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Abstract.    A computational study of vortex-induced transverse vibrations of a cylinder with low 
mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady 
Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation 
turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on 
elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its 
flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of 
Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to 
explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. 
The computational results are compared with published physical experiments and numerical studies. The 
maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the 
experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch 
of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was 
missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles 
are also in agreement with experiments. 
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1. Introduction 
 

Interactions of fluid and bluff bodies of cylindrical shape occur in many engineering 
applications such as overhead transmission lines, marine cables, flexible risers, suspended and 
cable-stayed bridges and chimneys. In these examples, vortex shedding behind the bluff body 
induces vibrations ranging from small to very large amplitudes. This kind of fluid-structure 
interaction (FSI) is known as vortex-induced vibrations (VIV). Different aspects of VIV, including 
vortex dynamics in the wake, lock-in phenomena, lift and drag measurements, have been 
extensively studied experimentally, and comprehensive reviews have been published during the 
past decades, see e.g., (Feng 1968, Sarpkaya 1979, Bearman 1984, Blevins 1994, Khalak et al. 
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1996, Blackburn et al. 2001, Sarpkaya 2004, Williamson et al. 2004). However, the shortage of 
knowledge to explain certain observed features of fluid-bluff-body interactions, and the adverse 
effects of VIV in engineering applications such as structural instabilities, fatigue, severe damage, 
and infrastructural failure, keep VIV a challenging research area. More research is ongoing to 
understand the fundamental characteristics of VIV in order to prevent or control destructive 
vibrations and provide design guidelines. Finally, the large computational resources and long 
simulation durations required to study VIV numerically make it interesting to develop cost and 
time effective methodologies suitable for industrial applications.  

The case of a freely vibrating smooth cylinder is fundamental to the study of VIV, and its 
reliable experimental studies make it an interesting benchmark for numerical validations. The 
experiments of Govardhan et al. (2000) show that the response of a freely oscillating cylinder with 
low mass-damping ratio in a transverse direction includes three distinct branches; “initial 
excitation”, then “upper”, and finally “lower” branches. At high mass ratio, the “upper” branch is 
absent, as indicated in (Feng 1968). Along with such experimental studies, few numerical studies 
have explored VIV and the response branches. Blackburn et al. (1993) used a spectral element 
method to study a forced and freely vibrating cylinder at Re 200 with low mass-damping, while 
Newman et al. (1997) performed a direct numerical simulation (DNS) to study a freely vibrating 
cable at Re 200, with no damping. In both studies, a maximum displacement of 0.65 is reported. 
Few other DNS studies has been reported in the literature (Blackburn et al. 2001, Williamson et al. 
2004); however, all studies are done for low Reynolds numbers, ranging from 100 to 1000. These 
Reynolds numbers are much smaller than the actual Reynolds numbers encountered in real 
infrastructure engineering applications. The large computational demands of DNS calculations and 
their stability issues prevent extending these methods to higher Reynolds and/or three-dimensional 
industrial cases. Large eddy simulations (LES) are also not affordable because of the large 
simulation times required for VIV computations. Thus, Reynolds-Averaged Navier-Stokes (RANS) 
simulations are currently acceptable alternatives for industrial applications and provide adequate 
engineering accuracy. In spite of these advantages, there are few published RANS studies of VIV.  

Guilmineau et al. (2004) performed a RANS simulation with the shear-stress transport (SST) 
k-ω turbulence model for a Reynolds range of 1000-15000. In their study, different initial 
conditions are applied in order to predict the maximum amplitude observed in experiments and 
explore the hysteresis response of a cylinder. Although, according to the initial conditions used, 
they predicted the maximum amplitude close to the experiment; their results show some 
discrepancy in predicting the upper response branch. A similar numerical study has been done by 
Pan et al. (2007) in order to investigate discrepancies between the RANS model and experiment. 
They suggested that the response in the upper branch may be related to “intermittent switching” 
between the two other branches (lower and initial) in which the vortex shedding mode changes 
from 2S to 2P. They concluded that the formation of the upper branch is related to random physical 
disturbances when switching between 2P and 2S modes, which are not accounted for in RANS 
models. Recently, Pomarède et al. (2010) studied the transverse vibrations of a cylinder using a 
fully coupled FSI scheme, without damping and at low Reynolds numbers.  

