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Abstract.    This paper presents theoretical background for a semi-empirical, mathematical model of critical 
vortex excitation of slender structures of compact cross-sections. The model can be applied to slender 
tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many 
empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, 
Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of 
this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of 
the structure section. Extrapolation of the mathematical model for the application to real structures is also 
presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of 
Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the 
model with application to real structures is also proposed. 
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1. Introduction 
 

Many mathematical models in the field of vortex excitation have been elaborated. Recent 
improvements of existing models and new approaches were presented by Clobes et al. (2011), 
Verboom and van Koten (2010), Arunachalam (2011). Some aspects of vortex excitation for steel 
chimneys were also considered by Tranvik and Alpsten (2005), Homma et al. (2009), Repetto 
(2011) or Belver et al. (2012). From the point of view of vortex shedding physical description, the 
semi-empirical model presented in this paper is – in authors’ opinion – more exact in comparison 
to other models that can be found in the literature. The basis of the model is created for a simple 
case of steady wind flow and for a sectional model of the motionless structure (Flaga 1996, 1997). 
The fundamental model equations are extrapolated to the real situation when the case of unsteady 
wind flow always appears for strong winds, and when the analysed structure vibrates laterally. In 
order to represent the real situation it is necessary to consider random variations of relevant 
parameters in both space and time. The model can represent the behaviour of slender structures 
with circular cross-section with constant or varying diameter.  
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Various aspects and development of the model were presented in some papers by: Flaga and 
Lipecki (2005, 2010). 
 
 
2. Sectional model of the structure  
 

Mathematical equations were developed for a physical model of a system which was an 
undeformable cylinder supported elastically (including damping) on the ends (i.e., sectional model 
of the structure – comp. Fig. 1). The following indexes were introduced to clarify notations of next 
equations: y – lateral to the wind direction, o – motionless structure, v – vibrating structure, c – 
critical vortex excitation, e – effective (dimension), ∧ – non-dimensional value. Moreover, 
non-dimensional wind flow parameters, such as: Re – Reynolds number and αw – mean angle of 
wind attack are marked as W (i.e., (W) = (Re, αw)) and non-dimensional structure geometry 
parameters, such as: K – cross-section shape, kL – structure slenderness, kB – cross-section 
slenderness, ks – equivalent surface roughness are marked as G (i.e., (G)=(K, kL, kB, ks). 
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Fig. 1. Assumed physical model of the system 
 
 
2.1. Case of steady air onflow and motionless structure 
 
A. Subcritical (Re < (1.0-1.4)105) and transcritical (Re > (3.5-5.0)106) Re ranges. 
Periodical or quasi-periodical vortex shedding can appear in subcritical or transcritical 

Reynolds number ranges. Mathematical model of vortex excitation wy
o(t) (given in N/m) can be 

described by the relation 
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( ) ( ) ( )21 ˆsin 2
2

o o o o o
y y yw t V DC f t qDw tρ π ϕ= + =             (1) 

 
where: t –time, ρ – air density, V – wind speed, D – characteristic dimension of the cross-section 
(for circular cylinders – diameter), Cy

o – aerodynamic coefficient of the lift force caused by 
vortices, f o – Strouhal frequency of vortex shedding, ϕ o – phase shift angle, ( )ˆ o

yw t  – 
non-dimensional vortex excitation. In general, values of Cy

o and f o for motionless structure depend 
on W and G parameters. 
B. Critical ((1.0-1.4)105 < Re < (3.5-5.0)105) and supercritical ((3.5-5.0)105< Re < (3.5-5.0)106) Re 
ranges.  

Vortex shedding in Re regime is intermittent in nature. The mathematical model is very similar 
to the model in case of unsteady onflow (see 2.3). Frequency f o can be treated as frequency at the 
maximum of power spectral density function of vortex excitation.   

