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Abstract. Bridge hanger vibrations have been reported under icy conditions. In this paper, the results
from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger
with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for
wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between −5°C and -
1°C. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and
fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is
also examined. The static force coefficients are used to predict parameter regions where aerodynamic
instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-
DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison
between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic
tests is presented. It is shown that, although there is good agreement between the instabilities found
through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible
inability of quasi-steady theory to fully predict these vibrational instabilities.

Keywords: circular cylinder; bridge hangers; ice accretion; wind tunnel tests; aerodynamic instability;
low temperatures; quasi-steady aerodynamics

1. Introduction

Several recently observed vibrations of bridge hangers have been attributed to the formation of

thin ice on the outer surface of the hanger (Gjelstrup et al. 2007). Although, this is not necessarily a

new phenomenon, little research has been undertaken on the effects of ice on the vibrational

stability of cables, or other circular sections, for wind velocities below 30 m/s and temperatures

aboveows −5°C  (Lozki et al. 1983a, Lozowski et al. 1983b, Hansman et al. 1993, Anderson et al.

1998). 

There are two traditional industries for which ice accretion of cylinders is of importance; the

telecommunication and power line industry, and the aerospace industry. For the aerospace industry,

temperatures of −5°C to −1°C and wind velocities lower than 30 m/s are of little or no interest. For

the telecommunication and power line industry, cables are usually of very small diameter.
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Furthermore, even though several studies involving real and simulated ice accretions on circular

power lines have been reported(Nigol and Clarke 1974, Hack 1981, Nigol and Buchan 1981, Nigol

1981, Jamaleddine et al. 1993, McComber and Paradis 1995, Chabart and Lilien 1998, Gurung et

al. 2002, Phuc 2005, Shimizu 2005, Kudzys 2006, Fo-chi et al. 2009, Dalle and Admirat 2010,

Wang et al. 2010), the meteorological conditions associated with these cases differ from the

situations in which large bridge cable vibrations have been reported.  

To compensate for the lack of experimental data on the ice accretion of circular cylinders, under the

aforementioned meteorological conditions of interest, a series of cylinder icing tests was undertaken at

the NRC Institute for Aerospace Research, Altitude Icing Wind Tunnel Facility (AIWT), in Ottawa,

Canada (Gjelstrup and Georgakis 2009, Koss et al. 2012).  Several of the accreted ice shapes found

from this research, together with one previously reported by Lozowski et al. (1983b), were

reproduced employing a rapid prototyping technique and used for both the static and dynamic wind

tunnel tests on an example cylinder. The static tests provided force coefficients that were used for

the prediction of regions of vertical aerodynamic instability, by applying an adapted theoretical 3-

DOF quasi-steady galloping instability model proposed by Gjelstrup and Georgakis (2011), in which

the along-flow degree-of-freedom was constrained. The dynamic tests were used to experimentally

determine regions of aerodynamic instability, noting that the dynamic wind-tunnel rig was only

capable of movement in two degrees-of-freedom, namely allowing for cross-flow displacements and

axial torsion. For all of the tests, the wind flow was perpendicular to the cylinder.

The results from both the static and the dynamic tests, together with a comparison between the

theoretically determined regions of aerodynamic instability and those determined experimentally, are

presented herewith.

2. Ice shapes considered for testing 

Several shapes of ice accretion were initially considered for testing. Four ice shapes, either as

reported in literature by Lozowski et al. (1983b) or as determined by a series of tests presented in

Gjelstrup and Georgakis (2009) and Koss et al. (2012) were finally chosen. These were based either

on their resemblance to previously witnessed bridge hanger ice shapes that might have led to

associated cable vibrations or those that are most likely to form under the most prevalent

meteorological conditions.  The variation in ice shape is predominantly due to five parameters, the

liquid water content (LWC) of the air, the mean wind velocity (U), the external temperature (Temp),

the accretion time (Time) and the diameter (D) of the cylinder. The variation on these parameters

for each shape is provided in Table 1 and a photo of ice shape II, as obtained during wind tunnel

tests, is shown in Fig. 1. 

The cylinders tested in the wind tunnel were 960 mm long leaving a gap of 20 mm between the

cylinder and the wind tunnel vertical walls. The ends of the cylinder were closed with metal fittings,

sealing the cylinder at both ends. No endplates were used. Note that for all the tests, the base

cylindrical cross section was Db = 70 mm in diameter. All the simulated ices shapes used in the

wind tunnel experiments can be seen in Fig. 2, where shape I is reported by Lozowski et al.

