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Abstract. Traditionally, a quasi steady response concerning the aerodynamic force and moment
coefficients acting on a flat plate while ‘flying’ through the air has been assumed. Such an assumption
has enabled the flight paths of windborne debris to be predicted and an indication of its potential damage
to be inferred. In order to investigate this assumption in detail, a series of physical and numerical
simulations relating to flat plates subject to autorotation has been undertaken. The physical experiments
have been carried out using a novel pressure acquisition technique which provides a description of the
pressure distribution on a square plate which was allowed to auto-rotate at different speeds by modifying
the velocity of the incoming flow. The current work has for the first time, enabled characteristic pressure
signals on the surface of an auto-rotating flat plate to be attributed to vortex shedding.
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1. Introduction

The wind engineering community is coming to realise that the impact loading due to windborne

debris can be of some significance (Holmes 2004). In practical terms the requirement is for the

specification of debris speed (or energy) as a function of debris type and distance of the structure

from potential debris sources. In recent years wind tunnel measurements of debris flight have been

carried out by Wang and Letchford (2003), Holmes (2004) and Holmes et al. (2004). These

experiments included the measurement of debris trajectories and velocities and some comparisons

were made with the results of calculations using the debris flight equations. A significant conclusion

implicit in all these investigations was that, to a large extent, the behaviour of compact and sheet

debris can be taken to be approximately two dimensional, with translations and rotations occurring

mainly in the vertical plane in the direction of the mean wind field.

Baker (2007) has presented a thorough analysis of the two-dimensional debris flight equations.

For sheet debris the situation is more complex and drag and lift force coefficients and pitching

moment coefficients also need to be specified, both as a function of the inclination of the sheet to

the flow, and as a function of the rotational velocity. Tachikawa (1983) showed that, for the sheet at
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an instantaneous angle to the relative flow direction, these coefficients can be regarded as the sum

of the quasi-static coefficients (those measured at a fixed inclination to the flow) and the auto-

rotation coefficients, due to streamline displacement (i.e., the “Magnus” effect). On the basis of the

small amount of experimental data that existed at the time, Baker assumed that the side and lift

force and pitching moment coefficients followed a quasi-steady response. 

Richards et al. (2008) adopted a different approach to Baker and by using simple wing theory was

able to derive a model capable of predicting the mean 3-dimensional motion of plate type debris.

Richards et al. also obtained an extensive series of force and moment coefficient data relating to

plate debris of selected aspect ratios at a wide range of orientations to the oncoming flow within the

University of Auckland’s twisted flow wind tunnel. These data were obtained under static

conditions, i.e., the plates were not allowed to move within the flow and as such it is questionable

how representative these values were compared to those experienced by plates as they fly through

the air. Hence, it was considered appropriate to investigate the aerodynamics of plates during free

flight but also during auto-rotation; it is with the latter that the current work is concerned.

Auto-rotation is a phenomenon of relevance to a variety of different engineering fields and has

been discussed in the past by a number of authors - see for example Riabouchinsky (1935). For

auto-rotating plates, Lugt (1983) identified different forms of autorotation undertaken by windmills

and propellers (axis of rotation parallel to the flow) and airfoils, wings, and flaps (axis of rotation

perpendicular to the flow). The aerodynamics of these elements was studied further by Newmark

(1963), Daniels (1970) and Cohen (1976), whilst the particular case of plates that resemble common

shapes driven by strong winds was studied analytically and experimentally by Dupleich (1941),

Bustamante and Stone (1969), Smith (1971), Glaser and Northup (1971), Iversen (1979), Tachikawa

(1983), and Lugt (1983) amongst others. These contributions have helped to better understand the

complex mechanisms related to auto-rotation and have provided several approaches for calculating

the tip velocity for plates of different shapes. The aforementioned work has influenced other

researchers who have undertaken further experimental and analytical investigations for studying

aerodynamic effects on fixed-axis and free flying rotating elements, see for example, Wang and

Letchford (2003), Holmes et al. (2006), Baker (2007), Richards et al. (2008), Martinez-Vazquez et

al. (2009, 2010) and Kordi et al. (2010). In addition, computational models for studying the

aerodynamics of auto-rotating elements have emerged given the challenge imposed by the complex

non-linear fluid-structure interaction – see for example Lugt (1980), Mittal et al. (2004) and

Andronov et al. (2007). These studies have however been exclusively concerned with two-

dimensional auto-rotation of high-aspect-ratio plates whose wake topology and flow structure has

been found to be qualitatively different from that exhibited by low-aspect-ratio plates mainly due to

the presence of strong tip vortices that interact with the leading edge vortex (see for example Taira

et al. 2009). Computational models of low aspect ratio plate rotation such as Dong et al. (2006)

have previously been presented however these deal with prescribed motions such as those involved

during insect flight (Wang 2005) rather than with free autorotation where plate motion is determined

by the non-linear fluid-structure interaction. Thus, in order to address these limitations, some new

approaches have been developed in the recent years by Kakimpa et al. (2010a,b). In Kakimpa et al.

