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Abstract.  By using the nonlinear aerostatic stability theory together with the method of mean wind 
decomposition, a method for nonlinear aerostatic stability analysis is proposed for long-span suspension 
bridges under yaw wind. A corresponding program is developed considering static wind load nonlinearity 
and structural nonlinearity. Taking a suspension bridge with three towers and double main spans as an 
example, the full range aerostatic instability is analyzed under wind at different attack angles and yaw angles. 
The results indicate that the lowest critical wind speed of aerostatic instability is gained when the initial yaw 
angle is greater than 0°, which suggests that perhaps yaw wind poses a disadvantage to the aerostatic 
stability of a long span suspension bridge. The results also show that the main span in upstream goes into 
instability first, and the reason for this phenomenon is discussed. 
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1. Introduction 
 

With the rapid development of transportation, bridge span length has increased significantly in 

recent decades. To accommodate this increase, bridges have become lighter, more flexible and, 

accordingly, more susceptible to wind-induced problems. Recent results of wind tunnel tests and 

research indicate that aerostatic instability of long-span cable supported bridges is likely to occur 

(Cheng et al. 2002a, Hirai et al. 1967, Xie and Yamaguchi 1997). For long-span suspension 

bridges, they deform significantly under static wind action due to their great flexibility, and this 

deformation changes their stiffness and the resistant forces. On the other hand, the deformed shape 

of the stiffening deck produces an increase in the value of the three components of 

displacement-dependent wind loads distributed along the deck. When the increment of the 

resisting forces is less than that of static wind loads, aerostatic instability occurs (Simiu and 

Scanlan 1996). Therefore, aerostatic instability is a coupling effect of static wind loads and 

structural deformation. Currently, the aerostatic stability of long-span suspension bridges has been 

comprehensively investigated by Boonyapinyo et al. (1999, 2006), Cheng et al. (2002b, 2003a,b), 
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Xiao and Cheng (2004), Zhang (2011). These studies developed finite element methods to 

predicate the critical wind speed of the nonlinear aerostatic instability for long-span suspension 

bridges. 

While a long-span bridge scheme is planed and the bridge site and bridge axial direction are 

selected, the normal line direction of the bridge span is always determined to departure from the 

local leading wind direction to the extent possible. As a result, strong wind always attacks bridges 

with a yaw angle, which has been proved by site-measurement results of some long-span bridges 

(Zhu et al. 2002, 2007, Zhu and Xu 2005). However, wind direction is assumed to be normal to 

bridge axis in most previous studies of aerostatic stability, and few studies related to the aerostatic 

stability of bridges under yawed wind have been conducted to date. In addition, only the 

contribution from torsional deformation of the bridge deck to the change of static wind load is 

considered in previous studies of aerostatic stability, but the contribution from lateral deformation 

is not considered. 

In this paper, using the nonlinear aerostatic stability theory together with the method of mean 

wind decomposition (Kimura and Ohara 1999, Kimura and Tanaka 1992, Scanlan 1993), a method 

for nonlinear aerostatic stability analysis is proposed for long-span suspension bridges under yaw 

wind. The contribution from the torsional deformation and that from the lateral deformation of the 

bridge deck to the change of static wind load are both considered in this method, which is more 

reasonable and accurate than previous methods. Based on this method, a computer program is 

developed taking into account the static wind load nonlinearity and structural nonlinearity. As a 

case study, full range aerostatic instability of a suspension bridge with three towers and double 

main spans is analyzed under wind at different attack angles and yaw angles. The relationship 

between critical wind velocity and yaw angle is studied. The aerostatic instability configuration of 

the suspension bridge is also discussed. 

 

 

 
 

Fig. 1 Yaw angle of wind in a bridge plan 

 

 
2. Proposed method 

 
2.1 Definition of yaw angle  

 
As shown in Fig.1, the initial yaw angle β0 is defined as the angle between the mean wind and 

the bridge axis without lateral deformation in horizontal plane. While the lateral deformation 

occurs as an effect of wind load, any point on the bridge deck has a lateral bending angle φ, i.e., 

the angle between the normal line of the bridge axis in the reference configuration and that of the 
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bridge axis with lateral deformation. The effective yaw angle β is defined as the angle between the 

mean wind and the bridge axis with lateral deformation in horizontal plane, thus β=β0+φ. It is 

interesting to note that the value of β or φ varies with the location on the bridge deck. 

Using the method of mean wind decomposition, the mean wind velocity V is decomposed into 

the cosine component Vcosβ and the sinusoidal component Vsinβ in horizontal plane, which are 

normal to and parallel with the bridge axis with lateral deformation, respectively, as shown in Fig. 

