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Abstract.    This paper presents applications of proper orthogonal decomposition in both the time and 
frequency domains based on both cross spectral matrix and covariance matrix branches to analyze 
multi-variate unsteady pressure fields on prisms and to study spanwise and chordwise pressure distribution. 
Furthermore, modification of proper orthogonal decomposition is applied to a rectangular spanwise 
coherence matrix in order to investigate the spanwise correlation and coherence of the unsteady pressure 
fields. The unsteady pressure fields have been directly measured in wind tunnel tests on some typical prisms 
with slenderness ratios B/D=1, B/D=1 with a splitter plate in the wake, and B/D=5. Significance and 
contribution of the first covariance mode associated with the first principal coordinates as well as those of 
the first spectral eigenvalue and associated spectral mode are clarified by synthesis of the unsteady pressure 
fields and identification of intrinsic events inside the unsteady pressure fields. Spanwise coherence of the 
unsteady pressure fields has been mapped the first time ever for better understanding of their intrinsic 
characteristics. 
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1. Introduction 
 

Aerodynamic phenomena on a structure immersed in atmospheric turbulent flows are generated 
by a spatial distribution and a correlation of unsteady pressure fields on a surface of structural 
section. In particular, the spatial distribution and correlation are key issues for estimating 
turbulence-induced buffeting forces and buffeting responses of the structure in the turbulent flows. 
The unsteady pressure field is generally considered as a spatially-correlated multi-variate random 
Gaussian one. For typical cases of prisms and bridge deck sections, understanding of chordwise 
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distribution and spanwise correlation of the unsteady pressure field makes it possible to reveal and 
interpret mechanisms of excitations, and to identify the responses of aerodynamic phenomena on 
these structures. Due to the nature of a multi-variate random field, however, the unsteady pressure 
field is considered as a superposition from some causes and excitations of dominant physical 
phenomena. It is logical to decompose the unsteady pressure field by sums of independent partial 
pressure fields, which can be related to a particular mechanism of excitation and certain physical 
phenomena.  

Proper orthogonal decomposition (POD), also known as Karhunen-Loeve decomposition or 
principal component analysis (PCA), was developed by Loeve 1945 and Karhunen 1946 and was 
first applied to analysis of multi-variate turbulent fields by Lumley 1970, Berkooz et al. 1993. 
Originally, POD was a purely mathematical tool for linear transformation of spatially-correlated 
multi-variate random Gaussian fields into time-dependant uncorrelated uni-variate sub-processes 
(also called principal components or principal coordinates) and basic orthogonal vectors (space 
functions or POD modes) using eigenvalue decomposition or spectral decomposition. Pairs of 
principal coordinate and POD mode, especially the lowest-order pairs, can be thought of as 
revealing the internal structure, intrinsic event and physical interpretation of these random fields.  

This is because: (i) Pairs are independent and orthogonal and (ii) Low-order pairs are strongly 
contributive from fast-decaying spectral decomposition. Although POD originally involves 
eigenvalue decomposition of positive-definite real square matrices, in the broad sense it can deal 
with different types of matrices thanks to decomposition techniques, i.e., using Schur 
decomposition for complex square matrices or singular value decomposition for both real and 
complex rectangular matrices. Relationships between decomposition techniques and modification 
of POD can be referred elsewhere (e.g.., Liang et al. 2002, Solari et al. 2007). Due to its 
advantages, POD also has been widely used in many engineering fields such as analysis and 
synthesis, reduced-order modeling, simulation of multi-variate random fields, numerical analysis, 
system identification, stochastic response and so on (Liang et al. 2002). In the wind engineering, 
POD has been applied to several main topics such as: (i) Analysis and synthesis of the 
multi-variate random fields including turbulent fields, unsteady pressure fields and 
turbulence-induced force fields, (ii) Representation and simulation of the multi-variate random 
turbulent fields and (iii) Stochastic responses of structures (e.g., Solari et al. 2007, Carassale et al., 
2007). POD has been commonly branched into either covariance matrix-based or cross spectral 
matrix-based proper orthogonal decompositions, which depend on how to build up a basic matrix 
from either zero-time-lag covariance or cross spectral matrices of multi-variate random fields. 
However, it can be extended to rectangular matrices depending on the purpose of the study to deal 
with such data matrix, correlation matrix or coherence matrix of the multi-variate random fields.  

A lot of literatures have applied POD to analysis and synthesis of spatially-correlated 
multi-variate pressure fields on prisms and structures. However, most applications in the 
covariance POD branch use the covariance matrix of unsteady pressure fields due to its 
straightforward computation and interpretation. It is rarely used for unsteady pressure fields. Some 
authors have used the covariance POD to analyze experimental unsteady pressure fields and to 
determine the relation between the covariance POD modes and the physical phenomena on the 
models. Bienkiewicz et al. 1995, used the POD analysis of mean and fluctuating pressure fields 
around a low-rise building in turbulent flows. A linkage between the pattern of the pressure 
distribution and POD modes, especially the first two covariance POD modes, has been discussed 
and interpreted, in which the 1st mode was compatible with the pattern of the fluctuating pressure 
distribution, whereas the 2nd mode was similar to the mean pressure pattern. The effect of pressure 
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tap positions on the same measured pressure area (uniform and non-uniform arrangements) on the 
covariance POD modes was investigated by Jeong et al. 2000, by which the covariance POD mode 
observations were different in two cases. Kikuchi et al. 1997 applied an unsteady pressure field to 
tall buildings, and the fluctuating pressure field was reconstructed for only a few dominant POD 
modes, and was used to estimate aerodynamic forces and corresponding responses. Tamura et al. 
1999 indicated distortion and wrong interpretation of the POD modes due to the presence of mean 
pressure data in the analyzed pressure field. It is shown that POD is a powerful tool for revealing 
physical phenomena from experimental data. Correspondence between the covariance POD modes 
and the physical causes of the fluctuating pressure field has been observed in many cases.  