(2010a), an unsteady computational fluid dynamics (CFD) model is used to simulate the unsteady

non-uniform flow field around a rotating plate similar to that used in the experimental work

reported by Martinez-Vazquez et al. (2010). In order to simulate plate motion, the CFD model is

coupled sequentially with a rigid body dynamics (RBD) (see Kakimpa et al. 2010b,c) that is

globally singularity free for all possible orientations in three dimensions. This coupled CFD-RBD
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approach allows for a more complete simulation of the non-linear FSI involved in autorotation of

flat elements as well as the inclusion of a wider variety of shapes. 

In the current work, the aforementioned CFD-RBD model has been validated against the physical

measurements undertaken by Martinez-Vazquez et al. (2010) and subsequently used to obtain

information on the nature of the wake flow field during auto-rotation. The present investigation

extends the previous work and has two main objectives: firstly, to describe the experimentally

determined pressure field of an auto-rotating square plate, and secondly, to examine the relationship

between the unsteady disturbances outlined in the measured data above and simulated flow field.

The paper is organised as follows: section 2 describes the experimental set up, while Section 3

describes how the corresponding auto-rotational periods and average force coefficients were

estimated by Martinez-Vazquez et al. (2010). Section 4 examines the same experimental data in

non-averaged form in order to examine particular features present in some of the data, and in

section 5, coherent structures observed in the non-average pressure field are hypothesised. Section 6

introduces the CFD model in order to corroborate the existence of such coherent structures in a

three-dimensional computational environment, while Section 7 suggests a link between coherent

structures observed on the plate with vortex shedding observed in the flow field. Finally, appropriate

conclusions are drawn in Section 8.

2. Experimental setting

In the work outlined below, a test-sheet, representing a typical roof cladding panel, was made of

polystyrene. The test-sheet was 1 m square, had a thickness of 0.025 m and weighed 2.7 kg.

Embedded within the test-sheet were 24 pressure sensors, 7 data loggers and 1 gyroscope. The

differential pressure transducers were manufactured by Sensortechnics and had an output voltage and

pressure acceptance in the range of 0.25-4.5 V and 0-2.5 mbar, respectively. The gyroscope was part of

an analogue inertial measurement unit (AccelRate3D) manufactured by Omni instruments. The

maximum acceleration capacity and rate of rotation of the gyroscope was 10 g and 600o/sec

respectively. The unit required a 5 V direct current supply for operation. For the data logger, a portable

card XR440-M manufactured by Omni instruments was considered suitable to work in combination

with the sensors and gyroscope. One data logger was capable of interfacing with up to 4 pressure

sensors or one gyroscope. Each data logger accepted input signals of 0-5 V, in addition to providing a

resolution of 12 bits with a maximum sampling frequency of 200 Hz and a timing accuracy of 0.5 %.

In the data loggers a 9 V battery is used which is also sufficient to power the pressure sensors and

gyroscope. The general characteristics of the experimental test-sheets are shown in Fig. 1(a).

The supporting system for the test-sheet (Fig. 1(b)) consisted of two metallic frames of height 1.5

m. Each support had a vertical plate at the top extreme where an aluminium frame which was

attached to the polystyrene test-sheet could be inserted using a pin connector. During the tests,

rotation around the z axis was permitted whilst any other degree of freedom remained restricted.

The angle formed between the plate and the horizontal plane, is defined as the pitch angle. The

experiments were carried out in the Twisted Flow Wind Tunnel at the University of Auckland in

New Zealand, using uniform wind speeds of U = 5, 7.5 and 10 m/s and turbulence intensities within

the range of 2% - 3% at 1.5 m above the ground. The duration of each experiment was of ~120 s

and the data was recorded at 200 Hz. Further details about the experiment can be found in

Martinez-Vazquez et al. (2009, 2010).
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3. Auto-rotational periods

As outlined previously, the experimental data used for the present investigation has been discussed

in ensemble averaged form in Martinez-Vazquez et al. (2010), where a parametric analysis was

undertaken and relevant aerodynamic effects were discussed. In that work, the test-sheet was

released at a pitch angle α ~ 15o from its horizontal position, passing the transition stage (the

interval between the position of release and stable auto-rotation) within approximately 30 s. Every

auto-rotational test lasted about 107 seconds, i.e., 30 s for the initial start of the wind tunnel plus 77

s which covered the auto-rotational event. Only the last 30 seconds were considered for analysis in

order to guarantee that the flow was fully developed and the board was under stable autorotation.