This paper presents a computational study of the vortex-induced cross flow oscillations of a 
cylinder with low mass-damping ratio at moderate Reynolds numbers. The computational method 
proposed is both cost and time effective, while maintaining accuracy. The following salient 
analysis features are presented: time accurate evolution of vortices, accuracy of the model in 
predicting structural response, near-wake flow structure, shedding frequency, unsteady fluid 
loading, and interpretation of the structural response. This study is aimed as a first step in the 
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numerical validation of a comprehensive computational fluid-structure interaction analysis 
framework for the study of structural instabilities in transmission line conductors subject to wind 
loads and atmospheric icing. 

 
 

2. Governing equations and solution algorithm 
 

2.1 Fluid dynamics 
 
The URANS equations are solved using FENSAP-ICE, a second order accurate 3D finite 

element compressible Navier-Stokes solver (Habashi et al. 2004, Habashi 2009). In order to handle 
the moving nodes on the fluid/structure boundary and determine the new positions of the internal 
nodes in the fluid domain, an Arbitrary Lagrangian Eulerian (ALE) formulation is applied. The 
non-dimensional URANS equations used in FENSAP-ICE can be expressed as 

  

( ), , 0 ,i i i iu u
t
ρ ρ ρ∂
− + =

∂         (1) 
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where ρ is the density, t time, ui the ith component of the velocity, iu the mesh velocity, p the 
pressure, τ the stress tensor, Re∞ the free stream Reynolds number, and i ju uρ the Reynolds stress 
tensor. The one-equation Spalart-Allmaras turbulence model of Spalart et al. (1992) is applied to 
estimate the Reynolds stress tensor.  
 

2.2 Rigid body dynamics 
 
The vertical motion of the rigid cylinder can be represented by a viscously damped linear single 

degree-of-freedom system with the following classical equation 
 

m&&y +c &y + ky = Fy ,                          (3) 
where y is the transverse displacement, m the cylinder mass, c the structural viscous damping, k 

the stiffness, and Fy the fluid loading resulting from the fluid surface loads. A non-dimensional 
form of this equation is obtained as follows, where the displacement is normalized with respect to 
the diameter of the cylinder 

 

( )
2 2

2 *
44 2 ,n n L

d Y dYf f Y C
dd m

π ζ π
ττ π

+ + =
          (4) 

 
where ζ is the structural viscous damping ratio, nf , the natural frequency, ∗m , the mass ratio, 
and CL the unsteady lift coefficient. The normalized variables used in Eq. (4), and other 
normalized variables used throughout the text, are defined as following: 
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In these definitions, D is the diameter of the cylinder, U∞ the free stream velocity, ρ the free 

stream density, U* the reduced velocity, Y the normalized displacement, τ the normalized time, and 
md is the displaced fluid mass.  

 
2.3 Coupling algorithm 
 
A general three-dimensional coupling algorithm is implemented that includes three main 

modules (Fig. 1): the flow solver, the solid solver, and the load/motion transfer operator that relays 
relevant analysis parameters between the two solution domains. The conservative load transfer 
operator imposes the following compatibility conditions, see (Farhat et al. 1998) 

 
. on ,

on ,
S F

S F

n pn
u u
σ σ= − + Γ

= Γ                         (6) 
 
where σS is the structure stress tensor, σF the fluid viscous stress tensor, Γ the fluid/structure 
interface boundary, n the normal vector at a point to Γ, uF the ALE displacement field of the fluid, 
and uS the displacement field of the structure. 

The coupling starts with an initial flow field solution that provides the surface fluid tractions 
along the fluid/structure mesh interface. Then, using the conservative load transfer operator, 
surface tractions are integrated to yield the resultant nodal forces applied on the solid mesh. In this 
specific problem involving a rigid cylinder, the solid mesh interface can be reduced to the center of 
mass and loading integrations yield the resultant aerodynamic drag, lift, and moment. The solution 
of Eq. (3) provides the cylinder displacement, velocity and acceleration at every time step. Second 
order in time and unconditionally stable β -Newmark algorithm is applied as a direct integration 
operator within the solid solver. After each time increment, the solid displacement is imposed by 
the compatibility condition to the nodes of the fluid mesh along the fluid/structure interface, using 
the load/motion transfer operator. Then, the fluid solver uses this interface motion in the ALE 
formulation to compute the fluid mesh motion in the entire domain, and then solves the flow field. 
This loop marches in time until the total analysis duration is achieved.  