However, some others have argued that interpretation from the covariance POD modes is 
aprioristic and arbitrary based on previous knowledge of field behavior and response. Holmes et al. 
1997, showed that there were no consistent linkages between the physical phenomena and the 
POD mode thanks to a series of physical measurements and covariance POD analyses of the 
pressure fields on low-rise buildings. Some reasons for this misleading are: (i) POD relies on the 
linear transformation tool with constraint and sensitiveness to orthogonal conditions, (ii) 
Representation of the pressure field via the covariance matrix is not convincing and 
frequency-dependant factors occurring in physical systems cannot be updated, and (iii) Physical 
interaction is not always clearly decoupled by separate and independent events. It is also argued 
that the contribution and importance of the lowest-order POD modes might depend on many 
factors such as number of pressure taps, pressure arrangement, mean value presence, model 
geometry, complexities of turbulence and bluff body flows and so on. Accuracy of physical 
interpretation of the lowest-order POD modes accordingly reduces with decrease in the 
contribution of the lowest-order POD modes. Application of the spectral POD in the frequency 
domain to the unsteady pressure fields is none due to difficulty in computation and result 
interpretation, but solely De Grenet and Ricciardelli 2004, recently tried applying the spectral 
POD to the study of an unsteady pressure field on a square prism and a bridge deck.   

Spatial correlation of the pressure fields or buffeting forces can be expressed either by the 
correlation coefficient function in the time domain or by the coherence function in the frequency 
domain. For simplicity, however, the spatial distribution of the fluctuating velocity field (or 
turbulence fields) has been used to replace for the turbulence-induced pressures and forces. It is 
also assumed, moreover, that the spanwise coherence of the turbulence-induced forces is similar to 
that of the ongoing turbulence that was simplified as an exponential coherence formula used so far 
for predicting the buffeting response of a structure (Davenport 1963). Recent literatures, however, 
show that the coherence of turbulence-induced pressures and forces was larger than that of the 
ongoing turbulence (Larose 1996, Jakobsen 1997, Kimura et al. 1997, Matsumoto et al. 2003).  

They argued that the influence of a structure on ongoing turbulent flows must not be negligible, 
and interaction phenomena between them and the structure might be the cause of a modification of 
ongoing turbulent flows around the structure (one is mentioned as bluff body flow). Uncertainty of 
the coherence of turbulence-induced pressures and forces higher than that of turbulence can cause 
underestimation of the buffeting response of a structure. The mechanism of this higher coherence, 
coherent structures of turbulence and pressure as well as effect of the bluff body flow on coherence 
must be further clarified to reduce analytical risks. So far, the Fourier transform-based correlation 
function and the coherence one have been used to study the spanwise correlation and spanwise 
coherence of unsteady pressure fields. Spanwise correlations and coherences of turbulence and 
pressure have been presented by several authors (e.g., Kareem 1997). Covariance POD modes for 
studying the cross correlation of an unsteady pressure field was first used in Tamura et al. 1997.  
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Recently, POD-based and the wavelet transform-based tools have been applied to investigate 
spanwise correlation, spanwise coherence and coherent structures of turbulence and pressure fields 
(Kareem and Kijewski 2002, Le et al. 2009). The effects of spanwise separations, bluff body flow, 
and ongoing flow conditions on the coherence of turbulence and pressure, as well as intermittent 
distribution of the coherence and tempo-spectral correspondence between the coherence of 
turbulence and of pressure in the time-frequency plane have been investigated (Le et al. 2009). 
Spectral POD has been extended for mapping the coherence of unsteady pressure fields (Le et al. 
2011) in which the effects of spanwise separations and bluff body flow are apparently observed 
through these coherence maps.  

This paper presents applications of both covariance and spectral POD branches to experimental 
unsteady pressure fields on some typical prisms. Furthermore, POD is extended to investigate the 
spanwise coherence of these unsteady pressure fields. The importance of the lowest-order 
covariance POD modes and spectral POD modes are discussed and compared, and possible 
relationships between the POD modes and the physical phenomena relating to characteristics of 
the bluff body flows are classified for better understanding. Unsteady pressure fields have been 
experimentally measured on some typical prisms with slenderness ratios of B/D=1, B/D=1 with 
splitter plate and B/D=5 in a wind tunnel. 

 
 

2. Proper orthogonal decomposition 
 

2.1 Definition 
 

POD provides an optimum approximation of multi-variate random fields, comprising the 
unsteady pressure field. The main idea of POD is to obtain a set of orthogonal basic vectors that 
can expand the multi-variate random field into a sum of products of these basic orthogonal vectors 
(or modes) and uni-variate uncorrelated random processes. The unsteady pressure field is 
expressed as 

 
),()(),( tpptP υυυ +=                      (1) 

 
where ),( tP υ : unsteady pressure; )(υp : mean pressure; ),( tp υ : fluctuating pressure; υ : spatial 
variables (υ =x;y;z).  