1. 

 

2.2 Definition of attack angle  

 
As shown in Fig. 2, the initial attack angle α0 is defined as the angle between the cosine 

component Vcosβ and the bridge deck without torsional deformation. While torsional deformation 

occurs as an effect of wind load, any point on the bridge deck has a torsional displacement θ. The 

effective attack angle α is defined as the angle between the cosine component Vcosβ and bridge 

deck with torsional deformation, thus α=α0+θ. 

 

 

 
 

Fig. 2 Attack angle of wind and three components of wind load 

 

 

2.3 Decomposition of wind load 

 
As also shown in Fig. 2, the three components of wind load per unit span that the cosine 

component Vcosβ applies to the bridge deck are drag force, lift force and pitch moment, which are 

all functions of the effective attack angle α and the effective yaw angle β and are expressed as 
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where PH, PV and PM are drag force, lift force and pitch moment, respectively; ρ is the air density; 

CH(α), CV(α) and CM(α) are the coefficients of drag force, lift force, and pitch moment in wind axes, 

respectively; b is the deck width; and h is the vertical projected area of the deck. 

The angle between the sinusoidal component Vsinβ and the bridge deck is γ= arctan (tanα0/tanβ) 

in the vertical plane through the bridge axis. In the vertical plane through the bridge axis, the 

sinusoidal component Vsinβ is decomposed into Vsinβcosγ and Vsinβsinγ, which are parallel with 

and normal to the bridge axis, respectively. The value of Vsinβsinγ is so small that it can be 

ignored. The Vsinβcosγ applies friction force F(β) on the surface of deck (Ministry of 
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Communications of the People's Republic of China 2004), which can be written as  

2( ) ( sin cos ) / 2fF V c s                              (2) 

where cf is the friction coefficient between wind and deck surface; s is the perimeter of the deck 

crossing section. 

When the said method is used to decompose the wind load acting on the bridge deck, only the 

coefficients of three component wind load are needed, which can be gained in regular aerostatic 

force tests of sectional model in wind tunnel. The coefficients of six component wind load (Zhu et 

al. 2002), which only can be gained using a six component scale in sectional model wind tunnel 

test, are not needed. This method is simple and convenient to use, and suitable for bridges with 

single-box deck especially. 

As for the static wind loads on the towers and cables, only the drag forces along and normal to 

the bridge are considered. 

 
 
2.4 Nonlinear iterations 

 
The stability problem under static wind load is the combination of the nonlinear behavior of 

static wind load and the spatial stability theory, and can be solved using the updated Lagrange 

incremental method. Corresponding U.L. incremental expression can be written as  

11 1 1 1 1([ ( )] [ ( )] ) { } { ( , , )} { ( , , )}
j

G W

L j j j j i j j j i j jK K P V P V      




                   (3) 

where [KL(δj-1)] and 
1 1[ ( )]

j

G W

jK 




 are, respectively, the structural elastic stiffness matrix and the 

geometrical stiffness matrix, which are computed using the displacements δ and stresses ζ from 

the preceding iterations; superscripts G and W refer to the gravity and wind loads, respectively; 

{Δδj} is the incremental displacement vector; {Pj(Vi, αj, βj)} is the displacement-dependent wind 

load vector computed using the current effective attack angles and yaw angles of wind; and 

{Pj-1(Vi, αj-1, βj-1)} is the displacement-dependent wind load vector computed using the preceding 

effective attack angles and yaw angles of wind. 

Structural stiffness and static wind loads are functions of structural displacement; therefore, the 

iterative method must be used when Eq. (3) is solved. The procedure of calculating critical 

velocity by this method can be summarized as follows: 

1. Assume an initial wind velocity V0, a wind velocity increment ΔV, and prescribed tolerance 

of wind velocity increment ΔVtol; present wind velocity V= V0. 

2. Calculate wind load of the structure at V. 

3. Solve the global equilibrium Eq. (3) for displacement {δ} by Newton–Raphson method. 

4. Determine the torsional angle of element from the displacement {δ} by averaging the 

torsional displacement between left node and right node, then calculate the effective attack angle α 

of wind; determine the lateral bending angle of element from the displacement {δ} by dividing the 

difference of lateral displacement between left node and right node by the element length, then 

calculate the effective yaw angle β of wind. 

5. Check if both the Euclidean norms of the effective attack angle and effective yaw angle are 

less than the prescribed tolerance. The Euclidean norms are written as 
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where Na is the number of nodes subjected to the displacement-dependent wind load; i is the serial 

number of current iteration; α and β are, respectively, the effective attack angle and effective yaw 

angle; and εk is the prescribed tolerance. 