Fig. 2 shows a typical five-second time window which illustrates the variation of the normal

pressure coefficient defined as CNP = P / 0.5ρU2 (where P represents net pressure across the test-

sheet and ρ is the air density) during a typical run. In this figure, the variation of CNP with respect

to time is illustrated for four sensors located at the corners, i.e., #1, #5, #20, and #24 and sensor

#13 which was located at the centre of the board (c.f. Fig. 1). 

Fig. 1 (a) Logging system configuration and (b) bearing plus reference system - (distances in m)

Fig. 2 Five-second series of net pressure coefficients at four sensors on the board, U = 7.5 m/s
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Computation of the normal force coefficients defined as CN = F / 0.5ρU2A – where F and A

represent the total force induced by the surface pressures and area of the plate respectively, was

achieved through an integration of the net pressure coefficients over A. The force coefficients were

then observed on an ensemble-averaged characteristic cycle from where the following average

rotation periods were inferred: 2.06 s, 1.36 s, and 1.11 s, for wind velocities of U = 5, 7.5, and 10

m/s, respectively (Martinez-Vazquez et al. 2010). The rotational frequency (n0) for each case is

0.485 Hz, 0.735 Hz, and 0.90 Hz. The corresponding Strouhal number (defined as St = n0 L / U -

where L represent the chord length of the test-sheet) are 0.097, 0.098, and 0.09, whilst the Reynolds

number, (Re = ρUL / µair – where µ represents the dynamic viscosity of air) ranged between 3.4 ×

106 − 6.8 × 106.

4. Non-averaged pressures

A detailed description of the cyclical variation of the pressure field can be observed in Fig. 3,

where the experimentally determined CNP per sensor / per cycle is shown. In these plots, the value

of CNP is represented (along the vertical axis) for a set of angles covering half-cycle at intervals of

30° measured from the horizontal position of the test-sheet, i.e., α = 0o for U = 7.5 m/s (similar

patterns are observed for U = 5, 10 m/s but for the purposes of brevity are not illustrated). Note that

there are 24 sensors and 18 cycles represented in each case and that those values of CNP < 2.5 are

represented by dark colours. The cyclical variation of CNP observed in this figure has been evaluated

Fig. 3 CNP experimentally determined per sensor / per cycle at different angular positions of the test-sheet,
for U = 7.5 m/s
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in previous work (Martinez-Vazquez et al. 2009) where the same experimental setting as the one

reported here was used to measure autorotational forces. In that investigation, the variation of

subsequent peaks was interpreted in terms of the index Iv =  (where µ and σ represent the mean and 

standard deviation of the total area under the pressure peaks shown in Fig. 2). The value of Iv
estimated in the aforementioned work did not exceed 2% which suggested that the general features

observed in each cycle were similar. 

It can be observed in Fig. 3, that during the half-cycle the normal force is mainly concentrated at

the leading edge, i.e., the top of the test-sheet (sensors #1 to #5). It is also worth noting that at α =

90o the pressure distribution is not uniform but rather more asymmetric than the one observed at α

= 30o and 60o. At angles around 150o, the pressure distribution is such that the net torque tends to

act in order to stop the rotational motion (retarding torque as defined by Lugt 1983), however the

level of pressures does not reach those observed at α = 90o, whilst their lower limit is observed at

pitch angles of around 180°. The asymmetric pressure distribution described above, results in a net

torque after each half-cycle, which ultimately appears to induce stable auto-rotation. 

In Fig. 4, the normal force coefficients (CNP) have been represented over the surface of the test
sheet. The data corresponds to one cycle only (cycle 17) and is shown for the set of angles

presented in Fig. 3. The coordinates (y, z) in Fig. 4, define the surface of the test-sheet which is
bounded by the location of the pressure sensors, i.e., -0.45 < y < 0.45 and −0.45 < z < 0.45 (see Fig.
1) – where (y = 0, z = 0) defines the geometrical centre of the test-sheet. The values associated with

each contour correspond to the magnitude of CNP which for the regions between pressure sensors

were determined by using cubic interpolation. 

