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Abstract.  This study develops an extended inverse input estimation algorithm with intelligent adaptive 
fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This 
algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent 
adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural 
system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are 
particularly more obvious when applying larger input wind load. Numerical simulation cases involving 
different input wind load types are studied in this paper. The simulation results verify the nonlinear 
characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads. 
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1. Introduction 
 

It is a very important task to clearly and effectively identity external interference in structural 

systems during strength, fatigue and reliability analyses. In general, identifying external forces is 

divided into direct and indirect methods. The direct method uses load transducers to measure the 

active reactions in a structural system. In practical engineering problems there are always 

difficulties in installing the load transducers used to measure unknown inputs. In the structural 

design and analysis, the loads caused by earthquakes and winds are both significant and need to be 

considered. There are many research works (Geurts and Bentum 2010, Li et al. 2010, Banik et al. 

2010, Zhao and Ge 2010, Mara et al. 2010, Amoroso and Levitan 2011, Elshafey et al. 2011) 

devoted to structural design and analysis. Especially the strong wind causes severe vibration load 

to the building structure and makes the residents uncomfortable. In particular, the dynamic load is 

not easily obtained using direct measurements when a huge, transient loading is applied to the 

structural system. The inverse technique has been studied extensively using various techniques 

developed to address this issue (Yang and Yau 1997, Michaels and Pao 1985, Fabunimi 1986). 

The inverse estimation method is a type of inverse technology widely adopted to cope with a 

system with inputs by measuring the structural system responses. There are recent researches on 

structural system input estimation. For example, Michaels and Pao (1985) presented a 

deconvolution iterative method that determines the orientation and time‐dependent amplitude of 
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the force emanating from the transient response of a plate surface at a minimum of two locations, 

with the source location given. Fabunmi (1986) presented a pseudo inverse technique to 

determine the effects produced on several structural modes due to vibratory forces. Hillary and 

Ewins (1984) utilized the least square technique to estimate the sinusoidal forces acting on both 

sides of a cantilever and used an experimental procedure to examine the estimation result. They 

applied this method to the impact load estimation of airplane turbine blades. Haung (2001) 

adopted the conjugate gradient method (CGM) to estimate the force of a one-dimensional 

mass-spring-damper structure with time-varying system parameters. Haung (2005) adopted the 

conjugate gradient method (CGM) to simultaneously estimate the unknown time-dependent 

external forces in a multiple-degree-of-freedom damped system. Quite good estimation results 

were presented in the above references. The related algorithms in the above references were all 

implemented in batch form. This kind of method is time-consuming and not an on-line procedure 

for the unknown input estimation. 

To solve the above problems, Chen and Lee (2008) investigated an adaptive input estimation 

method applied to load input inverse estimation in a structural system. This method can be simply 

used to inversely estimate the input load using the dynamic response of the structural system. 

Good estimation results can be achieved; however, the estimates converge slowly in the initial 

state when the adaptive weighting function is used in the RLSE. The increase in process noise 

variance will influence the estimation precision. With a larger assumed process noise variance 

better time-varying force inputs tracking capability can be obtained, but the overall measurement 

noise reduction effectiveness will be degraded. Therefore, Chen et al. (2008) developed an 

intelligent fuzzy weighted estimator with higher target tracking performance and better noise 

reduction effectiveness. This estimator provided an efficient and robust estimation procedure for 

any unknown input situation; however, the overall measurement noise reduction effectiveness 

may be degraded when a larger initial process noise variance is assumed in the intelligent fuzzy 

weighted estimator. The estimates may be divergent in a high order of severity when an 

inappropriate initial process noise variance is assumed. In order to solve the above problem fuzzy 

logic inference fuzzy acceleration and weighting factors were proposed to enhance the estimator 

performance. They were successfully applied to estimate the input wind load of a structural 

system (Lee 2010). As opposed to the batch process the input estimation method uses the 

recursive form to process the data when dealing with more complex systems. There is no need to 

store all of the data to implement the process, reducing the quantity of necessary memory. The 

advantage was that higher effectiveness was achieved and the magnitude of the unknown could 

be estimated in time. 

Most structural systems were assumed to be linear systems in the above mentioned 

references.In practical engineering problems the non-linear characteristics of a structural system 

are evident when a huge input load is applied on the structural system. Usually structural system 

non-linear characteristics will appear as various types and become more evident as the response 

amplitude changes rapidly. This study is the first application of this estimator to the unknown 

input wind load estimation of nonlinear structural systems. The proposed method is compared 

with other algorithms to verify its adaptability and robustness. The research results contribute to 

structural systems design and enhance design reliability. Because the proposed estimator uses a 

recursive calculation process, the dynamic input wind load can be estimated in real-time and used 

to exclude disturbances. This research may also provide important references for structural design 

or engineering applications. It can further be used as the basis of structural systems to improve 

seismic safety and early warning systems. In the future it could be extended to building and 
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bridge disaster early warning systems. 

