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Abstract.    The Gringorten estimator has been extensively used in extreme value analysis of wind speed 
records to obtain unbiased estimates of design wind speeds. This paper reviews the derivation of the 
Gringorten estimator for the mean plotting position of extremes drawn from parents of the exponential type 
and demonstrates how it eliminates most of the bias caused by the classical Weibull estimator. It is shown 
that the coefficients in the Gringorten estimator are the asymptotic values for infinite sample sizes, whereas 
the estimator is most often used for small sample sizes. The principles used by Gringorten are used to derive 
a new Consistent Linear Unbiased Estimator (CLUE) for the mean plotting positions for the Fisher Tippett 
Type 1, Exponential and Weibull distributions and for the associated standard deviations.  Analytical and 
Bootstrap methods are used to calibrate the bias error in each of the estimators and to show that the CLUE 
are accurate to better than 1%. 
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1. Introduction 
 
1.1. Expectation and standard error 
 

It is a truth universally acknowledged, that the best unbiased estimate of any random variate, x, 
is the ensemble average over an infinite number of samples, 〈x〉, usually called the “expectation”, 
and that the corresponding standard error of a single sample is the standard deviation, σ(x) of the 
ensemble. Hence, for a set of N values drawn from a random variable, x, and ranked in ascending 
order, m = 1 ... N 

 
ε+= NmNm xx ::                     (1) 

 
where xm:N is the m-th ranked value out of N values (the m-th smallest value) and the difference, 

ε, between the value of each rank and the expectation for any single sample is ( ).:Nmxσ±  
By definition, the cumulative probability distribution (CDF), P(x), is a single-valued invertible 

function of x which is uniformly distributed over the range 10 ≤≤ P . The CDF is a “mapping” 
function in the sense that x uniquely defines P(x) and vice-versa, i.e., x ⇔ P(x), so that any 
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function of x, y(x), can be evaluated in terms of y(P(x)). The expectation NmNm yPy :: )( = is 
obtained by evaluating the Binomial expression 
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and the corresponding standard deviation is given by evaluating  

 

( ) 2
::

2
: )()( NmNmNm PyPyy −=σ          (3) 

 
Because xm:N is a random variate, it follows that P(xm:N) ≡ Pm:N is also random so, from Eq. (1),  

the best unbiased estimate of Pm:N is NmP : and the standard error for a single sample is )( :NmPσ . 
This forms the core of the frequency interpretation of the probability, P, (Cramer, 1946) and is 
illustrated by Fig. 1 , which shows Pm:N for samples of size N = 9 stabilizing onto 10/: mP Nm = as 
the number of trials, n, increases. Note that the rate of this stabilisation is quite slow and that the 
errors associated with the single first sample are quite large. 

 
 

 

Fig. 1 Ensemble mean probability, 〈Pm:N〉, for each rank, m, of ranked samples of size N = 9 for n 
trials, accumulating as n increases 

 
 

1.2 The Weibull estimator 
 
The ensemble mean probability NmP : of the m-th smallest value in a ranked sample of size N 

for an infinite number of samples is given by evaluating Eq. (2) as 
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1: +
=

N
mP Nm            (4) 

 
(Castillo 1988, Eq. (2.41)). The corresponding standard deviation is given by 
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=
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mNmP Nmσ               (5) 

 
(Castillo 1988, Eq. (2.42)).   
 
The first use of Eq. (4) as the estimator for the CDF estimated from the order statistics of a 

single sample is usually attributed to Weibull (1939). The associated standard error given by Eq. (5) 
is rarely acknowledged in published analyses of wind engineering data, either directly or through 
the provision of confidence limits. 

 
1.3 The Gringorten estimator 
 
While Eq. (4) gives the best unbiased estimate of the mean probability NmP : corresponding to 

each rank, it does not give the best unbiased estimate of the corresponding value Nmx : unless the 
distribution )(xP is a linear function of x. All probability distributions in nature are non-linear and 
tend to follow an S-shaped curve, so the inequality 

 
)()( xPxP ≠             (6) 

 
generally applies. In most analysis and design applications, the aim is not to obtain the best 
unbiased estimate of probability for a given observational value, but is to obtain the best unbiased 
estimate of the variable for a datum (design) probability, i.e., the best estimate of a quantile. Eq. (6) 
shows that these two aims are not concomitant. The task is to find the plotting position that 
minimises bias in )( xP . 