 Fluctuating pressure field ),( tp υ  is usually represented as an N-variate Gaussian random 
process with zero mean containing sub-processes at N points in the field: 

{ }),(),...,,(),,(),( 21 tptptptp N υυυυ = .   
The fluctuating pressure field can be expressed as the following approximation 
     

∑≈Φ=
N

i
ii

T tatatp
~

)()()()(),( υφυυ
                 (2) 

 
where )(),( υΦta : principal coordinates and space function { })(),...,(),()( 21 tatatata N= , 

[ ])(),...,(),()( 21 υφυφυφυ N=Φ ; )(tai : i-th principal coordinate as uni-variate zero-mean random 
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processes 0)]([ =taE i ; )(υφi : i-th basic orthogonal vector ijj
T

i δυφυφ =)()( ( ijδ : Kronecker 

delta); N: total number of pairs of the principal coordinates and the orthogonal vectors; and N~ : 
truncated number of pairs of principal coordinate and orthogonal vector for approximation.  

 A mathematical expression of optimality expresses the space function )(υΦ that maximizes 
the projection of the random field ),( tp υ onto this space function, suitably normalized on the 
mean square basis (Lumley 1970) 

 
 

[ ]22 )(|))(),((| υυυ ΦΦ⊗tpMax
                (3) 

 
where ( )⊗ , . , . , . denote inner product, expectation, absolute and Euler squared norm operators, 
respectively..       

 
2.2. Covariance proper orthogonal decomposition 
 
The optimality in Eq.(3) can be expanded in the form of equality (Lumley 1970) 
 

)()(),,( υλυυυυ
υ

Φ=Φ∫ jj
L

jipp dtR
ji

                (4)   
  

where ),,( tR jipp ji
υυ : covariance value as a spatial correlation between two positions ji υυ , in the 

pressure field;λ : weighted coefficient; and υL : space of the pressure field.  
 Thus, the solution of the space function )(υΦ can be determined as the eigen problem of the 

covariance matrix of the fluctuating pressure field as follows 
 

)()(),( υυυ ΛΦ=ΦtRp                          (5) 
 

where ),( tRp υ : covariance matrix of fluctuating pressure field, which is defined 

as [ ]
NxNppp tRtR

ji
),(),( υυ = , where [ ]),(),(),( tptpEtR j

T
ipp ji

υυυ = ; ),( tpi υ , ),( tp j υ : 

fluctuating pressure sub-processes at positions iυ and jυ ; E: expectation operator;Λ : diagonal 

eigenvalue matrix ),...,,( 21 Ndiag λλλ=Λ ; and )(υΦ : covariance space function, containing 
orthogonal vectors (also called covariance POD modes). It is noted that because the covariance 
matrix of the pressure field is real symmetric square and positive-definite, the eigenvalues are 
positive real and the covariance POD modes are real.    

The multi-variate fluctuating pressure field can be approximated by using a limited number of 
low-order covariance POD modes 
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∑
=

≈Φ=
N

i
ii tatatp

~

1
)()()()(),( υφυυ

                 (6) 
  

In Eq. (6), the principal coordinates can be computed from measured data 
 

),()(),()()( 00
1 tptpta T υυυυ Φ=Φ= −

                 (7) 
 

where ),(0 tp υ : measured data or observations.  
In the covariance POD, some characteristics can be deducted from the eigen problem as 

follows 
 

IT =ΦΦ )()( υυ ; Λ=ΦΦ )(),()( υυυ tRp
T

               (8a) 
 

[ ] ijij
T

i tataE δλ=)()( ; [ ] iip tpE
i

λυσ == 22 ),( ;
∑
=

≈
N

k
jkikkpppp jiji

R
~

1
φφλσσ

    (8b) 
 

where I: identity matrix; and 
ipσ : standard deviation of pressure sub-process ),( tpi υ . 

The importance of pairs of eigenvalue and covariance POD mode to the pressure field can be 
quantitatively based on the concept of energy contribution. Accordingly, the contribution 
percentage of the i-th covariance POD mode on the total pressure field can be estimated based on 
either (i) proportion of eigenvalues or (ii) proportion of variance functions of the pressure field as 
follows  

 

∑
=

=
N

i
iii

E
1
λλφ

; 
22 )( piii

E συφλφ =                 (9) 
 
where 

i
Eφ : energy contribution as a percentage of the i-th covariance POD mode iφ ; iλ : i-th 

eigenvalue; and pσ : standard deviation of the pressure field. 
 Afterward, the covariance POD procedure is applied to analysis and synthesis of the 

experimental unsteady pressure fields on prisms.  
 