 

 

2. Mathematical model 
 

This study investigated non-linear effects when an unknown input load is applied 

to a tower structural system, as shown in Fig. 1. The unknown input wind load can be inverse 

estimated in real-time through the dynamic response of the measurement system. An 

intelligent adaptive fuzzy weighted extended inverse input estimation algorithm was used to 

effectively estimate the unknown input wind load of a nonlinear structural system.  The tower 

structure is considered to be a non-linear lump-mass structural system with single degree of 

freedom (Ma and Ho 2004) 

 ( ) ( ( ), ( )) ( )rMY t F Y t Y t F t                       (1) 

where M is the effective mass. ( )Y t  represents the displacement. ( )Y t  
is the velocity. ( )Y t  

is the acceleration. ( )rF t  is the restoring force. ( )F t  is the input wind load. For linear systems 

the restoring force can be expressed as a higher power function of the displacement and velocity, 

the viscous damping force and spring force are proportional to the speed and displacement (Masri 

and Caughey 1999). 

 

 

M=2000Kg F(t)

( , )C Y Y

( , )K Y Y

 

Fig. 1 Model of the tower structural system 

 

 

Assuming the relationship between the restoring force parameters, displacement and velocity 

can be expressed using the nonlinear variable damper model, that is, the restoring force magnitude 

can be expressed as an approximate one square and cubic function of the displacement and 

velocity (Osinski 1998) 

3 3
1 2 1 2( ) ( ) ( ) ( )rF k Y t k Y t c Y t c Y t                      (2) 
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where 
1k , 

2k , 
1c  and 

2c  are constant. The movement Eq. (1) can be rewritten as follows 

 3 3
1 2 1 2( ) ( ) ( ) ( ) ( ) ( )mY t k Y t k Y t c Y t c Y t F t                     

 (3)
 

The input estimation algorithm is a calculation method using the state space. First let 

( ) ( ) ( )
T

X t Y t Y t    , then Eq. (3) can be rewritten as follows 

1 2X X  

3 31 2 1 2
2 2 2 1 1

( ) c c k kF t
X X X X X

M M M M M
      

The movement equation can be expressed as a non-liner state equation 

( ) ( , )X t f X F                              (4) 

The above movement equation is converted to state space. Linearization and discretization for 

the continuous-time state equation and measurement equation, estimates the unknown input wind 

load using an extended inverse input estimation algorithm with intelligent adaptive fuzzy weight.  

 

 

3. Extended Kalman filter  
 

The basic extended Kalman filter concept was proposed by Schmidt. It is an extension of the 

Kalman filter applied to nonlinear dynamic systems (Mendel 1995). Simply said, linearization for 

a nonlinear dynamic system model estimates the system using the Kalman filter. Extending the 

Kalman filter is also a robust modeling approach resistant to white noise interference. This method 

has been widely used in various science and engineering fields (Hiroshi et al. 2002). 

In order to coordinate computing the state space method the above movement equation can be 

converted to the state-space model using ( ) ( )
T

X Y t Y t    . The continuous-time state equation 

and structural system measurement equation can be formulated as follows 

( ) ( , )X t f X F                              (5) 

( ) ( ) ( )Z t HX t h X                             (6) 

Taking the structural system processing noise into consideration, Linearization and 

discretization for the continuous-time state Eq. (5), the discrete-time statistic model of the state 

equation is shown below 

( 1) ( ) ( ( ) ( ))X k X k F k w k                          (7) 

where 

 1 2( ) ( ) ( ) ( )
T

nX k X k X k X k  

* *( ( ), ( ))
,

f X K F k
I t

X
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* *( ( ), ( ))
,

f X K F k
t

F


  


 

* * 0
( ( ), ( ))

1
f X K F k

F
M

 
  

 
  

 

 1 2( ) ( ) ( ) ( ) ,
T

nw k w k w k w k  

 1 2( ) ( ) ( ) ( )
T

nF k F k F k F k  

( )X k  is the state vector.   is the state transition matrix.  is the input matrix. t  is the 

sampling interval. ( )w k  is the processing error vector, which is assumed as Gaussian white 

noise.  