The Gringorten (1963) estimator specifically addresses the estimation of the plotting position 
corresponding to Nmx : for ranked extremes drawn from parents of the exponential type. These fall 
into the domain of attraction of the asymptotic Fisher Tippett Type 1 (FT1) distribution, also 
known as the Gumbel distribution 
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where the mode, U, (location parameter) and the dispersion, b, (scale parameter) are constants. 

Estimating x for a FT1 distribution requires Eq. (7) to be rendered linear in terms of x, by 

taking logarithms twice, before applying the ensemble average operator, . Hence 
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UxPbx +−−×= )))(ln(ln(           (8) 
 

The non-dimensional form of Eq. (8) is 
 

b
Ux

xPy
−

=−−= )))(ln(ln(           (9) 

 
where y, the Gumbel (1958) “reduced variate”, is the non-dimensional form of x. 

Gringorten (1963) derived an estimator for the probability of Nmy : in Eq. (9) of the form 
 

 
AN

AmyP Nm 21
)( : −+

−
=           (10) 

 
by using Gumbel’s expression for the top rank γ+= )ln(: Ny NN  (Gumbel 1958, p 116), where γ 
= 0.57721... is Euler’s constant, and evaluating Eq. (10) to give A = 0.43854, rounded to A = 0.44. 
Appendix A shows that this is the asymptotic value obtained in the limit as N → ∞, whereas the 
Gringorten estimator is typically applied to sample sizes that are quite small. Unfortunately, 
Gringorten (1963) did not derive an estimator for the corresponding standard deviation. 

 
1.4 The non-parametric bootstrap 
 
The non-parametric bootstrap (Efron and Tibishirani 1993) is a Monte-Carlo sampling method 

that replicates the frequency interpretation of probability by generating random values in the range 
10 ≤≤ P from a uniform random number generator. These random values of P are mapped to the 

corresponding value of x using an appropriate CDF, P(x). Bootstrapping is an extremely useful 
technique for drawing inferences where a theoretical approach is not available or too difficult.  
Bootstrapping is used in wind engineering analyses to derive plotting positions, confidence limits 
and fitting weights (Naess and Clausen 2001, Cook 2004).    

Fig. 2 shows the results for N = 20, corresponding to a 20-year record of annual maxima, 
obtained by bootstrapping 104 trials of Nmy : from the FT1 distribution, Eq. (9), plotted on the 
standard Gumbel axes at both the Weibull and the Gringorten plotting positions. The generating 
FT1 model is shown by the straight line, with unity slope and zero intercept. The Weibull estimator, 
Eq. (4), has a systematic bias which exaggerates the slope by 11%, while the Gringorten estimator 
replicates the model slope to within 1%. 

Also shown in Fig. 2 are the 5% and 95% confidence limits for the data values and for the 
model fit*, corresponding to the sampling error expected from a single sample. The bias produced 
by the Weibull estimator is smaller than the potential sampling error and is always conservative. 

                                                       
* The confidence limits for the data points were obtained by compiling the histogram of values for each rank 
from 104 trials and taking the 500th value from the bottom (5%) and the 500th value from the top (95%). The 
confidence limits for the model fit were obtained by fitting each trial to the FT1 distribution using weighted 
least squares to determine the mode, U, and dispersion, b, then compiling the histograms of model values at 
a range of plotting positions and taking the 500th value from the bottom and the 500th value from the top.   
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The Gringorten estimator removes this bias almost entirely and closely replicates the generating 
FT1 model.  