Fig. 4 shows more explicitly the pressure distribution shown in Fig. 3. The high pressure observed

σ

µ
---

Fig. 4 CNP corresponding to one cycle (cycle 17) represented over the test-sheet, for U = 7.5 m/s



Pressure field of a rotating square plate with application to windborne debris 515

at the leading edge for α = 30o is rather concentrated over its central region with a relatively smooth

transition towards the bottom edge where values within the interval 0 - 1 are observed. A relatively

similar pressure distribution is observed for α = 60° but with larger magnitudes of CNP for example

at the sides of the test-sheet. The high concentration of pressures at the sides becomes more clear

for α = 90° where pressure peaks in the interval 3 < CNP < 4, dominate. At α = 90o, there also

appears a region of low pressure at the bottom edge, which is more pronounced around the centre.

The pressure configuration at α = 60° and α = 90° is not unlike that observed at α = 120o although

in the second case the higher pressures at the sides diminish and the peaks appear to concentrate

along the upper and bottom edges. At α = 150° the values of CNP decay all over the surface tending

to values approaching to zero at α = 180°, when the test-sheet reached the horizontal position after

half-cycle. 

5. Rate of change

The experimental data discussed above was examined further cycle by cycle for each sensor. The

non-averaged data revealed the existence of local disturbances which appeared at different angular

interval depending on the location of the sensor on the test-sheet. Figs. 5 and 6, show examples of

Fig. 5 Pressure disturbances registered by sensor # 5, for U = 5 m/s

Fig. 6 Pressure disturbances registered by sensor # 24, for U = 10 m/s
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this for the data recorded by sensors #5 and #24, for wind velocities of U = 5 m/s and 10 m/s,

respectively. In these figures, the average force coefficients estimated by using all cycles registered

with each sensor have been included for comparison.

Fig. 7 illustrates that the angular interval in which the local disturbances appear do not vary with

the velocity of the incoming flow. In Fig. 7, data relating to sensors located at bottom (corners) is

shown for U = 5, 7.5, and 10 m/s. 

The highlighted regions in Fig. 7 correspond to angular intervals of 30o - 60o and 240o - 270o, i.e.,

at an angle of ca. 60° from the start of each half cycle. It can be observed that the characteristic

signatures do not occur at specific angles but rather within certain angular intervals suggesting that

whatever flow feature is causing these disturbances is unsteady.

As discussed above, the ensemble-average data from all sensors tends to eliminate the unsteady

pressure fluctuations. Thus, in order to evaluate the local disturbances shown in Fig. 7, the rate of

change (R) of the series of fluctuating normal force coefficients, converted to zero-mean processes,

were examined on a cycle by cycle basis as described below.

The value of R was obtained by using samples of data formed by a number of points covering

between 7 - 15° within a cycle, i.e., more than one iteration was made. Each sample was separated

by one data point (p), for example, si = {pi, pi+1 . . , pi+Q}; si+1 = { pi+1 . . , pi+1+Q}; etc., where si,

si+1, are consecutive samples and Q+1 is the number of points included. A straight line was then

fitted to each series so that its slope was associated to middle point on each case. In this study, a

value of Q = 3 was finally used, although for the sake of generality, all equations are presented here

in terms of the variable Q.

In Eq. (1), Rα denotes the rate of change of the pressure fluctuations with respect to the rotational

angle (α), and  is the average zero-mean pressure coefficient estimated for each data sample

defined above. The domain of the pressure fluctuations (Ψ ) can thus be defined as formed by the

surface of the rotating test-sheet, which is bounded by the linear and angular coordinates −0.45 m <

y < +0.45 m; -0.45 m < z < +0.45 m; 0 < α < 360o. The upper and lower limit of (y, z) is given by

the largest distance of any sensor with respect to the geometric centre of the test-sheet in a

Cartesian reference system. The general form of R, namely, the rate of change of pressure

fluctuations projected onto Ψ, is thus given by Eq. (2) below.

ĈNP

Fig. 7 Pressure disturbances registered by sensor #20 and #24, for U = 5 m/s, 7.5 m/s, and 10 m/s
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(1)

(2)

 In physical terms, Rα describes how quick the disturbed pressures change (for example by taking

as a reference the local mean) when one moves in the direction of α. This enables the extension

(within Ψ ) of the characteristic signatures shown in Figs. 5 -7 to be determined.

