D. 0.0995 0.0699 0.0700 

Rotation about Z [rad] 
Mean -0.00042 -0.00085 -0.00074 

Standard D. 0.00011 0.00016 0.00014 
 
 
The curves associated to the more refined version of the interaction forces (continuous lines in 

Fig. 10) show generally higher amplitudes at the frequency of the main lateral symmetric mode 
(see also Table 2). Conversely, when the bridge implements the simplified approach of wind 
buffeting, it experiences larger amplitudes at higher frequencies, associated to vertical modal 
shapes. 

Table 6 reports the mean and standard deviation values of the deck vibration displacements in 
direction X and rotations around its longitudinal axis Z at the quarters and at the middle of the span 
when the more refined version of the interaction forces is implemented. The vertical displacements 
Y are not shown since they undergo a very small variation. The rotational components show very 
small amplitude, confirming the positive outcomes of the numerical analyses with the simpler 
model for the aerodynamic forces. This result can be traced to the aerodynamic stability 
characteristics of the bridge cross-section, designed not to undergo flutter phenomena for 
velocities well over the one adopted in this study. 

The wind velocity inducing flutter instability has been evaluated with the refined model of the 
wind interaction forces for the uncontrolled bridge version and the passive controlled one. From 
the numerical analyses it has been identified at 134.6 m/s for both the bridge configurations and, 
consequently, no stability benefit on the Shimotsui-Seto bridge can be gained from the proposed 
control systems.  

This result could have been foreseen by observing the devices implementation in the horizontal 
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plane, which do not influence the “as built” torsional stiffness of the bridge deck and hence its 
critical flutter velocity. Furthermore, owing to the large dimensions of the structure, and, therefore, 
its high flexibility, the exchanged control forces between the deck and the towers, quite far from 
the center span, are not able to improve the already good original flutter stability. 

 
 

5. Conclusions 
 

A reevaluation of a previously developed strategy for the optimization, under wind excitation, 
of a passive damping system based on linear devices connecting the deck and the towers, is here 
studied within a more refined representation of the fluid interaction forces on the Shimotsui-Seto 
Bridge. 

 The results obtained, adopting for the deck a representation based on indicial function for the 
lift and moment components, do not change the outcomes already attained through a simplified 
model of the buffeting wind forces which considers drag components only. This is due both to the 
well-designed aerodynamic shape of the deck, which avoids high values of the aerodynamic 
moments in the deck for small angles of attack, and to the high torsional and vertical stiffness of 
the same which provide very low deformability and, consequently, largely diminish the contribute 
to the angle of incidence due to twist and vertical motion of the deck. 

The passive control arrangement, already previously identified as the optimal one with the 
simplified model of wind interaction forces, still achieves the best compromise between the 
reduction of internal forces and the displacements.  

Standard deviation and mean values of the internal forces at the towers base and displacements 
at mid-span of the girder have been considered as objective functions for the optimization process 
of the passive control system. Comparing the resulting curves of the selected objective functions 
versus the device yielding force and stiffness, when the simplified and the refined wind loading 
simulation is employed, the following observations also arise: 
‧the optimal configuration, which minimizes one selected objective function, does not in general 
minimize also the other ones. In other words, the optimal arrangement for the control system 
comes at the cost of a lower performance for some other structural aspects. However, the values 
for the device parameters that correspond to the minimum of each individual objective function 
belong to a small sub-domain of the parameters space. 
‧The simplified wind loading model leads to an overestimation of the standard deviation of the 
objective functions, an in general of the extreme values, with respect to the results obtained with 
the more refined approach based on the use of indicial functions.  

This conclusions, that suggest it is conservative to design the control system with reference to 
the quasi-steady representation of the wind forces, can be of interest in the design of optimal 
control strategies on long span suspension bridges, owing to the simplification in the 
implementation of the wind interaction forces. 
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