Note that  ( ) ( )T
ijE w k w j Q . Q is the discrete-time processing noise covariance matrix. 

ij  is the Kronecker delta function. * *( ), ( )X k F k  is the nominal state, calculated by the 

extended Kalman filter prediction equations. As a result the discrete-time statistic model of the 

measurement vector can be presented below 

( 1) ( 1) ( 1)Z k HX k v k    
                        (8) 

where 

* *( ( ), ( ))
,

h X k F k
H t

X


 


 

 1 2( ) ( ) ( ) ( ) ,
T

nZ k Z k Z k Z k  

 1 2( ) ( ) ( ) ( ) ,
T

nv k v k v k v k  

( )Z k  is the observation vector. ( )v k  represents the measurement noise vector and is assumed 

to be Gaussian white noise with zero mean and the variance  ( ) ( )T
ijE v k v j R . R is the 

discrete-time measurement noise covariance matrix. H is the measurement matrix. After deriving 

the linearized dynamic nonlinear structural system equations the Kalman filter calculation rule can 

be used to estimate the state. It can achieve the purpose of extending the Kalman filter. The bias 

innovation is produced using the estimation and measurement values. The magnitude of the 

unknown input wind load can be estimated using the recursive least squares method. 
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4. Intelligent fuzzy weighting input estimation method 
 

According to the linearization and discretization for the state and measurement equations, the 

magnitude of the unknown input wind load can be estimated using the system response 

measurement value using the input estimation theory. For nonlinear structural systems the input 

estimation method consists of two parts; the first is the extended Kalman filter without inputs and 

the second is the on-line intelligent fuzzy weighting least square algorithm. The extended Kalman 

filter equations without inputs are as follows (Ma and Ho 2004) 

( 1)
( / 1) ( 1/ 1) ( ( 1/ 1), 1)

k T

t k T
X k k X k k f X k k k dt



  
                  (9) 

( (( 1/ 1), 1)f X k k k
I T

X

   
   


                       (10) 

( (( 1/ 1), 1)f X k k k
T

F

   
  


                          (11) 

( (( 1/ 1), 1)h X k k k
H T

X

   
 


                          (12) 

( / 1) ( 1/ 1) T TP k k P k k Q                             (13) 

( ) ( ) ( 1/ 1)Z k Z k H X k k                              (14) 

( ) ( / 1) TS k HP k k H R                              (15) 

1( ) ( / 1) ( )T

aK k P k k H S k                           (16) 

( / ) [ ( ) ] ( / 1)aP k k I K k H P k k                           (17) 

( / ) ( / 1) ( ) ( )aX k k X k k K k Z k                          (18) 

The on-line intelligent fuzzy weighting least square algorithms are as follows (Ma and Ho 

2004) 

( ) [ ( 1) ]s sB k H M k I                               (19) 

( ) [ ( ) ][ ( 1) ]s a sM k I K k H M k I                           (20) 

1
1 1( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )T T

b b s s b sK k k P k B k k B k P k B k S k 


              (21) 

1( ) ( )[ ( ) ( )] ( 1)b b s bP k k I K k B k P k                      (22) 

 

( ) ( 1) ( ) ( ) ( ) ( 1)bF k F k K k Z k B k F k
   

     
 

               (23) 

where ( )S k  is the residual covariance. ( )Z k  is the bias innovation produced by the 

measurement noise and input disturbance. ( )bK k  is the correction gain. In addition, ( )sB k  and 
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( )sM k are both the sensitivity matrices. ( )bP k is the error covariance of the input estimation 

process. ˆ ( )F k  is the estimated unknown inputs.  is the weighting factor. The weighting factor in 

this search is proposed based on the fuzzy logic inference system. 
The basic fuzzy logic system configuration considered in this paper is illustrated here. The 

fuzzy logic system includes four basic components; the fuzzy rule base, fuzzy inference engine, 

fuzzifier and defuzzifier. The fuzzy logic system input value,  k , may be chosen in the interval, 

 0,1 . The Pythagorean theorem with the transverse axle (time, t) and the vertical axle (residual of 

predictor, Z ) can be used to solve the hypotenuse length. In other words, the hypotenuse length is 

the variation rate in the residual in the sampling interval. The dimensionless input variable is 

defined as follows 

 
22

( )

( )

( )

( )
f

Z k

Z k

Z k t

Z k t

k



   
  

   





                         (24) 

where ( ) ( ) ( 1)Z k Z k Z k    . t  is the sampling interval, let 1ft  . The proposed intelligent 

fuzzy weighting factor uses the input variable  k  to self-adjust the  k  factor in the 

recursive least square estimator. Therefore, the fuzzy logic system consists of one input and one 

output variable. The input value,  k , may be chosen in the interval,  0,1 , and the output value, 

 k , may also be in the interval,  0,1 . The fuzzy sets for  k  and  k  are labeled in EP 

(extremely large positive), VP (very large positive), LP (large positive), MP (medium positive), SP 

(small positive), VS (very small positive), and ZE (zero) linguistic terms. The specific membership 

is defined using the Gaussian functions shown in Fig. 2.  