 
2.2. Case of steady air onflow and lateral vibrations of the structure 
 
A. Subcritical and transcritical Re ranges. 
The influence of lateral vibrations on vortex excitation can be neglected when the vibration 

amplitude level is less than 0.01D (Kwok and Melbourne 1980, Vickery and Basu 1983, Basu and 
Vickery 1983). When the amplitude exceeds that level, strong feedback between lateral vibrations 
and vortex excitation can appear. One of the major effects of such feedback is the synchronization 
of frequencies of vortex shedding and natural lateral vibrations of the structure (lock-in 
phenomenon). Kármán vortices are reinforced by the motion in the lock-in range, so, lateral force 
can increase significantly. On the basis of several experiments (e.g., Stansby 1976) it can be stated 
that the amplitude of lateral vibrations increases for wind speed V greater than 0.9Vc

o (Vc
o – critical 

wind speed for motionless cylinder), it achieves maximum for V in the range (1.2-1.3) Vc
o, and 

finally, disappears for V above 1.6Vc
o. The case of critical vortex excitation (in lock-in range) can 

be dangerous for the structure because it can develop resonant vibrations and will be described in 
more detail. The value of effective lateral dimension Dc

e of the vibrating cylinder is higher than 
characteristic dimension D for the motionless cylinder. Effective dimension could be connected 
with the width of the vortex street hc

v. It can be written 
 

( ) ˆ/ / 1 / 1v v
c c

e v o v v
c c c cD D h h A D A

η η
α α= = + = +                (2) 

 
where: hc

v and ho – width of the vortex street for vibrating and motionless cylinder respectively, 

ˆ,v v
c c

A A
η η

 – dimensional and non-dimensional vibration amplitude, αc
v – experimental parameter of 

the value in the range 0.7-1.54. The limits of αc
v can be derived from 

 
1. Sachs (1978) gives the relationship 

 

( )/ 2 / 1 2 /v v
c c

v o o o o
ch h h A h A h

η η
= + = +                 (3) 
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For subcritical range of Re it can be assumed that ho ≈ 1.3D, then 
 

( ) ˆ/ / 1 2 / 1.3 1 1.54 1.54v v
c c

e v o v
c c cD D h h A D A

η η
α= = + = + → =        (4) 

2. According to dimensional analysis the effective dimension ( )v
c

e
cD D A

η
≅ +  should be the 

characteristic dimension for vortices of one row, then it could be written 
 

( ) ˆ/ / 1 1.0 1.0e e
c c

e
cD D D A D A

η η
α= + = + → =           (5) 

 
3. Finally, on the basis of experiments conducted in subcritical range of Re (e.g., Griffin and 

Ramberg 1974) is 
 

ˆ/ / 1 0.7 0.7v
c

e v o v
c c cD D h h A

η
α= ≅ + → =             (6) 

 
As the first assumption it is reasonable to assume αv

c as equal to 1.0. 
Taking into consideration the effective dimension Dc

e, other value of critical wind speed for 
vibrating cylinder is obtained 

 

ˆ/ / 1 v
c

v o e v
c c c cV V D D A

η
α= = +                        (7) 

 
Mathematical model of critical vortex excitation at lock-in can be given by 
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and Cyc

v – aerodynamic coefficient for a vibrating cylinder that can be assumed as equal to 
appropriate coefficient for a motionless cylinder. 

For the analysed physical model of the system (sectional model), the amplitude of vibrations is 
described by 
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where: ωi = 2πfi, γ – coefficient of critical damping (γ = Δ/2π, Δ – logarithmic decrement of 
vibrations damping), m – mass per structural unit length. This is a non-linear equation for 
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determining ˆv
c

A
η

. The function 3
ˆˆ )1/( v

c
v
c

AA v
c ηη α+  has the extreme at value 0.148 / v

cα  for 

ˆ 0.5 /v
c

v
cA

η
α= . Then maxˆ 0.5 /v

c

v
cA A D

η
α< = . This means that in the assumed model of 

across-wind load the feedback between cylinder vibrations and vortex shedding is of self-limited 
character, which is confirmed by experimental investigation results.  