 
2.4 Initialization and convergence of solution 
 
As a starting point for the computations, the initial flow solution around the body is required. 

However, at the first time step, there is no converged CFD solution available yet. A common 
approach to circumvent this problem in fluid-structure interaction problems is to let the flow 
around the body establish itself completely for shedding vortices to reach their limit cycle. From 
this point forth, the body starts to move freely. However, a different initialization is used in this 
study. First, a few time steps are performed in order to get a time-accurate flow established around 
the fixed cylinder (with an average residual of 10-6 at each time step), and then the cylinder is freed 
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to move. The cylinder oscillates slightly due to a small oscillating fluid loading at early time steps. 
Since the source of vortex shedding behind the bluff body is flow instabilities, this method helps to 
reach the limit cycle sooner. This initialization procedure seems to be more realistic, and makes it 
possible to study the time accurate evolution of the vortices and structural response. In all test 
cases, the cylinder starts to move from rest, i.e. 

 
0 0 0and 0t ty y y= == =&  .                        (7) 

 
It should be noted that we do not focus on the hysteresis response of the cylinder, which 

happens when the free stream velocity increases or decreases during the simulation.  
The selection of the appropriate time step is important in time accurate solutions, and it is 

required to be computed based on the lowest physical time scale present in the problem. The 
shedding frequency of the oscillating cylinder (fc) and natural frequency of the structure (fn) are the 
two important frequencies governing the time scales. At the beginning of the computations, fc is 
unknown; however, generally the frequency ratio of the oscillating cylinder (f*= fc/ fn) is limited by 
either the shedding frequency ratio of the fixed cylinder (fs/ fn), or the lock-in frequency ratio (see 
Fig. 2). The lock-in frequency ratio is generally less than 1.5, and the shedding frequency of the 
fixed cylinder is computed from an estimated Strouhal number (St) at each Reynolds number (see 
e.g., (Fey et al. 1998) for Re-St functionality). Thus, the time step is computed by dividing one 
complete shedding or fundamental period, whichever is smaller, by a reasonably large number, say 
500, which provides a suitable response resolution on one hand, and, on the other hand, justifies 
the constant load assumption at each time step. Usually, this time step satisfies the stability 
criterion of the ALE formulation as well. Thus, Eq. (8) is used to compute the time step. 

 
1 1 10.002 , min( , ), St , St St( )

Res
s n

u
dt T T f

f f D
∞= = = =

 .      (8) 
 
 

Fig. 1 Global coupling and FSI (fluid-structure interaction) framework 
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At each time step, a sufficient number of Newton iterations are performed to reach a time 
accurate solution. Thus, the unsteady residuals of the flow field and turbulence model are reduced 
by a minimum of three orders at each time step, keeping the average of residuals less than 10-6 at 
all times. 
 

Fig. 2 Frequency response versus reduced velocity of the oscillating cylinder,  
inclined solid line is the shedding frequency ratio of a fixed cylinder (Williamson et al. 2004) 
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Fig. 3 Spatial grid, dimensions, and boundary conditions 
 
 

2.5 Spatial grid and grid independence 
 

Fig. 3 shows the spatial grid, type of boundary conditions, and dimensions used for the fluid 
domain model. In this hybrid mesh, an O-grid is used around the cylinder, and the first node off 
the wall is placed at y+<1 and 5 to 8 nodes are placed at y+<10 to thoroughly capture the boundary 
layer. In order to capture the details of the near wake, a high resolution structured grid is used 
within15D behind the cylinder; an unstructured triangular grid is applied everywhere else. The 
total number of node is 28946 in which 200 nodes are placed on the cylinder, 60% of the nodes are 
placed within 4D of the cylinder, and the 15D near wake region has 30% of the total nodes. As the 
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Mach number is quite low, far field boundaries are placed far enough in order to avoid boundary 
reflection interferences with the numerical solution. It should be noted that the grid is extruded 
normal to the plane and periodic boundary condition is applied accordingly. In order to perform a 
grid independence study, by keeping the time step constant, the grid is refined two times by a 
factor of 1.5 while keeping the same node ratios in different regions as mentioned above. A FSI 
solution at Reynolds 8000 over a freely vibrating cylinder was performed for the study and the 
results are summarized in Table 1. The difference in displacements between the employed grid and 
the finest grid is less than 3%. Thus the grid presented with 28946 nodes is used throughout the 
study. 