 

Fig. 2 Membership functions of the fuzzy sets for  k  and  k  
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A fuzzy rule base is a collection of fuzzy IF-THEN rules: 

IF  k  is zero (ZE) THEN  k  is an extremely large positive (EP), 

IF  k  is a very small positive (VS) THEN  k  is a very large positive (VP), 

IF  k  is a small positive (SP) THEN  k  is a large positive (LP), 

IF  k  is a medium positive (MP) THEN  k  is a medium positive (MP), 

IF  k  is a large positive (LP) THEN  k  is a small positive (SP), 

IF  k  is a very large positive (VP) THEN  k  is a very small positive (VS), 

IF  k  is an extremely large positive (EP) THEN  k  is zero (ZE), 

where  k U   and  k V R    are the input and output of the fuzzy logic system, 

respectively. The fuzzier maps a crisp point  k U   into a fuzzy set A  in U . Therefore, the 

non-singleton fuzzifier can be expressed in (Wang 1994) 

  
  

 

2

2
exp

2

l
i

A
l
i

k x
k







 
 
 
 
 

                            (25) 

  A k  decreases from 1 as  k  moves away from l
ix .  

2
l
i  is a parameter 

characterizing the   A k  shape.  
The Mamdani maximum-minimum inference engine is used in this paper. The fuzzy 

implication max-min-operation rule is shown in (Wang 1994) 

           1 1max min , ,j j j
i i

c d
B j i A A B

k k k k        
 
 

            (26) 

where c is the fuzzy rule and d is the input variables dimension. 

The defuzzifier maps a fuzzy set B  in V  to a crisp point V  . The fuzzy logic system 

with the center of gravity is defined in (Wang 1994) 

  
  

* 1

1

( )

n l l
Bl

n l
Bl

y k
k

k

 


 









                           (27) 

n  is the number of outputs. ly  is the value of the l th output.   l
B k   represents the 

membership of  l k  in the fuzzy set B . Substituting  * k  of Eq. (27) in Eqs. (21) and (22) 

allows us to configure an adaptive fuzzy weighting function of the recursive least square 

estimator (RLSE). 

 

 

5. Results and discussion 
 

A nonlinear tower structural system example is simulated to verify the practicability and 

precision of the presented approach in estimating the unknown input wind load, as shown in Fig. 

1. Assuming a centralized structural system mass, m = 2000 kg. The restoring force is, such as Eq. 
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(2), where 
1 1 0.015c k  , 

2 2 0.0001c k  . The input wind load is modeled using a cycle sine 

type; therefore, Eq. (3) can be rewritten as follows  

3 32000 ( ) 0.015 ( ) 0.0001 ( ) 0.015 ( ) 0.0001 ( ) sinmY t Y t Y t Y t Y t A t           (28) 

where 500mA   and 10   denote the amplitude and frequency of the harmonic input wind 

load, respectively. The tower structure was assumed as a single degree of freedom lumped mass 

nonlinear structural system. Substituting dynamic response (displacement) into the input 

estimation method, a numerical simulation of the input wind load inverse estimation of the 

structural system can be presented. The process noise and measurement noise are considered first 

in the simulation process. The process noise covariance matrix, 2 2w n nQ Q I   , where 

610Q  .  

 

 

  

  

Fig. 3 Comparison of the estimation results using different sampling time 
 

 

The measurement noise covariance matrix, 2 2v n nR R I   , where 2 1010R    . The 

algorithm includes the extended Kalman filter (EKF) without inputs and the intelligent fuzzy 

weighted recursive least squares estimation (IFWRLSE). The simulation and estimation 
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parameters are as follows: The initial conditions are given as 4(0/ 0) 10P diag    
, ˆ (0) 0F   

and 8(0) 10bP  . The sensitivity matrix (0)M  is null. The weighting factor is an intelligent 

fuzzy weighting function. The estimation results are further compared by alternating between the 

constant and adaptive weighting factors. The estimation results produced by using different 

sampling intervals are shown in Fig. 3. The four chosen sets of sampling intervals are t =0.1, 

0.01, 0.001 and 0.0001sec. The estimation results are acceptable when the sampling time, 

t  0.001sec, such as in Figs. 3(b), 3(c) and 3(d). Fig. 3(b) shows that the tracking capability is 

enhanced when the t =0.01 sampling interval is adopted. However, the estimator exhibits poor 

convergence in the initial simulation step. The tracking capability is enhanced. Fig. 3(d) shows 

that the estimator can still work without divergence in the estimation process when the 

t =0.0001s sampling interval is adopted. However, the fluctuation becomes more severe. In 

order to take the estimation precision and calculation time of the estimator into account, the 

t =0.001s sampling interval is chosen to implement the simulation in this study. 