In addition, the cross correlation of the data samples defined above, amongst all sensors (centred

at an angle α) was calculated. This correlation is defined in Eq. (3) - where EQ [.], σw
Q represent

the expected value and rms of the group of Q+1 data points pw,i, respectively. In this case, w

identifies the sensor, i.e., w = {1...W = 24} whilst pw,q is the q-th point in the data sample swi =

{pw,i, pw,i+1 . . , pw,i+Q}. In Eq. (3), the subscript α identifies the angle within the range 0 < α < 360
o

at which the corresponding data sample is centred, whilst j, k identify the sensors for which Cjk-α is

being estimated.

(3)

The definitions given by Eqs. (1)-(3) have been used in order to infer the existence of coherent

structures in the domain (Ψ ). Thus, we have assumed that a coherent structure would be

characterised by a region in Ψ where correlated peak values of R occur. In the current work, a

coherent structure is simply defined as a region of organised ‘fluctuations’ (characteristic signatures)

that are distinct from the average variations and occur solely in the pressure field on the flat-plate.

To avoid confusion, regions of repeating patterns which occur in the flow field are termed vortex

structures or vortex shedding (see Section 7).

As observed in Fig. 7, pressure fluctuations occur at different angles on each cycle. Thus, the

peak values obtained by using Eq. (1) fall into different values of α within Ψ. This is illustrated in

Figs. 8-10, for sensors #5 (upper right corner), #13 (centre), and #20 (lower left corner). Note that

since these results were estimated by using zero-mean processes, the average value of Rα over all

cycles equals the rate of change of the average series, i.e., zero.

It can be seen in these figures that the peak values of Rα are concentrated in specific angular

intervals. These are for example 60o < α < 90o and 240o < α < 270o, for sensors #5 and #20,

respectively. The results shown in Figs. 8-10 suggest that, coherent structures in the domain Ψ

R
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Fig. 8 Parameter Rα estimated for all cycles registered at sensor #5, for U = 7.5 m/s
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would be observed at different angles on each cycle and that such structures are more likely to be

observed at the periphery of the test-sheet than at its geometrical centre – see Fig. 9. Moreover,

according to Eq. (2), such structures would be identifiable by plotting the estimated value of Rα on

the plane (y, z), defined by the coordinates of each sensor on the test-sheet, i.e., from these plots the

value of Ry,z,α can be inferred. This is presented in Figs. 11 and 12 for a series of combinations (k,

α), where k is the k-th cycle registered during the autorotational tests for U = 7.5 m/s and α is the

angle where the peak Rα was observed. In these figures, the correlation parameter shown

corresponds to one of the sensors located in the region of peak values of Rα.

Fig. 9 Parameter Rα estimated for all cycles registered at sensor #13 for U = 7.5 m/s

Fig. 10 Parameter Rα estimated for all cycles registered at sensor #20 for U = 7.5 m/s

Fig. 11 (a) Value of Rα estimated at α = 84° during cycle 15 and (b) correlation parameter defined for sensor
#10, for U = 7.5 m/s
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Figs. 11 and 12 illustrate regions where peak values of Rα are combined with local high

correlation. Fig. 11(a) which corresponds to α = 84o (cycle 15) shows peak pressures which

concentrate at the corners and are more clearly at the upper sides. Fig. 11(b) shows that the sensor #

10 appears to be highly correlated with sensors located around it but also with those distributed over

the upper left quadrant where high values of Rα are also observed in Fig. 11(a). Fig. 12(a) presents

similar patterns. In this case, peak values of Rα are observed at the lower corners from where a

coherent structure would be identified at the left hand side. The cross correlation in Fig. 12(b)

corresponds to sensor #17 which falls within this region of peak Rα’s – see locations in Fig. 1. From

this figure, it can be seen that although there is a local correlation around sensor #17, its high

correlation with sensors located at the right corner suggest that the pressure disturbances described

by Rα would be occurring at similar rates at both corners. 

Figs. 11 and 12 show examples of peak values of Rα that are accompanied by high local

correlation. However, as stated above in this section, such combination occurs at different angles on

each cycle, apparently due to the unsteadiness of this phenomenon. A general view of the different

regions where the coherent structures (as defined by Eqs. (1)-(3)) are located during the auto-

rotational event can be given by averaging the absolute value of Rα registered in all cycles for all

sensors. These results, are shown in Fig. 13, for the angular regions centred at α = 60o, 90o, 240o,

270o, which are the angular positions within a cycle where the highest disturbances given by Rα

have been observed during the autorotation of the test-sheet.

In Fig. 13 the regions where coherent structures have been identified become more evident. These

are consistent with regions of high disturbance shown in Figs. 8-10 as well as with the areas in

which coherent structures corresponding to one cycle only have been observed, as illustrated in

Figs. 11 and 12. Note that since these structures have been defined as to be contained within the

domain Ψ, they refer directly to the pressure field. 