If satisfied, then add wind velocity according to scheduled change in wind velocity length, 

V=V+ΔV. Otherwise repeat steps (2)–(5) until both Eqs. (4(a)) and (4(b)) are satisfied. 

6. If the iterations do not converge at a certain velocity, then revisit previous wind velocity and 

recalculate by shortening the wind velocity increment, ΔV=ΔV/2, until the difference between two 

successive wind velocities is less than the prescribed tolerance. 

Base on this method, a corresponding program is developed, and the flow chart of the program 

is shown in Fig. 3. 
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ConvergeNo
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End
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Fig. 3 Flow chart of the program 

557



 

 

 

 

 

 

Wen-Ming Zhang, Yao-Jun Ge and Marc L. Levitan 

3. Description of an engineering example 
 

The Maanshan suspension bridge over the Yangtze River in Anhui Province of China is used as 

an example. This bridge with double main spans is spanned as 360+2×1080+360 m in Fig. 4. All 

three towers are 176 m high. The height of middle tower above the deck is 128 m; the height of 

each side tower above the deck is 143 m symmetrically. The deck cross section is an 

aerodynamically shaped closed box steel deck 38.5 m wide and 3.5 m high. The two cables and all 

hangers are made of high tensile galvanized parallel wire bundles. The distance between the two 

cables is 35 m. The spacing between two adjacent hangers is 16.0 m. Section material and 

geometrical features of main members are indicated in Table 1. The deck is fixed with the middle 

tower. There are two one-way longitudinal movable supports under the deck on the lower 

crossbeam of each side tower; lateral wind-resistant supports are set between the deck and the 

columns of side towers. 

 

 



 
 

Fig. 4 Elevation of Maanshan bridge (unit: m) 

 

 

Fig. 5 Finite element model of Maanshan bridge 

 
Table 1 Section geometrical and material features of main members 

Main 

member 

Jd 

 (m
4
) 

I2 

(m
4
) 

I3 

(m
4
) 

M 

 (t/m) 

E 

 (MPa) 
ν 

Deck 9.10 207.04 3.22 21.39 2.01×10
5
 0.3 

Cable − − − 2.40 2.01×10
5
 − 

Hanger − − − 0.04 2.01×10
5
 − 

M: mass per unit length; E: modulus of elasticity; Jd: torsional moments of inertia; I2: out-of-plane moments 

of inertia; I3: in-plane moments of inertia; ν: Poisson ratio 

 

 

As shown in Fig. 5, a three-dimensional finite element model was established for the Maanshan 

suspension bridge. Three-dimensional beam elements are used to model the three bridge towers. 

The cables and suspenders are modeled by three-dimensional link elements accounting for 
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geometric nonlinearity due to cable sag. The bridge deck is represented by a single beam, and the 

cross-section properties of the bridge deck are assigned to the beam as equivalent properties. The 

connections between bridge components and the supports of the bridge are properly modeled. The 

aerostatic coefficients of the deck are obtained from the sectional model test in wind tunnel as 

shown in Fig. 6. 
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Fig. 6 Aerostatic coefficients as functions of attack angle 

 

 

4. Aerostatic stability analysis 
 

The attack angle of strong wind in atmospheric boundary layer varies within -3°~3°. In 

following analysis of the aerostatic stability of the Maanshan bridge, a total of five initial attack 

angles, -3, -1.5, 0, 1.5 and 3, and eight initial yaw angles, 0°, 3.5°, 7.5°, 15°, 22.5°, 30°, 45° 

and 60°, are selected. A total of 40 resultant cases are produced with different initial attack angles 

and initial yaw angles. Taking the bridge structure only subjected to dead load as the initial state, 

full-range nonlinear aerostatic stability is computed using the program presented in this paper.  

 

4.1 Effect of initial yaw angle 

 
The critical wind velocities under different initial attack angles and initial yaw angles are 

summarized in Table 2. It is to be noted that all the wind velocities in Table 2 are referenced at 

deck elevation. In Table 2, „>‟ means the critical wind velocity is greater than a certain wind 

velocity, at which the effective attack angle of a certain deck element is beyond the range of 

-12°~12° for the first time. Because aerostatic coefficients are not available beyond the attack 

angle range of -12°~12°, the program stops automatically at the wind velocity following the „>‟. In 

the case of α0=1.5° and β0=7.5°, the lowest critical wind velocity 98.8 m/s is obtained, which is 

much greater than the allowable wind velocity 47.2 m/s, so the aerostatic-stability performance of 

the Maanshan bridge is good. 

The curves of the critical wind velocity varying with the initial yaw angle are shown in Fig. 7. 