2.3. Spectral proper orthogonal decomposition 
 
Owing to the idea of the covariance POD and time domain-based formulations using the 

covariance matrix of the pressure field, the cross spectral matrix of the fluctuating pressure field is 
also exploited to formulate the spectral POD in the frequency domain. The cross spectral matrix of 
the pressure field can be defined as [ ]

NxNppp fSfS
ji

),(),( υυ = , [ ]),(ˆ),(ˆ),( fpfpEfS j
T

ipp ji
υυυ = , 

where ),(ˆ fpi υ , ),(ˆ fp j υ : Fourier transforms of the fluctuating pressure sub-processes ),( tpi υ , 

),( tp j υ at spatial positions ji υυ , ; and f: frequency variables.  
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 Spectral space function ),( fυΨ depending on the frequency can be determined based upon 
the eigen problem of the cross spectral matrix ),( fS p υ of the fluctuating pressure field ),( tp υ  

     
),()(),(),( ffffS p υυυ ΨΓ=Ψ                     (10) 

 
where ),(),( ff υΨΓ : spectral eigenvalues and spectral space function containing spectral 
eigenvectors (known also as spectral POD modes) orthogonalized at certain frequencies 

)](),...(),([)( 21 fffdiagf Nγγγ=Γ , )],(),...,,(),,([),( 21 ffff N υψυψυψυ =Ψ . Noting that the 
spectral eigenvalues are positive real or complex with a positive real part at each frequency and 
spectral POD modes are real or complex at certain frequencies due to the positive semi-definite 
symmetric square cross spectral matrix.  

 The fluctuating pressure field can be approximated using a limited number of low-order 
spectral POD modes as follows 

 

∑
=

≈Ψ=
N

i
ii ffaffafp

~

1
),()(ˆ),()(ˆ),(ˆ υψυυ
, NN <~

             (11a) 
T

i

N

i
ii

T
p fffffffS *

~

1

* ),()(),(),()(),(),( υψγυψυυυ ∑
=

≈ΨΓΨ=
, NN <~

    (11b) 
 
where ),(ˆ),,(ˆ fSfp p υυ : Fourier transform and power spectrum of reconstructed pressure 
field ),( tp υ ; *,T: complex conjugate and transpose operations; and )(ˆ fa : spectral principal 
coordinates as Fourier transforms of uncorrelated uni-variate pressure sub-processes, which can be 
computed from measured data 
 

∫
∞

∞−

− =Ψ= dtetpffpffa ftiT πυυψυυ 2
00

1 ),(),(),(ˆ),()(ˆ
          (12) 

 
where ),(ˆ0 fp υ : Fourier transform of measured data or observations ),(0 tp υ .  
 Some characteristics can be deducted from the spectral POD and the eigen problem as 

follows  
 

)(),(),(),(;),(),( ** fffSfIff p
TT Γ=ΨΨ=ΨΨ υυυυυ            (13) 

 
The energy contribution of the i-th spectral POD mode on total field energy can be determined 

as a proportion of spectral eigenvalues in a selected frequency range as follows  
 

∑ ∑∑
= ==

−−

=
N

i

f

k
ki

f

k
kif

offcutoffcut

i
ffE

1 11
)( )()( γγφ

                (14) 
 

523



 
 
 
 
 
 

Le Thai Hoa, Yukio Tamura, Masaru Matsumoto and Hiromichi Shirato 

where offcutf − : cut-off frequency in selected frequency range.   
Let’s also apply afore-mentioned spectral POD procedure to analysis and identification of the 

unsteady pressure fields on the experimental prisms.  
 
2.4. Coherence matrix-based proper orthogonal decomposition  
 
POD has used eigenvalue decomposition for square-formatted matrices like the covariance 

matrix and the cross spectral matrix of a multi-variate pressure field as above-mentioned. However, 
it can be extended to deal with rectangular-formatted matrices using singular value decomposition. 
POD aims here to decompose a spanwise coherence matrix of a multi-variate pressure field in 
order to extract intrinsic characteristics of the spanwise correlation in this pressure field. The 
spanwise coherence matrix can be defined as follows 

 
[ ]),(),( fyCOHfyCOH

ji ppp Δ=Δ
; 

( ) 2/1),(),(),(),( fySfySfySfyCOH
jijiji pppppp ΔΔΔ=Δ

        (15) 
 
where ),( fyCOH p Δ : N-by-M spanwise coherence matrix; yΔ : spanwise separation; ),( fyS

ip Δ , 

),( fyS
jp Δ , ),( fyS

ji pp Δ : auto power spectra of ),( typi , ),( tyyp j Δ+ and cross power spectrum 

between ),( typi and ),( tyyp j Δ+ ; N, and M: numbers of investigated chordwise positions and of 
spanwise separations. It is noted that the spanwise coherence matrix is a frequency-dependant 
positive-definite rectangular one, in which their values vary between 0 and 1 at any frequency.   

 Space functions can be determined based on the singular value decomposition of the 
spanwise coherence matrix of the fluctuating pressure fields 

     
),()(),(),( 21 fyffyfyCOH p ΔΩΕ=ΔΩΔ               (16) 

 
where )( fΕ : coherence singular value matrix NxMK fffdiag )](),...(),([ 21 εεε=Ε ; and 

NxNMxM fyfy ),(,),( 21 ΔΩΔΩ : coherence space functions containing frequency-dependant singular 
vectors (or coherence POD modes) orthogonalized at each frequency. Noting that the coherence 
singular values are positive real, the coherence shape functions are also positive-definite real 
square matrices.  

 The spanwise coherence matrix of the fluctuating pressure field can be approximated using a 
limited number of low-order coherence POD modes 

 
T

i

N

i
ii

T
p fyffyfyffyfyCOH *

1

~

1
2

*
12 ),()(),(),()(),(),( ΔΔ≈ΔΩΕΔΩ=Δ ∑

=

ωεω
, NN <~

 (17) 
 

The importance of the coherence POD modes can be evaluated using a similar concept of 
energy contribution. The energy contribution of the i-th coherence mode on total field energy can 
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be determined by Eq.(14). Because of their contributive energy proportions, the lowest coherence 
POD modes can be used to investigate the spanwise coherence of the unsteady pressure field. 