B. Critical and supercritical Re ranges.  
In this case the feedback between vortices and vibrations can also appear but in general it is 

much weaker. The frequency of synchronization should be related to the central frequency of the 
power spectral density function of vortex shedding. Amplitude-frequency characteristics of the 
random process change from a broad-band process to a narrow-band Gaussian process with 
extreme value for f = fi. 

 
2.3. Case of unsteady air onflow and motionless structure 
 
On the basis of numerous full-scale measurements and wind tunnel tests some general remarks 

concerning vortex excitation in turbulent onflow can be formulated: 
1. Across-wind action generated by vortices depends on Iv – intensity of turbulence, and Lv – 

scale of turbulence, and obviously other W and G parameters. 
2. Vortex street parameters are of random character and should be connected with such wind 

speed that allows considerations of spatial dimensions of the phenomenon. It could be the mean 
wind speed Vm(z,t), spatially averaged in the distance equal to the dimension D(z) in front of the 
structure and in the domain Δy(z) = χ(z)D(z) normally orientated with respect to the wind. 
Parameter χ(z) for circular cross-section is the number of order 3, and then χ(z)D(z) is the width of 
the disturbances in wind field caused by the structure (see Fig. 2). 

3. Strong fluctuations of the wind direction appear. In case of circular cylinders the across-wind 
action caused by fluctuations can be comparable with vortex excitation. Lack of separation 
between these various actions leads to significant diversity of results obtained in wind tunnel and 
full-scale measurements.  

Mathematical model of vortex excitation can be given by 
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where: z – axial coordinate of the cylinder, Cy

o(z,t) – time dependent aerodynamic coefficient of 
across-wind load caused by vortices 

( ) ( ) ( )
2

1 2

,
, ,mo o o

y y y

V z t
C z t C C z t

V
⎛ ⎞

= ⎜ ⎟
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,o of ϕ  – mean frequency averaged in time domain and phase shift angle averaged in space. 
Moreover, Cy

o(z,t) and of  depend on parameters W, Iv, Lv and G. Non-dimensional vortex 
excitation ( )ˆ ,o

yw z t  is a stochastic process of more or less narrow-band character. The power 
spectral density function of this process can be with good approximation given in the generalized 
form (similar to one proposed by Vickery and Clark 1972) 

 
2

ˆ

2
ˆ

( ) 1 1exp
o
y

o
y

o
w

o oo
w

fG f f f f
f BBσ π

⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦                (12) 
 

where: ˆ o
yw

σ  – standard deviation of vortex excitation, Bo – non-dimensional bandwidth parameter. 

Both parameters strongly depend on turbulence intensity Iv and Re (particularly in the case of 
circular cylinders). 
 
 

 

Fig. 2 The way of assuming Vm(z,t) 

 
 

2.4. Case of unsteady air onflow and vibrating structure 
 
In spite of the fact that vortex shedding is of random character it is controlled by more or less 

narrow-band random lateral vibrations of the cylinder. Taking into account the narrow-band 
character of lateral vibrations 

( ) ( ) ( )sin 2v
c

v v
c i ct A t f t

η
η π ϕ= +

                     (13) 
 

the effective lateral dimension can be expressed by 
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where: ( ) ( )ˆ,v v

c c
A t A t
η η

%  – time dependent amplitude and averaged in time domain amplitude of 

vibrations respectively, v
cη

σ  – standard deviation of the response ηc
v(t), ,α α%  – experimental 

parameters that depend on parameters W, Iv, Lv and G, and approximately: / 2α α=% . For exact 
definition of the vortex excitation distribution along the height (or span) of the structure, it is 
necessary to determine its space correlation function ˆ v

ycw
ρ  and length correlation scale ˆ v

ycw
L . 