 
 

 

Fig. 2 Weibull and Gringorten estimators for N = 20 compared with 104 bootstrap trials of FT1 distribution 
 
 

2. Consistent linear unbiased estimator (CLUE) 
 

2.1 General form of the CLUE 
 
The Weibull and Gringorten estimators are linear estimators in the form of Eq. (10) with values 

of the coefficient, A, of A =0 and A = 0.44, respectively, which apply for large sample sizes. A 
more general linear estimator which allows for different rates of convergence in the upper and 
lower tails is given by 

 

BAN
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−
=

1
)( :       (11) 

 
This estimator applies consistently when A and B are made functions of the sample size, N.  

Whereas Gringorten solved Eq. (10) for one unknown coefficient using the expectation of the top 
rank, extending the Gringorten methodology for Eq. (11) requires a pair of simultaneous equations 
to be solved using the top and bottom ranks 
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The solution to Eq. (12) fits a straight line through the top and bottom ranks, assuming that all the 
intermediate ranks fall onto this model line, i.e., that Eq. (11) is linear with respect to 〈ym:N〉 for all 
m. This paper refers to the solution of Eq. (12) as the “Gringorten extended” (GEX) methodology.   

In practical extreme value analysis, the estimator is applied to all the ranks and a fit is made to 
all the ranked values – typically by a weighted least-mean-square (WLS) fit. It is therefore more 
appropriate to derive A and B by a fit to all ranks, when these are available, as this is consistent 
with their application in practice. 

 
2.2 Three distributions useful in wind engineering 
 
This paper addresses three distributions commonly used in wind engineering applications  

1) FT1 distribution: ⎟⎟
⎠

⎞
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2) Exponential distribution: ( )xxP /exp1−=  

 

3) Weibull distribution: ⎟
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The FT1 distribution is used as the model for extreme events, typically for small to moderate N, 

and is the distribution addressed by Gringorten (1963). The Exponential distribution is the 
asymptote for the upper tail of the FT1 distribution and is the model for the time between events in 
a process following the Poisson recurrence model, again typically for small to moderate N. The 
Weibull distribution is commonly used as the model for the distribution of parent wind speeds, 
typically for very large N. These three distributions are so closely related that there is a strong 
commonality in the corresponding coefficient A and B values in Eq. (11). 

 
2.3 The Fisher Tippett Type 1 distribution 
 
The function ))ln(ln( Py −−= is the plotting position for the linearised expression for the FT1 

distribution, Eq. (9). For the general case for rank m, Eq. (2) cannot be evaluated analytically, so 
requires a numerical approach, e.g., numerical integration as used by Harris (1999) or 
Bootstrapping. However, there are analytical expressions for the top and bottom ranks, enabling 
the GEX methodology to be applied and these are given in Appendix A. 

Eq. (A.4) demonstrates that the coefficient A has no significant effect on the top rank, 〈yN:N〉, so 
that the upper tail of the distribution depends on the value of B. The coefficient A has the greatest 
influence when m is small, so controls the lower tail of the distribution. Eq. (12(a)) uses P1:N to 
solve for A and Eq. (12(b)) uses PN:N to solve for B, giving the best conditioning of the 
simultaneous equations. A solution is quickly found by starting with A = 0 in Eq. (12(b)) to obtain 
a first estimate of B, then iterating between the two expressions†. Appendix A shows that A → B → 

                                                       
† Easily implemented in Microsoft Excel by using “circular references”. 
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1−e−γ = 0.43854 as N → ∞. Gringorten’s assumption that A = B, adopted from earlier work, implies 
that N is large enough for both tails to be fully converged to the FT1 asymptote.   

The analytical expressions for 〈y1:N〉 and 〈yN:N〉 are given in Gumbel (1958) but, while the 
expression for 〈yN:N〉 on p210 is exact, the expression for 〈y1:N〉 on p205 for the bottom rank is 
asymptotic and accurate to 2 decimal places only for N > 106. An improved expression for 〈y1:N〉, 
which is accurate to 2 decimal places for N > 20 and to 3 decimal places for N > 2000, is given in 
Appendix B. Bootstrapped values of 〈y1:N〉 were used to extend the range down to N = 10. 