 
  

Table 1 Displacement using different grids, Re = 8000 

Grid (number of nodes) Ymax/D Diff. % w.r.t. employed grid 
28946 0.504 - 
41204 0.494 2 
64578 0.490 3 

 
 

3. Numerical Results 
 

In this section, numerical results for a rigid cylinder with low mass-damping are presented for 
different reduced velocities. In order to compare the results with other published studies, the 
structural parameters and Reynolds number range correspond to those of an experimental study 
performed by Khalak et al. (1996) and a numerical study done by Guilmineau et al. (2004). Hence, 
a mass ratio of 2.4, a mass-damping ratio of 0.013 and a Reynolds number range of 975-14923, 
representing a reduced velocity range of 1.124-17.21, are chosen. For all Reynolds numbers, the 
same structural damping is applied; however, it should be noted that the total damping is 
composed of the structural and aerodynamic damping. The aerodynamic damping is directly and 
naturally imposed by flow solution. Hence, the total damping is controlled by flow solution.  

Fig. 4 shows the normalized displacement of the cylinder versus the normalized time for 
different reduced velocities. In these figures, the oscillations start with very small amplitudes, and 
as time passes, the amplitude increases until it reaches its limit cycle value. The limit cycle 
amplitude is unique for most of the cases; however, for some reduced velocities, e.g., at U* = 2.883 
and to some extend also at U* = 3.460, the limit cycle amplitude beats periodically. This beating 
behavior in the synchronization (or transition) region is in agreement with the experimental studies 
of Brika et al. (1993). The onset of relatively large oscillations differs with reduced velocity. For 
Re<1500 and Re >˷ 9000, corresponding to the head of the initial excitation branch and the tail of 
the lower branch, respectively, large oscillations start at around τ =100-150; while, for 
1500<Re<9000, which includes the transition regions and the upper branch, instabilities become 
noticeable quite earlier at around τ =40-50.  

A close investigation of Fig. 4 shows that within the initial excitation and lower branches, 
oscillations are of regular bell shape type with one dominant frequency, but inside the upper 
branch, varying amplitude and beating behavior can be seen. At low reduced velocities, amplitudes 
are very small (e.g., 0.013 at U* = 1.124), but as velocity increases, the amplitude amplifies 
dramatically. In the initial-upper transition region, oscillations do not stabilize at a constant value. 
For instance, at U* = 2.883, the amplitude changes between 0.15 and 0.35 (see Fig. 4 and scatter 
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lines in Fig. 6 ). The amplitude increases through the upper branch and reaches a limit value; 
however, in this region large displacements start with an overshoot. By further increasing U*, the 
amplitude decreases rapidly until the beginning of the lower branch at U*~ 6.4 where the decrease 
rate is reduced. At U*~ 9, the amplitude decreases rapidly until U* = 12 where it reaches the small 
value of 0.034: from this point forth, the change of amplitude with reduced velocity is negligible. 
Similar to the initial branch, the response of the cylinder in the lower branch is regular and only 
one dominant frequency is notable.  

In Fig. 5, the power spectral density (PSD) estimates for various Reynolds numbers 
representing the frequency response of the cylinder in different branches, are plotted. In the initial 
branch, e.g., Re 1500, the PSD of the vertical displacement shows one dominant frequency at 4.78 
Hz which is equivalent to the frequency ratio of 0.39, this compares well with the experimental 
data of Khalak et al. (1999). By increasing the reduced velocity and reaching the initial-upper 
transition region, the PSD becomes broader. For instance at Re 2500, at least two distinct peaks 
with almost equivalent strengths exist, demonstrating the beating behavior. In the upper branch, at 
Re 3911 for instance, Fig. 5 demonstrates a single dominant frequency as observed by Khalak et al. 
(1999). In the lower branch, at higher Reynolds numbers such as 7310 and 12000, the shedding 
returns to a single dominant frequency. 