Critical vortex excitation can be with good approximation described by the equation 
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In the above equations Cyc

v(z,t) – is the aerodynamic coefficient that depends on W, Iv, Lv and G, 
( )ˆ ,v

ycw z t∗  – is the narrow-band stochastic process of Gaussian character. The correlation of the 
process along structure height (or span) depends on W, Iv, Lv and G parameters, and moreover on 
amplitudes level. The power spectral density function of the process can be described by the 
relationship (comp. Vickery and Clark 1972) 
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where ˆ , ,v

yc

v v
c cw

B kσ ∗
∗ ∗  – experimental parameters that depend on W, Iv, Lv and G. The value of v

ck ∗  

should be less than 1.0 (its exact meaning is explained in chapter 3.2). A value of ˆ v
ycw

σ ∗  is similar 
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(slightly higher) to a respective value for motionless structure. A value of v
cB ∗  is lower than a 

respective value for motionless structure. 
 
 
 

(a)        (b)         (c) 

II a

II b

II b

II a

I

IIIIII III

II II

II

Fig. 3 Zones of vortex excitation along the height of the slender structure for various cross-sections: (a) 
strongly changeable diameter, (b) tapered diameter and (c) constant diameter 

 
 
 
3. Real structure 
 

3.1 Semi-deterministic description 
 
Several factors influence significantly the flow around real structure: 
1. Vortex excitation cannot appear in the zones of large flow disturbances caused by boundary 

zones of the structure (top and base) and significant changes in cross-section shape along the 
height or span. Sample zones of possible vortex excitations for different types of slender structures 
are presented in Fig. 3. Zones III and I denote disturbance zones at the top and base of the structure 
where vortex shedding cannot appear because of 3-D character of the flow around the free end and 
additional flow turbulence caused by ground surface roughness at the base. Zone IIb is a zone of 
large disturbances caused by considerable changes in the cross-section shape. In the zone IIb 

464



 
 
 
 
 
 

Vortex excitation model. Part I. mathematical description and numerical implementation 
 

vortex shedding cannot appear either. Zones IIa and II are the limited regions where vortex 
excitation is possible. 

2. Critical vortex excitation can appear only at the height (or span) of the structure where both 
profiles of mean wind speed and critical wind speed are close to each other. It is assumed that 
lock-in could happen in the range 0.9Vc(z) < Vm(z) < 1.3Vc(z) (comp. chapter 2.2). 

3. Amplitude of lateral vibrations is varying along the height (or span) of the structure 
according to the i-th mode shape Φi(z). 

Due to the fact that exact determination of the spatial distribution of vortex excitation can be 
difficult in engineering practice, it is proposed considering equivalent vortex excitation process. 
The equivalent process is time dependent but uniformly distributed along height (or span) of the 
structure. All experimental parameters describing equivalent process are devoted to the central 
point z0 of the domain ΔL. Finally, spatial distribution of the equivalent process is described by 3 
deterministic functions Θi(z) of zero-one character. 

Θ1(z) is the function of disturbances caused by boundary zones and cross-section variations. It 
is assumed that vortex excitation is possible in zones II and IIa. The dimensions of disturbance 
zones I and III are equal to the value of the local cross-section diameter D(z). Moreover, vortex 
shedding can appear at the distance equal to local D(z) from the zone IIb. Function Θ1(z) is equal 
to 1.0 in vortex excitation zones and 0 in other ranges of the structure. There are examples of the 
function Θ1(z) for different types of cantilever structures in Fig. 4. 

Θ2(z) is the function of accordance between wind speed profile and critical wind speed profile. 
On the basis of collected data it is assumed that in the range of profiles consistency: 0.9Vc(z) < 
Vm(z) < 1.3Vc(z) vortex excitation can appear. So, the function Θ2(z) is equal to 1.0 in this region, 
whereas in other ranges of the structures it is equal to 0. The way of assuming Θ2(z) is presented in 
Fig. 5. 

Θ3(z) is the function of the mode shape that defines the direction of the load caused by vortex 
excitation. Its value is equal to ±1.0 at the whole height (span) and changes the sign in the point 
where i-th mode shape Φi(z) changes its sign. Sample functions Θ3(z) for various kinds of 
supporting are presented in Fig. 6. 