 
 

 

 

(a) B/D=1              (b) B/D=1 with Splitter Plate           (c) B/D=5 

Fig. 1 Experimental models and pressure tape arrangement 
 
 

3. Unsteady pressure measurements on prisms 
 

Physical measurements of unsteady pressures have been carried out on three motionless models 
with typical slenderness ratios B/D=1, B/D=1 with splitter plate (S.P) in wake of the model and 
B/D=5 (B, D: width and height of models). Grid turbulent flows were generated in the wind 
tunnel.  

Two u-, w-turbulence components were measured by x-type hot-wire anemometers in spatial 
positions in wind tunnels without the models for three turbulent flow cases corresponding to 
turbulence intensities Iu=11.46%, Iw=11.23% (flow case 1), Iu=10.54%, Iw=9.28% (flow case 2) 
and Iu=9.52%, Iw=6.65% (flow case 3). Because this study focuses on the pressure field itself and 
symmetrical, montionless models are used, thus pressure taps were only arranged inside the 
models and on the lower surfaces of the models in chordwise and spanwise positions. There were 
10 chordwise pressure taps in models B/D=1 and 19 chordwise pressure taps in model B/D=5 (see 
Fig. 1). Moreover, the pressure taps were installed at various spanwise separations for 
investigating spanwise correlation and coherence, as well as convective flow. Unsteady pressures 
were simultaneously measured by a multi-channel pressure measurement system (ZOC23). All 
electric signals were filtered by 100 Hz low-pass filters before passing through an A/D converter at 
a sampling rate of 1000 Hz for 100 seconds. Selected sampling rate and duration of the measured 
pressures would be satisfactory for expected real and bin frequency resolutions in order to identify 
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and separate spectral components and physical events inside the unsteady pressures. Concretely 
real frequency resolution here can be analyzed and separated at 0.01 Hz.   

Bluff body flow was assumed around the models due to interaction between ongoing turbulent 
flow and a motionless model. Bluff body flow characterizes not only chordwise flow behaviors at 
leading edge, trailing edge, on surface and wake of the model such as formatting separated and 
reattached flows, separation bubble and vortex shedding, but also convective flow in the spanwise 
direction. It can be predicted from previous studies that model B/D=1 is favorable for formation of 
Karman vortex shedding at the wake, whereas model B/D=5 is typical for formatting separated 
and reattached flows on the surface and a separation bubble in the leading edge region as well. The 
splitter plate was added to model B/D=1 in order to suppress the effect of the Karman vortex in the 
wake.  

 
 

(a) Normalized mean pressure 

(b) Normalized fluctuating pressure 
 
Fig. 2 Normalized mean and fluctuating pressure distributions on chordwise positions for three flow 

cases 
 

 
4. Chordwise pressure distribution and bluff body flow pattern    
 

Fig. 2 shows the chordwise distribution of normalized mean pressures and of normalized 
fluctuating pressures on the three models in three turbulent flows. As can be seen, the fluctuating 
pressure is distributed uniformly on the surface of models B/D=1 whereas it is distributed 
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dominantly in the leading edge region of model B/D=5. The fluctuating pressures, furthermore, 
decrease with decrease in turbulence intensities.  

 
 

(a) B/D=1 

(b)B/D=1 with S.P 

(c) B/D=5 

Fig. 3 Power spectra of fluctuating pressures in chordwise positions for three flow cases 
 
     
The power spectra of fluctuating pressures at some chordwise positions for three models and 

three mean wind velocities are shown in Fig. 3. For model B/D=1, peak frequencies are observed 
at 4.15 Hz, 8.79 Hz and 12.94 Hz for the three turbulent flows. It is explained that a Karman 
vortex formed and shed at the wake of the model. Shedding frequency depends on the Strouhal 
number (St) of the square prism. Moreover, the Strouhal number can be determined as St=0.1285.  
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(a) B/D=1 
 

(b) B/D=1 with S.P 
 

(c) B/D=5 
 

(d) w-turbulence                  (e) u-turbulence 

Fig. 4 Effect of spanwise separation on spanwise coherence of pressure and turbulence (flow case 1) 
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For B/D=1 with a splitter plate, no peak frequency is observed. This also means that no Karman 
vortex occurred and the splitter plate suppressed the Karman vortex. Spectral peaks are also 
observed at frequencies 1.22 Hz and 2.44 Hz; at 2.44 Hz, 4.88 Hz, 7.32 Hz; at 3.42 Hz and 6.84 
Hz in the three flow cases. It is predicted that the bluff body flow is separated and reattached on 
the model surface. Reattachment points for the bluff body flow are determined roughly at positions 
6, 7, and 8 with respect to an increase in mean wind velocities. It is assumed that the observed 
spectral peaks are induced by rolled-up vortices shed at the reattachment points toward the trailing 
edge. This agrees with findings presented by Hiller and Cherry, 1981, in which empirical formulae 
were proposed to estimate frequency of rolled-up vortices shedding at the reattachment point 
depending on mean velocity and length of separation bubble. 