It is perhaps worth reflecting that the experimental data outlined above does not provide direct

evidence of the relationship between the pressure and the flow field. In addition, although coherent

structures (as defined above) have been identified on the test-sheet, the “traditional” view of

coherent structures tends to conjure images of organised eddies within the flow. Hence, to ascertain

if patterns observed above do indeed result in a ‘traditional’ type of coherent structure, information

Fig. 12 (a) Value of Rα estimated at α = 270o during cycle 10, and (b) correlation parameter defined for
sensor #17, for U = 7.5 m/s
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relating to flow field surrounding the rotating test-sheet is required. At the time of undertaking the

experiments it was not feasible to obtain this information. Thus there are a number of open

questions. For example, to what extent are the characteristic signatures (explained above in terms of

the rate of change) due to turbulence and what can be attributed solely to vortex shedding? While it

is not possible to fully answer these questions given the experimental restrictions, it is worth

considering the following hypothesis: coherent structures that can be identified in the flow field,

which result from the auto-rotational motion of the test-sheet (e.g., vortices), are also identifiable in

the pressure field. In order to prove or disprove this hypothesis and to provide an insight into the

flow field, a CFD model has been developed and is outlined in the next section. 

6. CFD model

The CFD modelling has the following two objectives for the present paper:

• to establish a general comparison with the experimental data in the time and frequency domains,

and thus,

• to support, or reject, a potential relationship between the coherent structures identified in the

pressure field and those in the flow field.

Fig. 13 Value of |Rα| estimated for different angular positions during a characteristic cycle
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A computational fluid dynamics model of flat plate auto-rotation after Kakimpa et al. (2010a) has

been used to simulate the unsteady-flow structures in the environment of the 1 m square plate,

resembling that used in the experimental measurements. The plate was allowed to autorotate in a

uniform, steady wind stream. Fig. 14 illustrates the 3D computational domain of dimensions

7 m × 7 m × 12.5 m. The plate and domain boundaries were modelled as walls with the no-slip

condition applied, while the inlet was modelled as a constant velocity inflow boundary and the

outlet as a constant pressure outflow boundary. Mean wind speeds of 5, 7.5, and 10 m/s were used

for the fixed-axis auto-rotational simulations.

The domain was split into a spherical inner region that rotated monolithically with the plate in the

auto-rotational simulation, and an outer region which remained stationary. The two regions were

connected through a non-conformal sliding interface boundary. A quaternion based rigid body

dynamics (RBD) model, described in Kakimpa et al. (2010b) was used to compute the rotational

velocity of the inner region at each time step. The domain has been discretised using a structured

hexahedral mesh of approximately 6 x 105 cells, with mesh refinement close to the plate boundary

layer. The first layer of cells close to the plate has a cell spacing of approximately 0.01 m and a cell

size growth ratio of approximately 1.2, away from the wall boundary. Grid sensitivity studies were

carried out to ensure grid independence of the results.

Commercial CFD code ANYSYS FLUENT (Fluent Inc. 2006) was used to solve an arbitrary

lagrangian-eulerian formulation of the 3D incompressible Navier-Stokes equations (Sarrate et al.

2001) by using a finite volume method. The realizable k-ε turbulence model (Shih et al. 1995) was

used for turbulence modelling with an enhanced wall function. For the simulations presented in this

paper, the inlet turbulence intensity and length scale were limited to 1% and 0.02 m, repectively,

which corresponds to typical wind tunnel values (ESDU 1970). Second order upwind spatial

discretization was used of the momentum, turbulent kinetic energy and turbulent dissipation rate

with standard interpolation for the pressure variable. The SIMPLE algorithm was used for pressure-

velocity coupling and second order implicit time-stepping scheme was used for the temporal

discretisation.

6.1 Validation of CFD model in the frequency domain

The normalised spectra defined as nSp / σp
2 (where n represents frequency; σp

2 is the variance of

the process and the sub index p indicates pressure) of the data series at all sensor locations for U =

5, 7.5, and 10 m/s, was estimated using experimental and CFD data. The experimentally determined

Fig. 14 3D computational boundaries and dimensions used in the CFD model
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spectra for U = 7.5 m/s is shown in Fig. 15. It can be seen that, the main peak of the spectra

corresponds to the fundamental frequency of rotation (n0) which has been estimated as of 0.735 Hz.