The product of Θi(z) 
 

( ) ( ) ( ) ( )1 1 3i z z z zΘ Θ Θ Θ=∏                    (17) 
 
defines zone (or zones) L1 of the structure where vortex excitation can appear. 

The product function ∏Θi(z) is modified to the function Θ(z) taking into account the influence 
of vibration amplitude variations along the structure. Such modification should be carried out 
according to the following rules: (1) the area of the new, zero-one function Θ(z) of the new length 
L2 is equal to the area under the curve of the mode shape Φi(z) in the domain given by function 
∏Θi(z) of the length L1, (2) new domain of the length L2 of the function Θ(z) is referred to the 
maximum value of Φi(z) in this region (see Fig. 8). The function of the mode shape is normalized 
to 1.0 in the point of maximum deflection. 
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(a)                     (b)         
1.01.0

Fig. 4 Function Θ1(z) for different kinds of cross-sections: (a) constant or tapered and (b) strongly 
changeable 
 
 
 

(a)                              (b)                    

1.3Vc0.9Vc1.3Vc0.9Vc

1.0
VmVcVc Vm

 

Fig. 5 Function Θ2(z) for different kinds of cross-sections: (a) tapered and (b) constant 
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                           (a)                                  (b) 

1.0 1.01.0 1.0 1.0

 

Fig. 6 Function Θ3(z) in two cases of static schemes: (a) cantilevered structure, the 1st and the 2nd mode 
and (b) simple supported structure, the 2nd mode 

 
 

Correlation of real, 
critical vortex excitation

z

Γ( )z

L3

LW

LW

1.0

1.0

Correlation of equivalent
vortex excitation

z

 
Fig. 7 Deterministic function Γ(z) 
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0.9Vc

Θ1( )z Θ2( )z Θ3( )z

1.3Vc

Π i( )Θ z Φ1( )z Θ( )z Γ( )z Y( )zΓ( )zY( )z

0.9Vc

1.3Vc

Fig. 8 Procedure of assuming the zero-one function Y(z), and domain ΔL with its central point z0 for a 
cantilever structure 

 
 
Critical vortex excitation is a stochastic process both in space and time, so the space-time 

correlation of the process should be determined. In order to simplify the mathematical model for 
engineering use it can be assumed that vortex excitation is a stochastic process in time and has 
uniform distribution along the height (or span) of the structure in the domain defined by function 
Θ(z). It means that the process is fully correlated in vortex shedding domain. Taking that into 
account next deterministic, zero-one function Γ(z) is introduced. Function Γ(z) is connected with 
normalised space correlation function of the real, critical vortex excitation, and defines domain L3 
where the process is fully correlated. Such assumption allows to replace the real, critical vortex 
excitation with equivalent load of the simple rectangular distribution (Fig. 7). It can be assumed 
that the domain L3 of the function Γ(z) is equal to ˆ2 wL , where ŵL  is a non-dimensional 
correlation length scale.  

The final function Y(z) is the product of zero-one functions Θ(z) and Γ(z). Function Y(z) defines 
zone (zones) ΔL of vortex excitation and its central (characteristic) point z0. 

The whole deterministic procedure can be summarized in the following points: 1. 
Determination of Θi(z) and domain L1. 2. Calculation of Θ(z) and domain L2. 3. Determination of 
Γ(z) and domain L3. 4. Calculation of the final function Y(z) = Θ(z)Γ(z) and domain ΔL. The 
procedure is presented schematically for cantilever structure in Fig. 8. There are two possible cases 
of relation between functions Θ(z) and Γ(z): Θ(z)<Γ(z) and Θ(z)>Γ(z) in Fig. 8. 