(1983b) and shapes II and III originating from the test series reported by Gjelstrup and Georgakis

(2009) and Koss et al. (2012). Finally simulated ice shape IV is defined below in section 3.

Ice shapes II and III were documented by melting a thin channel of ice (Fig. 1), to which a piece of

cardboard was placed perpendicular to the cylinder, whereupon the ice surface was traced by pencil.
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Table 1 Characteristics for ice shapes I-IV

 ice 
shape

 LWC  U  Temp  Time  mean ice thickness  ice thickness at the stagnation point

 [g/m3]  [m/s]  [oC]  [min]  [% of diameter]  [% of diameter]

I  0.4  30  −15  5  6.2  10.0

II  0.4  20  −2  30  1.4  1.6

III  0.4  10 −1  30  1.4  1.5

IV
 cylinder with simulated ice:
2 mm thick at the stagnation 

point
 2.3  2.9

Fig. 1 Photo of ice shape II obtained during a wind tunnel test (left) and melted channel of ice for tracing
the ice shape (right)

Fig. 2 Ice accretion shapes according to icing conditions presented in Table 1.  indicates the center
of the cylinder and “ → ” indicates the stagnation point of the section from which the 0o angle
is defined. The positive change in wind angle-of-attack is counterclockwise. The dotted line
illustrates the cylinder boundary behind the ice accretion. In all cases, the cylindrical section
has a diameter of 70 mm.
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The coordinate system and sign convention used for all the experiments performed in the wind

tunnel is presented in Fig. 3.

3. Simulation of ice accretion

For lack of availability of a specially designed climatic wind tunnel, simulated, and not real ice,

was used for the static and dynamic wind-tunnel tests described herewith. Consequently, ice accretion

shapes I-I V was reproduced using a non-melting material and a rapid-prototyping (3-D printing)

technique. The accretion was printed as additional pieces that could be glued on to the base cylinder

longitudinally. The simulated ice consists of five printed segments, each with a length of 192 mm.

The printing leads to a cross-sectionally consistant ice shape, but with inevitable print lines

(striations), which, due to the printing direction, were perpendicular to the length axis of the model,

i.e., parallel to the direction of the flow (see Fig. 4). These printing lines are a result of the printing

process, which involves continual adding of a small layer of material on top of the previous layer.

This is done in the model axis direction, resulting in the printing lines that can be seen in Fig. 4.

The striations leave a relatively rough surface that was not explicitly measured using roughness

measurement equipment, but that is visually and texturally equivalent to an ISO/FEPA grit

designation of P150 or slightly higher, (ISO 6344-2:1998). The surface roughness was considered

beneficial, as it is known to shift the critical Reynolds number region to lower wind velocities

Fig. 3. Sign convention and model coordinate system

Fig. 4 Surface texture of rapid prototyping on a test print: original surface (left) and surface treated with
sand paper to visualize the printing lines (right)
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(ESDU 1986), allowing for the evaluation of the cylinder performance beyond the critical Reynolds

number range. Furthermore, at least two distinct levels of roughness could be tested by treating the

surface with different layers of varnish in order to obtain a smoother surface. For the experiments

presented in the present paper, “rough” model surface refers to the originally manufactured surface,

whilst “smooth” refers to the model surface that has been treated with four layers of varnish.

A photograph of the simulated ice accretion using rapid-prototyping is shown in Fig. 5 (right).

The specific accretion is based on a simulated ice shape IV and has a mid-point (stagnation point)

thickness of 2 mm. For the specific shape, the thickness of the prototyped ice accretion zeroes at

±80o from the stagnation point. The ice thickness, t, as a function of angle from stagnation point can

be expressed as

where, r is the base cylinder radius, tmax is the ice stagnation thickness and α is the angle. The

definition of the variables in Eq. (1) can also be found in Fig. 5 (left).

4. Testing facility and instrumentation

The experiments on the cylinders with simulated ice accretion were performed at the Closed

Circuit Wind Tunnel (CCWT) facility at FORCE Technology, Lyngby, Denmark. The CCWT has a

test section with a height of 0.70 m and a width of 1.00 m. In the configuration used, the wind

tunnel has a maximum wind velocity of approximately 60 m/s for smooth flow, i.e., with a

turbulence intensity of Iu  1%. The maximum wind velocity drops to approximately 35m/s for

turbulent flow, i.e., an along-wind turbulence intensity of approximately Iu = 6%-7%.