 
 

5. Spanwise pressure coherence   
 

Spanwise coherence of the unsteady pressure fields on the three prisms has been investigated 
with effects of spanwise separations, chordwise pressure positions and Karman vortex. Fig. 4 
shows the effect of spanwise separations ( mmy 225,125,75,25=Δ ) on the coherences of pressure 
and u-, w-turbulences for the three prisms and in the frequency band 0÷100 Hz (for only flow case 
1 discussed here). Spanwise coherence reduces considerably with an increase in the spanwise 
separation and observed frequency. Coherences of pressures and turbulences are significant at 
close separations and in low-frequency bands. The pressure coherence shows sudden rises at 
distant separations and at certain frequencies. This might be explained by physical events 
occurring on the prism surface, such as Karman vortex shedding in the wake and rolled-up vortex 
shedding at the reattachment point. Fig. 5 shows the pressure coherences at chordwise positions 1, 
3, 5, 7, 9 (models B/D=1 without and with S.P) and positions 1, 4, 8, 19 (model B/D=5) and at 
spanwise separations 25=Δy and 75 mm. As shown, the spanwise coherence depends on the 
chordwise pressure positions. This is assumed to be due to behavior of the bluff body flow in the 
chordwise direction. It can be seen from Figure 5 that the pressure coherences on models B/D=1 
seem to be similar, except at the vortex shedding frequencies, whereas a difference in pressure 
coherence on model B/D=5 is observed. For model B/D=5, the pressure coherence at position 1 (at 
the leading edge) seems to be large for close separation yΔ =25 mm and small for distant 
separations yΔ =75,125 mm; large for all separations at position 4 (in the separation bubble); 
small for all separations at position 8 (at the attachment point); and small for close separation 

yΔ =25 mm and strong for distant separations yΔ =75 mm at position 19 (at the trailing edge) (see 
Fig. 5(c)). Therefore, it might be assumed that the pressure coherence is relatively high in the 
separation bubble region, and to be relatively small in the reattachment region. The effect of 
pressure positions and bluff body flow must be involved in the higher mechanism of pressure 
coherence. Fig. 6 compares the pressure coherences at two referred pressure positions 3 and 7, on 
the three prisms and that of u-, w-turbulences. Obviously, the pressure coherences are larger than 
the turbulence coherences at the same separations. Moreover, the pressure coherences on the three 
models decrease for models B/D=1 and B/D=1 with S.P to B/D=5. Clearly, the pressure coherence 
in the presence of the Karman vortex is larger than that without the Karman vortex. In other words, 
the Karman vortex also enhances the spanwise convection of the bluff body flow. It can be 
generalized that the pressure coherence decreases with increase in the spanwise separation, 
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frequency, slenderness ratio and modified geometrical parameters such as the splitter plate in the 
flow wake, cutting-sharp corners at the trailing edge and so on. 

 
 
 

(a) B/D=1 
 

(b) B/D=1 S.P 
 

(c) B/D=5 

Fig. 5 Effect of chordwise pressure position on spanwise coherence (flow case 1) 
 

6. Analysis and synthesis of unsteady pressure fields 
 

6.1 Analysis and synthesis on covariance proper orthogonal decomposition 
 
Covariance eigenvalues and covariance POD modes have been determined from the eigenvalue 

decomposition of the covariance matrices of chordwise fluctuating pressure fields on the three 
prisms. Fig. 7 shows the first four covariance POD modes along chordwise positions for flow case 
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1 (two other flow cases not being interpreted here for a sake of brevity). It is observed that the first 
covariance POD modes of all three prisms look like the fluctuating pressure distributions in the 
chordwise direction.  

 
 

(a) B/D=1                 (b) B/D=1 with S.P            (c) B/D=5 
 

Fig. 7 First four covariance modes (flow case 1) 
 

 
Table 1 Energy contribution of covariance POD modes (unit: %) 

Mode  B/D=1  B/D=1 with S.P  B/D=5  
 3 m/s 6 m/s 9 m/s 3 m/s 6 m/s 9 m/s 3 m/s 6 m/s 9 m/s 
1 76.92 77.46 75.36 65.29 62.79 63.30 43.77 44.86 65.9 
2 13.27 13.25 14.41 20.97 22.61 22.08 22.02 23.14 13.29 
3 4.69 4.23 4.62 6.14 6.29 6.10 15.18 15.14 9.48 
4 2.87 2.86 3.17 4.04 4.32 4.41 5.98 5.68 3.4 
5 1.27 1.32 1.45 1.99 2.28 2.45 4.76 4.11 2.79 

 
 The energy contribution of the lowest five modes is given in Table 1, and is estimated from Eq. 

(9). The first covariance POD mode contributes dominantly to all pressure fields. The first modes 
contribute 76.92%, 65.29%, and 43.77% to the total field energies corresponding to models B/D=1, 
B/D=1 with S.P and B/D=5, respectively. If the first two covariance POD modes are taken in 
combination, the cumulative energies of these modes holds up to 90.19%, 86.26%, and 65.79% of 
their field energies. In other words, the first covariance POD modes contribute dominantly, and the 
combined first two modes contribute almost all the pressure field energy. It is also noted that the 
first covariance POD mode for model B/D=5 contributes much lower energy in comparison with 
models B/D=1. It is assumed that the complexity of the bluff body flow on model B/D=5 reduces 
the role of the first covariance POD mode.   