The patterns observed in this figure (e.g., the spatial distribution of peaks), are similar for the

spectra estimated for U = 5 and 10 m/s whose values of n0 were found to be 0.485 and 0.9 Hz

respectively. 

Fig. 15 shows that most of the energy quantified from the spectra appears to be contained in the

first four peaks. According to the experimental data, these peaks concentrate at least 95 % of the

total energy for U = 5, 7.5, and 10 m/s. It is also observed that the spectral ordinates from the first

peak tend to increase in the region that is located around the geometrical centre of the test-sheet

(sensor #13). In Fig. 16 the spectra computed for the experimental data are compared with those

Fig. 15 Normalised spectra of experimental data for all sensors (#1 – #24), for U = 7.5 m/s

Fig. 16 Normalised spectra for sensors located at the centre of the top and bottom rows (a) and for sensors
located at the sides (b), for U = 5 m/s
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from the CFD data for U = 5 m/s.

Fig. 16 illustrate that the frequency associated with the higher-order peaks appears to be multiples

of the fundamental frequency in both the experimental and CDF data. There are slight differences in

the fundamental frequencies, which for the CFD case were estimated as of 0.43, 0.71 and 0.95 Hz

for U = 5, 7.5, and 10 m/s, respectively. Thus, the difference with respect to the experimental data

is of ~12.8 %, 3.5 %, and 5.5 % respectively. The total energy estimated to be contained in the first

four peaks of the CFD spectra is of ~98%, i.e., 3% higher than its experimental equivalent.

Although Fig. 16 show that the CFD spectral density appears to be distributed over a higher number

of peaks, characteristic patterns observed in the experimental data seem to be reasonably well

reproduced. For example, the relationship in amplitude between the second and third peaks in

sensors located at the leading edges and sides which are shown in Fig. 16.

6.2 Validation of CFD model in the time domain

The average force coefficients per sensor that results from both the CFD and experimental data

were compared. The surface pressures occurring on opposite faces of the CFD plate model were

subtracted to define the net pressure which was then phase-averaged over a number of cycles to

give the differential pressure signals equivalent to those presented in Fig. 3 for the experimental

case. The values of CNP were then compared as shown in Fig. 17 for a selected group of sensors,

i.e., sensors #3 (upper row), #13 (geometrical centre), #18 (centre of second bottom row), and #23

Fig. 17 Experimental and CFD phase-averaged differential pressure coefficients (CNP) for various sensors
obtained during the, U = 5 m/s test
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(bottom row). Note that the data is being represented in angular (rather than in time) coordinates in

order to be consistent with the presentation of force coefficients provided in previous sections.

It is observed in this figure that the overall peaks are located at slightly different values of the

pitch angle (α), although the amplitude of the normal pressure coefficients is comparable. It is also

noticeable that curves of CNP inferred from the CFD model show some disturbances – see sensors

#3 and #23, which would be equivalent to those presented in Figs. 5-7 for the experimental data. In

the CFD model, such disturbances were observed at similar rates in each cycle for well defined

angular intervals. The curves that correspond to the experimental case do not show such

disturbances at the same rate because of the averaging process. Thus, in order to establish a

qualitative comparison, the analysis of the rate of change presented in section 5 (experimental) was

repeated using CFD data series. The result of this is shown in Fig. 18 in terms of |Rα|, which can

then be compared to those presented in Fig. 13.

Fig. 18 (CFD) shows similar patterns to Fig. 13 (experimental). That is, at α = 60o, the highest

rate of change occurs in the region around the corners whereas at α = 90o, the peak rate of change

is observed at the sides near the upper corners (with the highest values obtained from the CFD

model). For α = 240o, coherent structures appear to concentrate at the bottom corners and at the

centre, and at α = 270o peaks seem to occur at the bottom half, more clearly towards the sides. 

Fig. 18 Value of |Rα| estimated by using CFD data for different angular positions during a characteristic
cycle, U = 5 m/s
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These results seem to validate (for the current purposes) the CFD model. The evidence presented,

indicate that coherent structures become more explicit at certain intervals within the auto-rotational

domain, for example at angular ranges centred at α = 60o, 90o, 240o, and 270o. In the following

section, it is shown that vortex shedding appears to occur at similar angular ranges. Although it is

acknowledged that this simple fact does not prove a cause-effect relationship between the observed

pressure disturbances and vortex shedding, it does not disprove the hypothesis. 