Fig. 4 shows the intelligent fuzzy weighted input estimator results with the process noise 

variance fixed at ( 610Q  ), the sampling interval, t =0.0001s and with different measurement 

error variances ( 1010R   and 910 ). This result shows that when R  is small the estimator 

transient performance will be better against the noise effect. On the other hand the fluctuation will 

become more severe when R  increases. The estimator transient performance will be poorer with 

more influence induced by noise. A smaller R  indicates that the measurement is more precise. 

The effort made to obtain a more precise measurement will be higher. 

 

 

  
Fig. 4 Comparison of the estimation results using different measurement errors 

 

 

Fig. 5 shows the estimation results when adopting different weighting factors with the process 

noise variance fixed at ( 610Q  ), the sampling interval, t =0.0001s and with measurement 

error variances ( 1010R  ). An intelligent fuzzy weighted and adaptive weighting factor, despite 

leading to a better transient performance and tracking ability, makes the estimator subject to 

fluctuations due to unwanted system noise. On the other hand the estimator is less sensitive to 

disturbances with a constant value 0.95   and 0.75, but has relatively poorer transient 
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performance and overall tracking capability. The intelligent fuzzy weighted input estimator and 

adaptive weighting factor estimator have better target tracking capability and noise reduction 

effectiveness after all. 

 

 

 

 

Fig. 5 Comparison of the estimation results using different weighting factors  

 

 

To further illustrate the accuracy and robustness of the proposed estimator, increasing the 

input frequency was considered to explore the simulation estimation results. Fig. 6 shows the 

estimation results with process noise variance fixed at ( 610Q  ), measurement error variances 

( 1010R  ) and the sampling interval, t =0.001s. When the wind input frequency was changed 

to ( ) 500 sin(20 ) ( )F t t N  , the input frequency conditions increased, allowing the estimator to 

inverse estimate the unknown input effectively with acceptable estimation results. Under the same 

simulation conditions the wind input frequency was increased to ( ) 500 sin(30 ) ( )F t t N  , 

achieving good estimation results as Fig. 7. 
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Fig. 6 The estimation result using the input frequency, ( ) 500 sin(20 ) ( )F t t N   

  

 

 
Fig. 7 The estimation result using the input frequency, ( ) 500 sin(30 ) ( )F t t N    

 

 

In the practical processing environment, the loads, such as water, wind, and the earthquake 

loads, to the structure system are mostly irregular or random. Therefore, to explore the random 

load estimation is absolutely necessary. The mathematical formula of the random wind load 

inputs applied to the tower structure is shown as ( ) 200 ( )F t random N  . By applying the 

active reaction which contains noise to the input estimation algorithm, the estimation result of the 

random load inputs can be determined as in Fig. 8. The figure shows the comparison between the 

true load values and the estimates on a tower structure. Fig. 8(b) shows the local enlarged 

estimation results. The tracking capability of the estimator is weak to peak value of the load 

inputs. 

Overall, the input estimation method verification process proposed in this research considers 

both the effects caused by the modeling noise and the measurement noise. The above simulation 

results demonstrate that the proposed method performs better than other algorithms. The overall 

462



 

 

 

 

 

 

Nonlinear structural system wind load input estimation using the extended inverse method 

 

estimation performance is just fine. In the course of estimating the random load inputs, the 

tracking capability of the estimator is getting weak due to the severe variation of the wind load 

inputs, and the time delay is caused. 

 

 

Fig. 8 The estimation result using the random inputs, ( ) 200 ( )F t random N   

 

 

6. Conclusions 
 

This paper presented an intelligent fuzzy weighted input estimation method applied to 

estimate the unknown input wind load on a tower nonlinear structural system. The method 

combined the Extended Kalman Filter with the intelligent fuzzy weighted least square algorithm 

to estimate the input wind load. The simulation cases demonstrated the feasibility and practicality 

of the proposed method. The modeling and measurement noise and different input frequency 

were considered in the estimation process. The proposed method was proven effective in 

estimating the unknown input. The proposed method was further compared by alternating 

between the adaptive weighting and constant factors to demonstrate its excellent performance. 

This method is very simple and can be applied to two and three-dimensional structural systems 

and optimal control problems. 
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