The resulting coefficients A and B for the FT1 distribution are shown converging to the 
asymptotic value in Fig. 3. All values were evaluated by GEX, except for the values labelled “B – 
Bootstrap (WLS)” which were obtained from a WLS fit to all ranks.  

 
 

 

Fig. 3 The coefficients A and B in Eq. (11) for the FT1 distribution, converging to the asymptotic values 
with increasing sample size, N 

 
 

2.3.1 Coefficient A. 
Values of the coefficient A are shown by the diamond symbols – solid symbols for the 

analytical expressions (N ≥ 2000) and open symbols for the Bootstrapped values (N ≤ 1000) from 
108 trials. These converge very slowly towards the asymptotic value, with error ( ))ln(/1 NO , and 
are still not close by N = 1010. This behaviour is well fitted by A = 0.43854 − 0.46617/ln(N) which 
is shown by the solid-line curve. The two “dash-dot” curves above and below this fit represent the 
range of A over which the error in 〈y1:N〉 is less than 1% and indicate how the estimator becomes 
rapidly insensitive to the value of A as N increases. This slow convergence and insensitivity are 
due to the first double-logarithm term in Eq. (A.1), Appendix A, which dominates in the lower tail.  
 
2.3.2 Coefficient B. 
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Values of the coefficient B are shown by the circle symbols – again, solid for analytical and 
open for Bootstrapped values from 108 trials. As the analytical values of 〈yN:N〉 are exact and 
insensitive to A, the corresponding values of B extend down to N = 10. In contrast with A, the 
convergence of B is extremely rapid indeed. The “dash-dot-dot” lines that diverge linearly above 
and below the asymptotic value represent the range of B over which the error in 〈yN:N〉 is less than 1% 
and again indicate how the estimator becomes less sensitive to the value of B as N increases.  

The open square symbols show the value of B obtained from a WLS fit to the Bootstrapped 
values from 108 trials for all ranks. These values are consistently 2% larger than those from the 
GEX methodology operating on the same data. 

 
2.4 The exponential distribution 
 
The function that linearises the Exponential distribution is 
 

( )
x
x

xPy =−−= )(1ln            (13) 

 
The upper tail is asymptotic to the FT1 and the lower tail is limited at y = 0. 

Gumbel (1958, p117) gives the exact expression for the mean variate of the Exponential 
distribution for any rank, m, as 

∑
−+=

=
N

mNt
Nm t

y
1

:
1             (14) 

 
Eq. (14) should be implemented in the highest floating-point precision available to avoid 

accumulating rounding errors when N is very large. Alternatively, use the expression of Harris 
(2009, Eq. 4.15), employing the digamma function. This exact expression implies there is no 
actual need for an estimator for the Exponential distribution. Note that Eq. (14) reverts to a single 
term for the lowest rank, 〈y1:N〉 = 1/N. Proofs are provided in Appendix A showing that A may be 
defined as A ≡ 0 for all N, and that B → 0.43854 as N → ∞. 
 

 

Fig. 4 The coefficient B in Eq. (11) for the Exponential distribution, converging to the asymptotic 
values with increasing sample size, N 
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The resulting values of B for the Exponential distribution are shown in Fig. 4. The circle 
symbols denote values evaluated by GEX from the exact values for the top and bottom ranks.  
The square symbols denote values obtained from a WLS fit to all ranks: solid symbols from the 
exact expression, Eq. (14), and the open symbols from the Bootstrapped values from 108 trials. 
Note that the Bootstrapped values and the exact analytic values are almost coincident. 

Convergence of the values to the asymptote is slower than for the FT1 distribution. The WLS 
fits to all ranks are asymptotic to a value ~2% greater than the expected asymptote. Values from 
GEX converge from above, while the WLS values converge from below. The two “dash-dot-dot” 
curves above and below the GEX values represent the range of B over which the error in 〈yN:N〉 is 
less than 1% and show that the difference in B between GEX and WLS has a very small effect on 
the values of 〈ym:N〉. 