7. Vortex shedding

In the past, auto-rotation of flat elements has been related to vortex shedding (Bustamante and

Stone 1969, Smith 1970, Iversen 1979, Lugt 1983). For example, Bustamente and Stone (1970),

Smith (1970), and Iversen (1979) suggested that autorotation of wings of symetrical cross section is

due to a large vortex shed from the retreating face, whilst Lugt (1983) pointed out that the flow

patterns are essentially independent of the Reynolds number (which seems to be supported by the

experimental measurements presented in this paper). The CFD model discussed in the previous

section, suggests that vortex shedding is present in the case study under discussion. This is shown in

Figs. 19 and 20, where the 1 m square plate has been represented within the compuational

environment at various angular positions during a cycle.

In Fig. 19, the vortex shedding appears to be locked to the frequency of rotation at the point of

stable autorotation. The flow is characterized by a pronounced leading-edge vortex that forms and

remains attached to the plate’s retreating edge (upper edge) and is eventually shed into the wake.

This attached vortex, which has been observed to create artificial lift during insect flight (Wang

2005) and in the auto-rotation of Maple seeds (Lentik et al. 2009), is attributed to the low pressure

vortex core close to the plate that amplifies the differential pressures at the retreating edge of the

plate. The advancing edge (lower edge) of the plate has shown weaker vortices that form due to

stretching and roll-up of the vortex sheet at the trailing edge, and are quickly shed. The plate is

observed to roll over the trailing edge vortex sheet, however due to the stronger influence of the

stagnation pressure at the front, the effect of this on plate pressures appears to be negligible.

Fig. 20 illustrates the full three-dimensional flow structure behind the wake and shows that in

addition to the leading edge vortex, two counter-rotating tip vortices of equal strength are also

present in the flow. Tip vortices play a central role in delayed stall (compared to high aspect-ratio

plates) by creating significant down-wash that supports the stable attachment of the leading edge

vortex. A similar mechanism has been observed in low-aspect-ratio translating flat plates (Taira et

al. 2009). 

Through a complex interaction between the tip vortices with the leading edge vortices, the

shedding of hairpin vortices is observed. These tip vortices are present at low angle of attack, and

grow in strength as the angle of attack increases, contributing to the large differential pressures

close to the side edges of the plate at higher angles of attack. Eventually, these tip vortices are shed

into the wake as vortex tubes of significant helicity.

8. Conclusions

This investigation has described the distribution of pressures on different regions of an auto-
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Fig. 19 Vorticity magnitude (|ω|) contours from CFD results, showing vortex formation and shedding at the
leading and trailing edges at different angles of attack during a rotational cycle
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rotating plate. The non-averaged pressure field has shown asymmetries of the pressure distribution

in the direction of auto-rotation which result in a net torque after each cycle that would contribute

to stable autorotation. The lack of symmetry of the pressure configuration was also observed in the

frequency domain via the corresponding power spectra. The spectral analysis showed regions

located at the edges of the auto-rotating element which registered higher-order pressure components

which were not observed (at least not at the same rate) at the centre of the plate. It was also

noticeable that most of the energy was input to the plate at the frequency of auto-rotation. The

relatively high values of the experimental force coefficients combined with a low index of variation

(of about 2%) of subsequent peak pressures observed during stable autorotation suggested the

occurrence of a lock-in effect in the experimental case study. This seemed to be confirmed by the

CFD model where vortex shedding apparently locked-in to the rotational frequency was observed.

On the other hand, the non-averaged pressure field also revealed the existence of unsteady pressure

disturbances which concentrate at the edges of the auto-rotating plate. The analysis of those

disturbances enabled coherent structures in the pressure field to be identified. Coherent structures

would be characterised by a high speed of variation with respect to the pitch angle of the surface

pressures located within a finite region, combined with a high local cross correlation of the pressure

signal. The CFD simulation also reported pressure disturbances and coherent structures that are

similar in location and extent to their experimental equivalent. The agreement between the CFD

model and the experimental data enabled a cause-effect relationship between the coherent structures

and vortex shedding to be suggested. That relationship requires further validation so that the energy

transfer between the flow and the pressure field can be fully established, and each component (e.g.,

those induced by vorticity or turbulence) is specified in the time and frequency domains. Further

research, involving combined plate pressure and wake flow measurements is thus recommended in

order to validate the suggested relationship.
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Fig. 20 Instantaneous iso-surfaces of vorticity magnitude (|ω|) = 25 s−1 at; (a) , (b) ,
(c)  and (d) , showing the evolution of flow structures in the wake of an
autorotating plate. Flow is mainly characterized by a leading edge vortex and two tip vortices that
form and are shed into the wake during each cycle (Kakimpa et al. 2010c)
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