As can be seen, the critical wind velocity for a certain initial attack angle increases with the initial 

yaw angle in a general trend, and the initial yaw angle has a major effect on the critical wind 

velocity. However, as for the initial attack angle 0° and 1.5°, the lowest critical wind velocity that 
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engineers are most concerned with is not gained at β0=0°, which suggests it is not the most 

dangerous case when the wind is normal to the bridge axis. This phenomenon is worthy of note. 

 
Table 2 Critical wind velocities (m/s) 

α0 

β0   -3° -1.5° 0° 1.5° 3° Minimum 

0° >152.0 110.0 109.0 100.6 117.8 100.6 

3.5° >153.0 110.0 110.0 101.0 118.0 101.0 

7.5° >154.0 113.8 109.0 98.8 118.8 98.8 

15° >160.0 110.0 108.0 99.0 121.8 99.0 

22.5° >167.5 113.8 111.0 >120.0 126.0 111.0 

30° >176.0 119.8 116.0 >127.8 134.0 116.0 

45° 156.0 151.9 144.0 >155.2 162.0 144.0 

60° 212.0 211.2 200.0 >213.9 222.0 200.0 
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Fig. 7 Critical wind velocity varying with the initial yaw angle 

 

 

4.2 Configuration of aerostatic instability 

 
The computing result indicates that the longitudinal, vertical, lateral and torsional 

displacements of the deck increase nonlinearly with wind velocity. At the critical wind velocity, 

the displacements diverge, which means the instability of the bridge structure occurs under the 

static wind load and the dead load. As is known from observing the aerostatic-instability course of 

the bridge, the posture of the bridge changes from the initial equilibrium state as wind velocity 

increases, and the lateral deformation and torsional deformation cause the change of the effective 

yaw angle and the effective attack angle, respectively. Therefore, the static wind load acting on the 

bridge structure develops nonlinearly with wind velocity. Accordingly, nonlinear characteristics of 

various structural deformations are presented in different degrees with wind velocity. As examples, 

the displacement behaviors at the midpoints of both spans for the initial yaw angle 45° and initial 

attack angles of -3, 0 and +3  are shown in Figs. 8, 9 and 10, respectively. 
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Fig. 8 The displacement behavior at the midpoints of both spans (β0=45°, α0= -3°) 
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Fig. 9 The displacement behavior at the midpoints of both spans (β0=45°, α0=0°) 
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Fig. 10 The displacement behavior at the midpoints of both spans (β0=45°, α0=3°) 

 

 

As shown in Figs. 8, 9 and 10, the displacement at the midpoint of left span is almost same as 

that of the right span when wind velocity is low, and the displacements at the midpoint of both 

spans increase nonlinearly as wind velocity increases. However, the displacement at the midpoint 

of the left span increases more rapidly than that of the right span when wind velocity approaches 

the critical wind velocity, causing the left span to go into instability first. This is because: (1) the 

deck is fixed with the middle tower; (2) the wind friction load along the bridge deck engenders 

axial pressure in the left span and axial tensile force in the right span; and (3) accordingly, the 

geometrical stiffness of the left span decreases, whereas that of the right span increases. The 

deformation of the left span is greater than that of the right span in the configuration of aerostatic 

instability. It is interesting to note that the left span is in the upstream of the yaw wind. 

 

 

5. Conclusions 
 

The concluding remarks about the aerostatic stability of a suspension bridge with double main 

spans under yaw wind and the method proposed in this paper can be summarized as follows: 

1. The lowest critical wind velocity of aerostatic instability is gained when the initial yaw angle 

is 7.5° and the initial attack angle is 1.5°, and is much greater than the allowable wind velocity; 

therefore, the aerostatic-stability performance of the Maanshan Bridge is good. 

2. Since the lowest critical wind speed of aerostatic instability is gained when the initial yaw 

angle is greater than 0°, yaw wind may pose a disadvantage to the aerostatic stability of a long 

span suspension bridge. The effect of the yaw angle of wind should be taken into account when 
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the aerostatic stability of a long-span suspension bridge is analyzed. 

3. The yaw angle of wind has a major effect on the critical wind velocity of aerostatic instability. 

4. The displacement behaviors of two spans under the displacement-dependent wind loads 

exhibit strong nonlinearity in different degrees. 

5. The upstream span goes into instability first, mainly because of the wind friction load along 

the bridge deck. 

6. Based on the nonlinear aerostatic stability theory together with the method of mean wind 

decomposition, the method for analyzing the nonlinear aerostatic stability of long-span 

suspension bridges under yaw wind is practical, simple, and convenient to use. 
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