 
3.2. Mathematical model of critical vortex excitation 
 
Equations of the mathematical model elaborated in chapter 2 were extrapolated to applications 

for real slender structures. All considerations are related to equivalent process in domain ΔL, and 
all experimental parameters are related to point z0. Critical vortex excitation for unsteady wind 
flow and laterally vibrating slender structure can be given with a good approximation by the 
following formula (indexes c – critical and v – vibrating structure are omitted in subsequent 
equations) 

 

0

3
ˆ ˆ( ) (1 ) ( ) ( )y c y z zw t q D w t Y zηα σ =⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ ⋅⎣ ⎦               (18) 

468



 
 
 
 
 
 

Vortex excitation model. Part I. mathematical description and numerical implementation 
 

 
where: z – co-ordinate (height, span); t – time; qc = 0.5ρVc

2 – pressure of critical wind speed Vc; 
D – characteristic cross-section dimension in point z0; α – parameter describing increase in 
effective cross-section diameter (experimental value); η̂σ – standard deviation of structure 
response under critical vortex excitation (given in non-dimensional displacements); 

( )3
ˆ1 ηα σ+ ⋅  – factor that takes into account increase in effective cross-section diameter of the 

laterally vibrating structure, so diameter D is amplified during vibrations; Y(z) – deterministic 
function that describes zone (or zones) along the height (or span) of the structure ΔL, where vortex 
excitation can appear; z0 – central point of the domain ΔL, ˆ ( )yw t  – non-dimensional vortex 
excitation described by formula 
 

( )
0

2
( , )ˆ ( , ) ( , ) sin 2m

y y i z z
c

V z tw z t C z t f t
V

π ϕ =

⎡ ⎤⎡ ⎤
⎢ ⎥= ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦         (19) 

 
The terms used in Eq. (19) are defined as follows: Vm(z,t) – mean wind speed, spatially 

averaged (comp. 2.3, Fig. 2), Cy(z,t) – aerodynamic coefficient that depends on W, Iv, Lv and G, fi – 
i-th frequency of natural vibrations; ϕ – shift phase angle. 
Non-dimensional vortex excitation can be described by power spectral density function that is, in 
general, narrow-band Gaussian character and can be given by (comp. Vickery and Clark 1972) 
 

2
ˆ

2
ˆ

( , ) 1 /expyw i

w i

f G z f f fk f
f BBσ π

⋅ ⎡ ⎤−⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦                 (20) 

 
where: ŵσ  – standard deviation of vortex excitation (experimental value); k – factor of the value 
less than 1.0 (experimental value); B – non-dimensional bandwidth parameter (experimental value); 
f – frequency. 

Eqs (18)-(20) depend explicitly on 4 experimental parameters: α, ŵσ , k, B. These parameters 
depend on several wind flow parameters W, Iv, Lv and structure geometry parameters G. 
Experimental values can be taken for example from: ESDU 80025 (1986), ESDU 82026 (1982), 
ESDU 85038 (1990). 

In particular, the physical meanings of experimental values describing model are as follows: 
α – experimental parameter that describes the increase in the effective cross-section diameter. 

This parameter is connected with the width of the vortex street of the lateral vibrating structure. Its 
value should be assumed in the range 0.7-1.54 (Flaga 1996, 1997). Variations in the diameter value are 

considered in Eq. (18) by the factor ( )3
ˆ1 ηα σ+ ⋅ . ŵσ  – standard deviation of non-dimensional 

vortex excitation. This parameter depends on the amplitude level of lateral vibrations. In the case 
when the amplitude vibrations level η exceeds (0.01-0.02)D or standard deviation of lateral 
displacements ση exceeds 0.006D (Kwok and Melbourne, 1980, Vickery and Basu, 1983), 
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considerable amplification of the coefficient ŵσ  will appear. In literature this value is often 
identified with the coefficient CL that describes the whole across-wind load (not only vortex 
excitation). Values of ŵσ  can be obtained from the paper by Novak and Tanaka (1977) as the 
function of lateral vibrations amplitude η. It also can be taken from procedures given in ESDU 
depending on effective Reynolds number Ree and surface roughness ks – ESDU 85038 (1990). k – 
factor of the value less than 1.0 that takes into account the participation of atmospheric turbulence 
in the total across-wind load on a structure. The participation of the vortex excitation in the whole 
across-wind load can be given by the relation: σwv