 
2.5 The Weibull distribution 
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where w is the shape parameter and C is the scale parameter, is one of the most ubiquitous 
statistical distributions used to describe physical phenomena. In wind engineering it is 
conventionally used to model parent hourly wind speed data for both hourly mean and hourly 
maximum gust values. The population, N, is typically very large and the standard WMO practice 
for rounding wind speeds to integer knot values leads to many tied values at low to moderate wind 
speeds. It is typical practice to reduce the size of the data set used in the analysis by using only the 
median rank, )(~ Vm , for each wind speed value, working from a frequency table – i.e., counts of 
each wind speed value – rather than the whole ranked set of observations, and this has implications 
for the appropriate fitting weights.  

The function that linearises the Weibull distribution is 
 

)ln()ln()))(1ln(ln( CwxwxPy −=−−=            (16) 
 

and differs from Eq. (9) and (13) in that 〈y〉 is the non-dimensional form of 〈ln(x)〉. This function is 
diagonally symmetrical to the FT1 distribution, ))ln(ln( Py −−= , such that 
 

1:1:

1:1:

1::1

FTNWeibullNN

FTNmNWeibullNm

FTNNWeibullN

yy

yy

yy

−=

−=

−=

−+              (17) 

 

i.e., the signs are reversed and the rank is reversed top−bottom, equivalent to a diagonal reflection 
about a line of slope −1 through the origin. Hence values of 〈ym:N〉 for the Weibull distribution at m 
= i may be obtained by evaluating 〈ym:N〉 for the FT1 distribution at m = N+1−i, then reversing the 
sign. Alternatively, this diagonal reflection is achieved in the CLUE, Eq. (11), by exchanging the 
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FT1 values of the coefficients A and B: if A = a and B = b for FT1, then A = b and B = a for the 
Weibull distribution. 
 

2.6 Coefficient values for implementing CLUE 
 
Values of the Coefficients A and B for implementing Eq. (11) for the three distributions 

considered in this paper are presented in Table 1. These are based on the WLS fits, instead of the 
GEX methodology, because this better represents their use in practice.  The two methodologies 
differ because the CLUE is not perfectly linear and the WLS fit is weighted to the middle of the 
distribution, while GEX uses only the endpoints. However, in practical applications, this difference 
is insignificant.   

 
Table 1 Coefficients in Eq. (11) for implementing the CLUE for the three distributions 

Distribution 

Exponential FT1 Weibull 

)1ln( Py −−=  ))ln(ln( Py −−=  ))1ln(ln( Py −−=  

Eq. (11) 
A 0 0.439−0.466/ln(N) 0.448 

B 0.448−0.0751/N 0.448 0.439−0.466/ln(N) 
 
 
2.7 Calibration of the Weibull and Gringorten estimator bias errors 
 
The Weibull estimator for 〈P〉 is systematically biased in terms of 〈x〉 for all practical 

distributions P(x), as discussed in 1.4. The Gringorten estimator seeks to remove this bias for the 
FT1 distribution using the asymptotic values of the coefficients A = B = 0.44. The consistent linear 
unbiased estimator (CLUE) derived in this paper applies, with appropriate coefficient values, to 
FT1, Exponential and Weibull distributions and is accurate to better than 1% of 〈x〉 for any 
population of events, N. 

Fig. 5 shows the bias in (a) the slope (cf. unity) and (b) the intercept (cf. zero) of the reduced 
variate for the Gringorten and Weibull estimators for the FT1 and Exponential distributions. For 
the Weibull distribution the diagonal symmetry with the FT1 distribution means that the bias in the 
slope is the same value and the error in the intercept is the negative value. The corresponding slope 
and intercept for the CLUE, using the coefficients in Table 1, are not shown in Fig. 5 because they 
are indistinguishable from 1 and 0, respectively. 