The normalized amplitude of displacements at their limit cycle versus reduced velocity is 
presented in Fig. 6 In this figure, vertical bars are used to show the range of varying amplitude in 
the limit cycle, and where the large displacements start with an overshoot. Also in the same figure, 
the experimental results of Khalak et al. (1996) are included for comparison. The maximum 
computed amplitude happens at U* = 4.510. At this reduced velocity, large displacements start with 
an overshoot of 0.94, and then the oscillations end up at the limit cycle amplitude of 0.83. These 
values are lower than the experimental value of 0.96. In the numerical study of Guilmineau et al. 
(2004), a maximum amplitude of 0.98 is reported at U* = 4.510, with increasing velocity initial 
condition

∴
*. Considering the different initial condition used in this study, the predicted maximum 

amplitude and the overall trend of the results are deemed satisfactory and show agreement with the 
experiment. The computed amplitudes in the initial and lower branches consistently agree with the 
experiment. Moreover, the upper branch results are encouraging. It seems that employing greater 
concentration of points around the cylinder and in the near wake region has made it possible to 
capture the upper branch while the upper branch had not been captured by other published 
numerical studies, see e.g., (Guilmineau et al. 2004, Pan et al. 2007).  

In Fig. 7, the frequency ratio versus the reduced velocity is compared with the experimental 
results. The computed frequency follows the experimental results everywhere, except in the tail of 
the lower branch where the amplitude of oscillations is very small and the frequency is high. In 
fact, numerical studies suffer from predicting accurate shedding frequency at high Reynolds 
numbers. Even in the case of the fixed cylinder, the numerical shedding frequency at high 
Reynolds numbers is lower than the experimental values. This difference for U* > 12 is also 
reported in other computational studies. In this region, the cylinder experiences very small 
oscillations; therefore, the importance of the frequency ratio is secondary. Several studies show the 
presence of the lock-in phenomenon in vortex-induced vibrations in which the structural motion 
dominates the shedding development, then the shedding frequency shifts to the structural 

                                                       
∴The free stream velocity is increased from an initial value gradually up to a target value while 
the cylinder oscillates.   
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frequency, i.e., cns fff ~~ , see, e.g., (Brika et al. 1993, Blackburn et al. 1996, Williamson et al. 
2004). It is shown experimentally that for high mass ratios, the frequency ratio f* is close to unity; 
however, as the mass ratio decreases, the frequency ratio departs from unity and reaches a higher 
value. Fig. 7 shows the frequency ratio of 1.2 within the lock-in region, U*

 = 4.6 - 12, which is 
lower than the experimental value of 1.4 reported by Khalak et al. (1999). Close investigation of 
the frequency response and time history of the displacements (Fig. 4) shows that the onset of the 
large oscillations happens within the lock-in region. Past the lock-in region, the amplitude of 
oscillations drops to a very small value and remains unchanged. 
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Fig. 5 Periodogram Power Spectral Density (PSD) estimate of the vertical displacements at various 
reduced velocities 
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Fig. 8 presents the loading (lift and drag coefficients) history for different reduced velocities. At 
low reduced velocities, the fluctuations of the drag coefficient are smaller than those of the lift 
coefficient, but by increasing the reduced velocity, these fluctuations become of the same order 
until the cylinder reaches its maximum amplitude. From this point forth, the fluctuations of drag 
become greater than lift fluctuations, and the mean drag coefficient reaches its maximum value at 
maximum amplitude. As exposed area of cylinder reaches its maximum ate highest amplitude, 
coincidence of the maximum amplitude and maximum drag is predictable. By further increasing 
the reduced velocity, fluctuations of both the lift and drag coefficients decrease and reach a small 
value at high reduced velocities. An interesting observation is the loading history at the 
initial-upper transition region (Fig. 8, U* = 2.883-4.330). In this region, similar to the displacement 
response, the amplitude of the loading varies with time and the regular loading seen in other 
regions is not observed.  

Fig. 9 shows the effect of transverse oscillations on the drag coefficient. In this figure, the 
computed mean and maximum drag coefficients are plotted versus reduced velocity. As the area of 
the cylinder exposed to the flow increases with amplitude, the cylinder is expected to experience a 
greater drag force as amplitude increases. As expected, results show that both the mean and 
maximum drag coefficients reach their peak value at maximum amplitude. The peak drag force on 
the oscillating cylinder is larger than on a fixed cylinder; in the current case, the peak mean drag is 
three times larger than the drag coefficient of a similar fixed cylinder.  