2 = k·σwc
2, where σwv

2 – variance of the 
across-wind load caused by vortex excitation,·σwc

2 – variance of the whole across-wind load. Mostly, 
value of k is settled as equal to 1.0, which is not exactly correct, mainly in turbulent flow when 
vortex excitation can appear in wider range of frequencies. Reduction of the value k below 1.0 was 
proved in model investigations described by Novak and Tanaka (1977) or Howell and Novak (1980). 
B – non-dimensional bandwidth parameter. It depends directly on turbulence intensity Iv. If Iv 
increases, the bandwidth frequency will also increase. Exemplary values were proposed by Novak 
and Tanaka (1977), Vickery (1995), Basu and Vickery (1983). Vickery’s formula: B = 0.10 + 2Iv is 
accepted in our model. 

The fifth experimental parameter of the model is ŵL  which has to be calculated in 
deterministic procedure of Y(z). Value of ŵL  depends on non-dimensional amplitude vibrations 
level η̂  or standard deviation of non-dimensional amplitudes η̂σ  and can be taken from ESDU 
85038 (1990), Ruscheweyh (1989,1992) or codes DIN 1055 (1989) and Eurocode 1 (2009). 

In general, in numerical implementation, values of experimental parameters were estimated on 
the basis of procedures recommended by ESDU. 

Summing up, the mathematical model consists of two parts: mathematical and 
semi-deterministic descriptions. This is a semi-empirical model that depends on five experimental 
parameters: α, ŵσ , k, B, ŵL . 

 
 

4. Numerical implementation 
 

4.1. Simulation method 
 
Vortex excitation is a stochastic process and its simulation is based on Weighted Amplitude 

Waves Superposition method (WAWS). Up to now, this method has been used in order to simulate 
wind field in many points and in three wind directions. The bases of the method were described by 
Shinozuka and Jan (1972), Shinozuka (1987), some later modifications and variants were 
described by Borri (1988), Borri et al. (1995), Iannuzzi and Spinelli (1987). 

In general, the family of M correlated stochastic processes can be simulated according to the 
following system of equations 

 

( )( )( )
1 1

( ) ( ) cos 2
N i

i ij k k k ij k
k j

p t H f f f t t
= =

= π + δ + +Φ∑∑
          (21) 
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A simplified variant of the method is used in our model. Here WAWS method is accepted to 
direct generation of the equivalent vortex excitation in point z0. The simulation was performed in 
one point, because the equivalent load is fully correlated in domain ΔL. The simulation according 
to the method is based on the knowledge of power spectral density function (PSD), which is given 
by Eq. (20) and describes the non-dimensional critical vortex excitation. Then, the main simplified 
equation of WAWS method can be given by 

 

( ) ( )
1

( ) 2 cos 2
N

i k k k k
k

p t G f f f t
=

= Δ π +Φ∑
               (22) 

 
There are the following denotations in Eqs (21)-(22): Gi(fk) – power spectral density function 

defined by Eq. (20), fk (k = 1,2....N) – central frequency of frequency interval Δfk, N – number of 
spectrum intervals, Φk – N random values of phase shift angles taken from the range 0, 2π, Hij(fk) – 
expressions of lower-triangle matrix H(fk). 
 

 

 

         Fig. 9 Computation algorithm 
 
 
 
4.2. Simulation procedure 
 
Own computer program “Vortex Load” (based on Finite Element Method program – ALGOR) 

was created to apply the proposed model. Both across-wind load caused by vortex excitation and 
lateral response of the analysed structure as well can be generated in time domain. Simplified 
algorithm of calculations of structure lateral response under vortex excitation is presented in Fig. 
9. 