 Uncorrelated principal coordinates associated with the covariance POD modes have been 
determined from the measured data as the first four principal coordinates of the three models and 
their corresponding power spectra and are shown in Fig. 8. It is noteworthy that the first principal 
coordinates not only dominate in the power spectrum but also contain frequency characteristics of 
their pressure fields, whereas the other principal coordinates do not have these characteristic 
frequencies. Therefore, the first covariance POD modes and their associated principal coordinates 
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play an important role in identifying the unsteady pressure fields due to their dominant energy 
contribution and frequency containing physical events of these pressure fields.   

 Effects of basic and cumulative covariance POD modes on the synthesis of the pressure fields 
and the role of the first covariance POD modes on the field identification have also been 
investigated. Fig. 9 indicates the pressure reconstruction at referred position 5 using individual 
covariance POD modes (from the first to the fourth covariance POD modes) and cumulative 
covariance POD modes (using the first covariance POD mode and combined first two POD modes) 
with verification of the spectral contribution of the covariance POD modes to targeted original 
pressure. For a brevity, only position 5 and flow case 1 are presented here. As can be seen from Fig. 
9, the synthesis of the fluctuating pressures using the first covariance POD mode is similar to the 
original pressures. Reconstructed pressures containing the frequency peaks can be used to identify 
hidden events and physical phenomena of the original pressure fields. In comparison, 
reconstructed pressure portions using the second covariance POD mode, the third mode and the 
fourth mode show minor contributions to the original pressure. Moreover, these pressure portions 
do not contain frequency peaks in the targeted original pressure. Reconstructed pressure using the 
first covariance POD mode, moreover, seems to be in good agreement with the targeted original 
one in the low-frequency range between 0÷10Hz for models B/D=1, but there is a notable 
difference between the reconstructed pressure and the original one in the high-frequency range for 
models B/D=1 and all frequency ranges (except at the frequency peaks) for model B/D=5. It is 
assumed that the first covariance POD mode is enough for synthesis of the pressure fields at low 
frequencies for models B/D=1, but more cumulative POD modes might be needed for the 
reconstructed pressure at high frequencies. For model B/D=5, moreover, the first covariance POD 
mode can be used to identify the pressure field, but it is not enough to reconstruct the original 
pressure fields. Thus, more covariance POD modes are required for the reconstructed pressures 
due to the more complicate distribution of the pressure field. In Fig. 10, the reconstructed 
pressures using the first covariance POD modes and cumulative first two modes and their power 
spectra are presented. It can be seen that only the first covariance POD mode is enough to 
reconstruct the original pressure for models B/D=1, and the cumulative first two POD modes are 
enough for model B/D=5. 
 

6.2 Analysis and synthesis on spectral proper orthogonal decomposition 
 
Spectral eigenvalues and spectral POD modes have been obtained via eigenvalue 

decomposition of the cross spectral matrices of the fluctuating pressure fields on the three prisms. 
Fig. 10 shows the first five spectral eigenvalues in frequency band 0÷50Hz for the flow case 1. As 
can be seen, all first spectral eigenvalues obtained from the pressure fields of the three models are 
much more dominant than the others. In particular, the first spectral eigenvalues also contain all 
frequency peaks of the pressure fields, whereas the other eigenvalues do not contain these 
characteristic peaks.       

 The first three spectral POD modes of the chordwise fluctuating pressure fields of the three 
experimental models in the flow case 1 are shown in Fig. 11 for frequency band 0÷50Hz. 
Information of space and frequency can be observed in these spectral POD modes. However, a 
linkage between the spectral POD modes and the physical causes on the prisms is still not clear. 
More investigations should be required for the physical interpretation of experimental spectral 
POD modes. 
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(a)B/D=1              (b) B/D=1 with S.P                (c) B/D=5 

Fig. 10 First five spectral eigenvalues (flow case 1) 
 
 
Energy contributions of the spectral POD modes are given in Table 2. Similar to the covariance 

POD modes, the first spectral POD modes contain dominantly the field energies. The first spectral 
POD mode contributes 86.04%, 81.30%, and 74.77%, respectively for the three experimental 
models for flow case 1. Therefore, the first spectral POD modes dominate in the energy 
contribution for all three prisms. Moreover, the energy contributions of the first spectral POD 
modes are higher than those of the first covariance POD modes for all models including model 
B/D=5. This suggests that the first spectral POD mode may provide a better solution than the first 
covariance POD mode because of its higher energy contribution. The first two spectral POD 
modes hold almost 94.12%, 91.45% and 87.45% of the pressure field energies for the three models. 
In other words, the first two spectral POD modes contribute almost all the pressure field energies 
in these investigated cases. 

 
 

Table 2 Energy contribution of spectral POD modes (unit: %) 

Mode   B/D=1   B/D=1 with S.P   B/D=5   
 3 m/s 6 m/s 9 m/s 3 m/s 6 m/s 9 m/s 3 m/s 6 m/s 9 m/s 

1 86.04 85.84 83.02 81.30 77.48 77.88 74.77 73.59 83.93 
2 8.08 8.08 9.92 10.15 12.36 11.98 12.68 14.03 7.69 
3 3.28 3.20 3.68 4.44 5.14 5.00 5.68 5.56 3.57 
4 1.40 1.62 1.94 2.05 2.63 2.70 2.75 2.86 1.86 
5 0.64 0.72 0.81 1.09 1.28 1.34 1.44 1.45 1.06 

 
 
 Fig. 12 shows the effects of individual and cumulative spectral POD modes on the synthesis 

of auto power spectra of the fluctuating pressures. Here, only pressure at position 5 is used for 
discussion. As can be seen in Figure 12, the first spectral POD mode exhibits sufficient accuracy to 
reconstruct and identify the original pressure in all three experimental models and all frequency 
ranges. There are also good agreements between the power spectra of the original pressures and 
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those of the reconstructed pressures for the first spectral POD mode and the first two spectral POD 
modes. 