The bias in the slopes is very similar for each distribution. The bias in the intercepts is more 
variable. Most of the bias in the Weibull estimator comes from the slope, underestimating by 15% 
for N = 10 (which leads to an overestimation of design values), and this bias remains greater than 1% 
for populations less than N = 1000. Most of the bias in the Gringorten estimator is in the intercept, 
an error in y of ~0.04 for N = 10. The corresponding standard deviation for the highest rank of N = 
10 is 8.3%, so the fitting error using the Weibull estimator is twice the sampling error, whereas the 
fitting error for the Gringorten estimator is small compared with the sampling error. 

The effect of these bias errors on predicted design values for the variate depends on the value 
adopted for the design risk and on the mode/dispersion ratio, U/b. For mean wind speeds in 
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temperate climates the characteristic product U/b ≈ 10, and the percentage error in the “once in 50 
year” wind speed, V50, for this case is shown in Fig. 5 (c). For the populations of annual maximum 
wind speeds typically available for analysis, the bias error on V50 from using the Weibull estimator 
falls from around +5% at N = 10 to around +2% at N = 40, but the bias error from the Gringorten 
estimator remains less than 0.2%. This is because the errors in the mode and dispersion tend to 
cancel out when using the Gringorten estimator. 

 
 

(a) Bias error in fitted slope 

(b) Bias error in fitted intercept 

(c) Percentage error in V50 for typical temperate wind climate (aU = 10) 

Fig. 5 Bias error in model fits using the Weibull and Gringorten estimators 
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3. Estimators for the standard deviations 
 

For the estimator, Eq. (11), to be fully complemented with confidence limits and fitting weights, 
the standard deviation of the variate, )( :Nmyσ , needs also to be estimated. For the Exponential 
distribution the standard deviations, σ(ym:N), can be evaluated exactly (Gumbel 1958, p117) or via 
the derivative of the digamma function (Harris 2009, Eq. (5.4)). For the FT1 distribution, this is 
less easy to achieve analytically. Accordingly, for consistency of approach, Bootstrapping was 
used in this paper to derive the standard deviations for both distributions.  

The standard deviations of the FT1 and Exponential reduced variates for N = 20 and N = 104 
are shown in Fig. 6, from 106 bootstrap trials, indicating that these are well fitted by 4th order 
polynomials 

∏=
×=

4

0 :: )()(
i

i
NmiNm yayσ           (18) 

 
 

(a) Sample size, N = 20 

(b) Sample size, N = 104 

Fig. 6   Standard deviations for N = 20 and N = 104 from 108 bootstrap trials 
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The standard deviations for the Weibull reduced variate are the FT1 values, reflected around the 
〈y〉 = 0 axis, i.e. σ(y)Weibull = σ(−y)FT1. Fig. 7 shows that the coefficients ai are proportional to 1/√N, 
leading to the expressions for each coefficient given in Table 2. 

In a linear regression Castillo (1988) and Harris (1999) recommend that y is taken as the 
dependent variable and x as the independent variable, the reverse of the usual convention, because 
the principal uncertainty lies in the sampling error associated with 〈ym:N〉. The standard deviations 
may be used to set confidence limits on the data and to provide fitting weights.  To weight each 
value used in the fit commensurate with its statistical reliability, the square errors are multiplied by 
the weight corresponding to each rank. When using the full ranked data set, the weight is 
proportional to 1/σ 2. When using only the median ranks for each wind speed, )(~ Vm , the weight is 
proportional to |m(V)|/σ 2, where |m(V)| is the number of tied values of V. To evaluate the overall 
variance error of the fit, the weights should be normalised to sum to unity. 

 
 

(a) Fisher Tippett Type 1 distribution 

(b) Exponential distribution 

Fig. 7 Coefficients ai in Eq. (14) from 108 bootstrap trials 
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Table 2 Coefficients in Eq. (18) for the standard deviations for the three distributions 

Distribution 

Exponential FT1 Weibull 

)1ln( Py −−=  ))ln(ln( Py −−=  ))1ln(ln( Py −−=  

Eq. (14) 

a0 0.202/√N 1.279/√N 1.279/√N 

a1 1.284/√N 0.235/√N –0.235/√N 

a2 –0.294/√N 0.334/√N 0.334/√N 

a3 0.132/√N –0.0541/√N 0.0541/√N 

a4 –0.0081/√N 0.0121/√N 0. 0121/√N 
 
 

4. Conclusions 
 

This paper has explained the derivation of the Gringorten estimator and has described an 
improved estimator that is applicable to a range of distributions commonly used in wind 
engineering. 