The whole simulation procedure can be described in the following steps: 
1. FEM discrete model of the structure is created. Frequencies and mode shapes of natural 

vibrations are obtained as results of modal analysis.  
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2. Mathematical model parameters (α, ŵσ , k, B, ŵL ) are assumed on the basis of wind 
conditions (e.g., Iv, Lv, Vm(z), etc.). On the other hand the physical description of the wind flow 
around the structure with regard to vortex excitation zones is performed. Finally, function Y(z), 
zone (zones) ΔL, and the place of the central point z0 are determined. 

3. A stochastic process of equivalent critical vortex excitation is generated (using WAWS, on 
the basis of PSD function) in the central point z0. Then the load is applied to the structure in domain 
ΔL as a constant value because of full correlation of the process. Firstly, the process is generated in 
time domain T0, at each time step Δt taking into account that: ˆ 0ησ =  (Fig. 10).  

4. The time history of displacements in point z0 and in time domain T0, at each time step Δt is 
calculated using direct integration of motion equations (Fig. 11).  
 
 
 

(a)                             (b)                           (c) 

Fig. 10 Load time history simulated with WAWS method (b) on the basis of PSD function (a) and 
domain ΔL where the load is applied to the structure (c) 
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Fig. 11 Two exemplary time histories of displacements for the same simulation parameters: ησ ˆ =0, 

Nt=1000, Δt=0.1s. Nt is the number of time steps Δt 
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5. A new value of non-dimensional standard deviation of displacements η̂σ  is calculated on 
the basis of a short time interval in time history of displacements χ1T1, where T1 – first period of 
natural vibrations of analysed structure; χ1 – parameter > 1. Acceptance of χ1 at low level means that 
feedback between lateral vibrations and vortex shedding is taken into account. If high value of χ1 
is accepted then feedback is negligible.  

Values Y(z), ΔL, z0 and also Eq. (18) are actualised on the basis of the new η̂σ . Next step(s) of 
load in time domain (T0, T0 + Δτ) are generated – Fig. 12. Additional time Δτ contains arbitrary 
number of time steps Δt. 

 
 

Fig. 12 Load simulation on the basis of time history of displacements in the time interval χ1T1 
 
 
6. The whole procedure is repeated M times and both time histories of load as well as 

displacements are obtained in time T ( ˆ 0ησ ≠ ). So, it can be stated that simulation is performed in 
time domain (Fig. 13). Further steps of load are simulated using information about displacements 
before present time. 

7. All calculations are repeated N times and then maximum value ( max
jη ) and standard deviation 

(σηj) of displacements in time T, in point z0, in one process and its estimators from N processes (ση, 
ηmax, g – peak factor) can be obtained according to the following relationships 
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max g ηη σ= ⋅                               (25) 

 
where: j – index of process, j = 1,2,...N; i – index of predicted discrete value at time ti = iΔt in time 
interval T, i = 1,2,...,M; ηji = ηj(ti) – discrete value of displacements of the j-th process at time ti. 
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Fig. 13 Load and displacements time histories in time T, (a) theoretical scheme and (b) real results, for 
T=100sec, Nt=1000, Δt=0.1s, χ=50, Δτ=2Δt, 500 repeats (left); T=100sec, Nt=1000, Δt=0.1s, χ=3, Δτ=Δt, 
1000 repeats (right) 
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5. Conclusions 
 
In authors’ opinion the complete description of the vortex excitation phenomenon is contained 

in the proposed model. This is a semi-empirical model dependent on five experimental parameters 
(α, ŵσ , k, B, ŵL ). It seems that the main difficulties in proper application of the model for slender 
structures can be encountered at the stage of assuming experimental values. No exact definition or 
various definitions of coefficients (mainly ŵσ ) are used in literature. It leads to significant 
discrepancies between the obtained results. The program described here was created for numerical 
implementation and gives an opportunity to determine vortex excitation as well as structural 
response in time domain. 
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