 
 

(a) B/D=1 

(b) B/D=1 with S.P 

(c) B/D=5 

Fig. 11 First three spectral modes 
 
 

7. Mapping of spanwise pressure coherence 
 

Spanwise coherence matrices of fluctuating pressure fields on the three models B/D=1, B/D=1 
with S.P and B/D=5 for the flow case 1 have been constructed before singular value 
decomposition to determine the coherence singular values and the coherence POD modes. The 
energy contribution of the first coherence POD modes of the three models can be estimated as 
56%, 55%, and 50%, respectively, in the computed frequency range 0÷100Hz based on their 
associated singular values. If the low-frequency range of 0÷10Hz is taken into account, the first 
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coherence POD modes of models B/D=1, B/D=1 with S.P and B/D=5 contribute up to 89%, 82% 
and 73% of the total energy of the three pressure fields.  

 
 

   

   
(a) B/D=1 (b) B/D=1 with S.P (c) B/D=5 

 
Fig. 12 Effects of basic and cumulative spectral modes on auto spectral pressure synthesis at referred 

position 5 (flow case 1) 
 

 
Fig. 13 shows the first coherence POD modes of the pressure fields for the three models B/D=1, 

B/D=1 with S.P and B/D=5 with respect to the effect of spanwise separation and of chordwise 
pressure position (or the bluff body flows). Apparently, the pressure coherence considerately 
reduces with increase in the spanwise separation and the observed frequency. Moreover, the effects 
of bluff body flow and chordwise position can also be observed in Fig. 13. Interestingly, highly 
spanwise coherence and strongly convective bluff body flow might occur locally in the leading 
edge region and in the separation bubble of model B/D=5, whereas the spanwise coherence seems 
to uniformly distributed over all chordwise positions of the models B/D=1 and B/D=1 with S.P. 
These findings are similar to the results for the spanwise coherence presented in the previous parts. 
However, the first coherence POD modes here are more meaningful because they contain a lot of 
information on the spanwise separation, observed frequencies and chordwise positions as well.  

Thus, they can be used to map intrinsic characteristics of the spanwise coherence of unsteady 
pressure fields. 

 
 

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
1st to 2nd modes

10-1 100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency (Hz)

P
S

D

Position 5

target
1st mode
2nd mode
3rd mode
4th mode

537



 
 
 
 
 
 

Le Thai Hoa, Yukio Tamura, Masaru Matsumoto and Hiromichi Shirato 

  
(a)B/D=1 

  
(b) B/D=1with S.P 

  
(c) B/D=5 

Fig. 13 First two coherence POD modes for mapping pressure coherences (flow case 1) 
 

 
8. Conclusions 
 

Chordwise distribution and spanwise correlation of the unsteady pressure fields on some typical 
prisms have been investigated based on both the covariance and spectral proper orthogonal 
decompositions. Coherence maps of the spanwise pressure fields also have been built the first time 
ever using the spectral proper orthogonal decomposition.  

 Analysis and synthesis of the fluctuating chordwise pressures have been carried out. Moreover, 
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intrinsic characteristics of these pressure fields can be identified via low-order POD modes, 
eigenvalues and principal coordinates. The importance of the first POD mode and its associated 
quantities has been verified for analysis and synthesis of the unsteady pressure fields. The first 
covariance principal coordinate and the first spectral eigenvalue contain the characteristic 
frequency peaks of intrinsic physical events for the unsteady pressure fields. Due to it’s the 
dominant contribution to the pressure field energy, only the first POD mode is accurate enough to 
reconstruct the pressure field, especially in the low-frequency range. However, more POD modes 
are required to reconstruct the pressure field in the high-frequency range and for complicated 
pressure distributions. In comparison, the first spectral POD mode expresses the better solution 
than the first covariance POD mode for reconstructing the pressure fields.   

Linkage between the low-order POD modes and the intrinsic physical events has been validated 
in investigated cases due to the dominant energy contribution of the lowest-order POD modes and 
the simple behavior of the pressure fields on the typical prisms. Because the POD modes, 
eigenvalues and principal coordinates in both the covariance and spectral proper orthogonal 
decompositions can sensitively depend on the parameters of the experimental pressure fields such 
as the number of pressure positions, the pressure arrangements, the turbulent flows, the bluff body 
flow and so on, in such cases of the low-energy contribution, the linkage between the lowest-order 
POD modes and the physical events cannot be clearly observed. However, more investigations are 
required to clarify this argument. 

Spanwise coherence of the pressure fields has been clarified via the coherence POD mode. 
Obviously, the effects of spanwise separations, frequencies, and bluff body flows have been 
observed through the first coherence POD mode. Thus, this POD mode can be used to map the 
intrinsic characteristics for the spanwise coherence of the unsteady pressure fields. 
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