 In order to produce turbulent flow, a grid (Fig. 6) was placed in the wind tunnel at a distance of

0.84 m upstream of the models, as indicated in Fig. 7. The dimensions of the turbulence grid can be

seen in Fig. 6, where A and B is the height and width of the square hole in the grid and C is the

width of the wooden elements comprising the grid. 

The instrumentation used for the experiments can be split in to two groups centred around the

type of test rig used. The wind velocity was measured with a pitot tube, which was located in the

middle of the test chamber’s cross-section and placed 0.5 m upstream of the tested models.

The section model was suspended between two 3-DOF force gauges with a 12bit A/D resolution,

t r– tmax*  cos α( ) tmax

2
– r

2
tmax

2
* cos α( )+ +( )+ +=

Fig. 5 Cross-section of model with ice (left) and simulated ice strip produced by rapid prototyping (right)
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Force was measured about the cylinder axis (moment) and along the two orthogonal directions, x and y. 

The dynamic rig consists primarily of 4 springs, which allow the simulation of the vertical and

torsional oscillations of a section model. Model vibration frequencies are adjusted by varying the

spring length, and the spring spacing. Adjustment of model mass and mass moment of inertia is

achieved through the addition or subtraction of mass to the dynamic test rig arms.

The displacements and rotations of the section model were measured using four optical

Fig. 6 Dimensions of the turbulence grid (left), Picture of the turbulence grid and pitot tube location (right)

Fig. 7. Cross-section (top) and plan view (bottom) of the wind tunnel test section showing the vertical and
horizontal positions for the wind-profile measurements
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displacement sensors (ODSs) and four accelerometers were used for backup measurements. The

ODSs have a measuring range of max ± 20 mm about a centered position with a resolution of

0.02 mm. 

5. Wind profile measurements

Due to potential flow asymmetry and variable wall friction that wind tunnels often exhibit, it was

deemed necessary to map the wind profile of the wind tunnel in the velocity range of the planned

experiments. The map of the wind profile was generated at five different heights in order to have a

detailed picture of the wind velocity profile that either a static or a dynamic model would be

subjected too. The measured wind velocity profiles are used when calculating the aerodynamic drag,

lift and moment coefficients, so that

where Fx, Fy and Fθ are the aerodynamic forces measured in the x, y and θ directions respectively.

ρ and D are the density of air and the diameter of the cylinder without ice, respectively. n represents

a sequential position along the width of the test section and the axis of the model. The numbering is

from 1-28 for smooth flow and 1-26 for turbulent flow. Si is a section length of the model, which is

defined by the length between the midpoint of the position of the wind profile point and Pi−1 and Pi

wind profile point Pi and Pi+1, which can be calculated as Si = , where the boun-

daries at i = 1 and i = n(28) or n(26) are given by Si =  and Sn = . L is

the 

total length of the section model being tested.  is the corrected mean wind velocity for 

section length Si for the tested model, where Ui is the wind velocity for point i in the wind velocity

profile and Up is the wind velocity obtain from the pitot tube in the wind velocity profile test and

finally UE is the wind velocity obtain from the pitot tube when undertaking the section model

experiments. 

5.1 Position of wind profiles 

As previously mentioned, five horizontal profiles for each wind velocity were measured along the

height of wind tunnel test section. The five different heights for the velocity profiles are named H1

to H5 (Fig. 7). 
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Measurements were taken for all measured points at 7 distinct wind velocities for smooth flow

and 4 distinct wind velocities for turbulent flow. This was done to document any potential Reynolds

number effects on the wind profile. Table 2 lists the wind velocities used for the profile

measurements. The position of each measurement point along the width of the test section is listed

in Table A1 of Appendix A for both smooth and turbulent flow profiles. Note that zero position

starts at “Side 2” of the wind tunnel (see Fig. 7). Plots of a single set of wind velocity profiles for

smooth flow and turbulent flow can found in Appendix A.

By examining the plots, it can be seen that the velocity profiles for smooth flow are relatively

symmetric across the width of the wind tunnel for lower wind velocities. Contrary to the horizontal

velocity profiles, it can be seen that the vertical profiles for turbulent flow vary significantly over

the height, which might be attributable to the location of the grid bars.

Fig. 8 shows the normalized Kaimal and Karman wind spectra, plotted against the wind spectrum

found from wind tunnel measurements obtained under turbulent flow and a wind velocity of 30 m/s,

where f * Suu(f )/  is the normalized spectrum for the along wind direction. f is the frequency, Suu(f)

is the spectrum in the along wind direction and  variants in the along wind direction. Table 3

provides the integral length scale, Lux, for all tested turbulent wind velocities.