For the two distributions used in extreme value analysis, FT1 and Exponential, the classical 
Weibull estimator biases estimates extreme wind speeds around 4% too high for the typical range 
of observation periods available, while the original Gringorten estimator is accurate to better than 
1%. We also show that the Gringorten estimator is also applicable to the Weibull distribution, 
which is typically used to represent parent winds where the population N is very high. 

The CLUE in this paper, using the coefficients, A and B, provided in Table 1, is nearly two 
orders of magnitude more accurate than the Gringorten estimator. Accuracy for small sample sizes 
is increased significantly, but the sampling errors associated with the small sample sizes tend to 
swamp this improvement.   

The coefficients, ai, for the corresponding standard deviations, that have hitherto been 
unavailable, are useful for determining confidence limits and fitting weights. 
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Appendix A: Asymptotic proofs for coefficients A and B 
 

A.1 FT1 distribution 
A.1.1. Coefficient A  
Gumbel’s asymptotic expression for the mean of the smallest ranked value from a FT1 

distribution as N → ∞ (Gumbel, 1958, p205) is 
 

)ln(/))ln(ln(:1 NNy N γ−−≈      (A.1) 
 

but is accurate only to the second decimal place for N > 106. 
Substituting Eq. (11) into the FT1 linearised expression for 〈y1:N〉, Eq.(9), gives 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+−≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−≈

−−−≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−−+
−

−−=−−

)(ln
1

)ln(
)1ln())ln(ln(

)ln(
)1ln(1)ln(ln

)1ln()ln(ln
1
1lnln)ln(/))ln(ln(

2 N
O

N
AN

N
AN

AN
BAN

ANN γ

  (A.2) 

 
Hence:  γ−=− )1ln( A  as N → ∞ 
Thus: 43584.01 =−= −γeA  as N → ∞ 
 
A.1.2. Coefficient B  
Given the exact value of 〈yN:N〉 = γ + ln(N) for a FT 1 distribution – see (Gumbel 1958, p210), 

where γ = 0.5772157... is Euler’s constant 
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Expanding the inner ln() terms as series gives 
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Hence: B → 1 − e-γ = 0.43854...  as N → ∞. 
 
A.2. Exponential distribution 
A.2.1. Coefficient A  
Substituting the exact expression 〈y1:N〉 = 1/N and Eq. (11) into Eq. (13) gives 
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Expanding both the ln() terms as series gives 
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Hence A/N ≅ 0 for any N where )/1( 2NO is negligible, meaning that A << N. Hence one can 

always take A ≅ 0 and accommodate any residual second-order effects into the value of B. 
 
A.2.2. Coefficient B  
Given that the asymptotic value of 〈yN:N〉 = γ + ln(N) – see (Gumbel 1958, p116), where γ = 

0.5772157... is Euler’s constant  
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Expanding the last ln() term as a series gives 
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Hence: B → 1 − e-γ = 0.43854...  as N → ∞.   
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Appendix B: Improved asymptotic expression for the mean FT1 variate of the 
smallest rank  
 

An improved asymptotic expression for the mean of the smallest ranked value from a FT1 
distribution is derived by expanding Eq. (2) as a series and integrating term by term, as follows.  

From Eq. (2) 
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Let z = t/(N−1) and dz = dt/(N−1), then 
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Now integrating term by term using standard solutions in Gradshteyn and Ryzhik (1969) 
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This expression has one more term than the Gumbel expression and is accurate to the second 

decimal place for N > 20 and to the third decimal place for N > 2000. 
Reference: Gradshteyn, I.S., Ryzhik, I.M., 1969, Tables of Integrals, Series and Products, 

Academic Press, New York. 
 

372