 The phase angle, Φ, between the lift force and the displacement response, versus the reduced 
velocity is plotted in Fig. 10. For U* < U*

max amplitude, the phase angle is near zero while, after 
passing the maximum amplitude, the phase angle jumps to around +185 degrees. 
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various reduced velocities 
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The vortex shedding mode and structure of the vortices alter the aerodynamic loading and 

damping of the cylinder. Consequently, this affects the response of the cylinder. On the other hand, 
the frequency and amplitude of the oscillations changes the shedding mode and structure of the 
vortices. Thus, studying the structure of the vortices and shedding modes facilitates to understand 
the connection between the shedding modes and the structural response at different Reynolds 
numbers. Following the interpretation of Williamson et al. (1988), flow visualization behind the 
oscillating cylinder is explored in Fig. 11. In the literature, 2S and 2P vortex shedding modes are 
reported for this problem, see e.g., (Brika et al. 1993). As illustrated schematically in Fig. 12, in 2S 
mode, two single vortices are fed into the downstream per shedding cycle and in 2P mode, two 
vortex pairs appear per shedding cycle. Fig. 11 shows the vortex pattern behind the oscillating 
cylinder for the studied incident flow conditions. At low reduced velocities, the flow has enough 
time to generate repeatable vortex patterns, and small amplitudes keep the shedding area narrow, 
thus a pure periodic 2S mode appears as illustrated in Fig. 11(a). By increasing the reduced 
velocity and reaching the initial-upper transition region, the amplitude beats, and the required time 
and space to complete a full 2P or 2S shedding cycle is not available. Therefore, the mode 
alternates between 2S and 2P; see Fig. 11(b)-(e). The mode switching in this region is related to 
the previously mentioned beating behavior in the displacement response and loading. By 
increasing the reduced velocity and reaching the upper branch region, the vortex street keeps 
expanding, and the 2P mode becomes dominant; Fig. 11(f)-(j). This change in shedding mode 
coincides with the phase angle shift from 0 to +180 degrees. The widest vortex street appears in 
the upper-lower transition where the frequency ratio jumps at the end of the lock-in region (see Fig. 
7 ). By further increasing the reduced velocity, the vortex street becomes narrower, see Fig. 11(k), 
and it seems that the vortex pattern tends to return to 2S mode afterward. The vortex structures in 
different regions and alternation of the shedding modes in the transition regions are in agreement 
with the experiments of Brika et al. (1993) and Williamson et al. (1988). 
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Fig. 11 Instantaneous vorticity contours for different Reynolds numbers of the oscillating cylinder,  
( * * 22.4, 1.3 10m m ζ −= = × ) 

428



 
 
 
 
 
 

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping 

 

Fig. 12  Sketches of vortex shedding patterns, (Williamson et al. 1988) 
 
 
In Fig. 13, the computational results are summarized in one graph to facilitate analyzing 

different aspects of VIV response and their effects on each other. A first observation is the 
coincidence of the maximum drag force and the maximum amplitude with the shift of phase angle 
from 0 to 180 degrees. At this point, the vortex shedding mode switches to 2P, as well. The lock-in 
region, where the frequency ratio reaches almost a constant value, starts at the upper-lower branch 
border, and ends when the displacement amplitude drops to a small value. At this point, the drag 
force and the amplitude reach their lowest values, and the frequency ratio starts to increase. 
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Fig. 13 Summary of computational results 
 

 
4. Conclusions 
 

In this paper, the transverse vortex-induced vibration of a circular cylinder with low 
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mass-damping is numerically studied using URANS with the Spalart-Allmaras turbulence model 
in a fluid-structure interaction analysis. In the absence of DNS and LES models for moderate 
Reynolds numbers applications, the present cost-effective numerical methodology shows that 
URANS models can be efficiently used to predict the salient features of the flow around freely 
vibrating bluff bodies including the near wake structure, the shedding modes, and unsteady loading. 
Moreover, the numerical results including structural and frequency responses, vortex shedding 
modes, fluid force, phase angle, and history of developing large displacements, are compared with 
experiments and show very good agreement. More importantly, the numerical results show an 
encouraging improvement over previous studies in capturing the upper branch of the response. 
Although calculated amplitudes in the upper branch are slightly lower than the experimental values, 
in the other branches, the amplitudes are predicted correctly. Moreover, flow visualization reveals 
an association of the 2S mode with the initial branch, of the 2P mode with the upper and lower 
branches, and of the mode switching within the initial-upper transition region. This mode 
association with different response branches had been previously reported in experimental studies 
by Brika et al. (1993). 
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