σu

2

σu

2

Fig. 8 Comparison of Kaimal and  Karman spectrum to that obtained from turbulent flow with a wind velocity
of 30 m/s.

Table 2 Wind velocities at which the profile was measured

 flow condition  wind velocities – [m/s]

 smooth (Iu  1%)  20  25  30  35  40  50  60

 turbulent (Iu = 6%-7%)  20  25  30  35  -  -  -

Table 3. Lux for varying mean wind velocities in turbulent flow

U[m/s] Lux-[m]

20 0.028

25 0.031

30 0.032

35 0.037
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6. Section model blockage correction

A list of the tested ice shapes and their resulting wind-tunnel blockage during testing is presented

in Table 4. The mean blockage is found by taking the mean diameter of the model, except for ice

shape I, where the model was not tested for a large range of angles. Here the mean blockage is

found by calculating the mean diameter perpendicular to the flow for the range of angles-of-attack

tested.

The maximum blockage of each model is determined as the ratio between the maximum cable/ice

diameter Dmax = 2r + tmax and the cross-sectional height of the tunnel. 

Corrections on the measured drag coefficients are made to account for the effect of tunnel

blockage. Dalton (1971) presented an improved correction based on an originally proposed

correction by Allan and Vincenti (1944), so that

(2)

where is the measured drag coefficients, D is the cylinders diameter, h is the height of the

test section in the wind tunnel and CD is the corrected drag coefficient.

According to Dalton, the application of Eq. (2) is valid for drag coefficients obtained in wind

tunnel tests on circular cylinders in free stream, as long as the blockage generated by the cylinder is

less than ~30%. It is assumed that this can be applied herewith, even though the cylinders are not

perfectly circular. 

The blockage correction applied to the data presented in this paper is obtained by using the model

diameter of 0.07 m together with Eq. (2). The blockage correction leads to a maximum drag

coefficient correction of 4.9% in turbulent flow and 5.7% in smooth flow.

7. Test series and results

A series of 22 static wind tunnel tests and 17 dynamic wind tunnel tests were undertaken on

cylinders with and without simulated ice accretions. The tests are described below.

7.1 Static tests

The complete static test series is outlined in Table 5. Is should be noted that the test velocity

ranges were chosen so as to lie in the anticipated regions of galloping instability. The critical
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Table 4. Ice shapes and associated blockage for the prescribed wind tunnel tests

ice shape Dmean 

= mean(Di) Dmax = max(Di)
mean blockage 
Dmean /Hsection

max blockage 
Dmax/Hsection

I 7.56 cm 7.67 cm 10.78% 10.96%

II 9.01 cm 9.29 cm 12.88% 13.27%

III 8.96 cm 9.13 cm 12.79% 13.04%

IV 7.07 cm 7.22 cm 10.10% 10.31%
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vortex-shedding velocity for the tested cylinders is below 1m/sec. 

The experiments consisted of Reynolds number tests (Fig. 9), roughness tests (Fig.10) and a series

of force coefficients tests (Figs. 11-16). All of the figures, except Fig.10, show the resulting

coefficients for smooth and turbulent flow in the top and bottom rows, respectively. Fig. 10 shows

the effect of the change in surface roughness and will be discussed later. All aerodynamic force

coefficients have been corrected according to the measured velocity profiles and for blockage.

7.1.1 Reynolds number test

A Reynolds number test was performed on a smooth reference circular cylinder. The smooth

cylinder was tested under both laminar and turbulent flow. The results of these two Reynolds

number tests are presented in Fig.9. It is seen that the critical Reynolds number range for the

turbulent flow is obtained for much lower Reynolds numbers. From this, it can be inferred that for

turbulent flow the critical Reynolds number range was included in the test program for all cylinders.

For smooth flow, it can be seen that the aerodynamic drag coefficient of the smooth cylinder is

more or less constant for the whole range of Reynolds numbers. 

Table 5. Test series employing static rig

ice shape flow
surface of simulated 

ice accretion
wind velocity

[m/s]
wind angles 
of attack [o]

hysteresis check 
at angles

I
Smooth Rough [22, 27, 31, 36, 41] [0, 10, 20, 30, 40] -

Smooth Smooth [22, 27, 31, 36, 41] [0, 10, 20, 30, 40] -

II
Smooth Rough [22, 27, 31, 36, 41] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

Turbulent Rough [13, 17, 22, 27] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

III
Smooth Rough [22, 27, 31, 36, 41] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

Turbulent Rough [13, 17, 22, 27] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

IV
Smooth Rough [22, 27, 31, 36, 41] [0, 5,…, 175, 180] -

Turbulent Rough [13, 17, 22, 27] [0, 5,…, 175, 180] -

Fig. 9. Reynolds number tests in smooth and turbulent flow on a smooth reference circular cylinder
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7.1.2 Surface roughness effect

As the small series of Reynolds number tests indicated, Reynolds number effects can be observed

when comparing the drag coefficients of smooth cylinders with and without turbulence. A series of

tests were performed on ice shape I, in order to understand the effect of the surface roughness and

the results are presented in Fig.10. Here, the rapidly prototyped model was first tested with the

inherent surface roughness of the model after production. Then this was followed by a test where

the model surface was coated with four layers of varnish to create a smooth surface. The tests show

that the difference in drag and moment coefficients is small for most wind angles-of-attack – the

exclusion being the drag coefficient for wind angle-of-attack of 10° for 22 m/sec wind velocity. No

explanation can currently be provided for this. It should also be noted that the lift force is prone to

large variations with changes in surface roughness.

The tests clearly demonstrate the effect of surface roughness on the force coefficients and show

that, although dominant for the resulting flow field, cross-sectional shape is not the only parameter

that affects the generated forces on an iced cylinder. In any case, as the roughness on an iced

cylinder is not only difficult to measure, but also varies greatly from one condition to another, it

was deemed adequate to use the aforementioned manufactured roughness from the rapid prototyping

process. 

7.1.3 Force coefficients

The force coefficients for ice shapes II and III are presented in Figs. 11 and 12. Once again, the

same trend of greater Reynolds number dependency for turbulent flow is observed. For the drag

coefficients, the Reynolds number dependency seems to follow the critical Reynolds number range

Fig.  10. Static force coefficients for ice shape I, with varying model surface roughness
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identified in Fig. 10. For the lift force coefficients, the Reynolds number dependency is concentrated in

angles less than −30o and greater than +30o, except for at narrow range close to the stagnation point (0o).

No significant Reynolds number dependency is found for the moment coefficients.

For ice shape IV, the drag and lift coefficients (Fig. 13) generally exhibit Reynolds number

dependency for both smooth and turbulent flow. The moment coefficients exhibit Reynolds number

dependency for turbulent flow between wind angles-of-attack 10o and 75o.

A closer examination of the drag and lift coefficients for ice shape IV reveals a dependency of the

drag on the lift and vice-versa. A sudden drop or rise in the lift force is often accompanied by a

sudden rise or drop in the drag. This may indicate a well-defined flow transition and/or a shift in

the location of a flow separation bubble. Further work is needed to verify this. 

Finally, an investigation for potential hysteresis in respect to wind velocity was undertaken.

Hysteresis is defined here as a noticeable change to the force coefficients for a particular wind

Fig. 11. Static force coefficients for ice shape II: smooth flow (left) and turbulent flow (right)
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angle-of-attack and velocity when testing the model in the wind tunnel by rotating it in one

direction and then rotating it back in the opposite direction for varying wind velocities. This was

done for ice shapes II and III, for both smooth and turbulent flow by rotating the model forward by

5o increments and back by 10° increments. No significant hysteresis was observed. 

7.2 Dynamic tests

The models with ice shapes that were tested dynamically were given the dynamic properties of an

example cable, equivalent to a typical scaled suspension bridge hanger. Furthermore, the ice shapes

used for the dynamic testing were chosen based on their similarity to those observed when large

amplitude hanger vibrations were recorded on the Great Belt Suspension Bridge in Denmark

(Gjelstrup et al. 2007). The ice shapes visually observed during this vibration event were very thin,

Fig. 12. Static force coefficients for ice shape III: smooth flow (left) and turbulent flow (right)
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with small protrusions of ice. Qualitatively, these are very similar to ice shapes II and III.

Furthermore, the simulated ice shape IV was also chosen for ease of repeatability of future

experiments. Finally, the reference cylinder was also tested.

Table 6 outlines the test series, whilst Table 7 presents the model parameters for the dynamic

tests, namely vertical and torsional frequencies and damping, and the mass and mass moments of

inertia. 

The measured dynamic response for each ice shape is presented in Figs. 14-16. The results are

presented as the non-dimensionalized standard deviation (STD) of the vertical displacement (top)

and the STD of the angular rotation for pitch (axial rotation) (bottom). The results are presented for

both smooth and turbulent flow. Plots for smooth flow are on the left, whilst plots for turbulent flow

are placed to the right.

No instabilities were found in the experiments preformed on the reference cylinder.

Fig. 13. Static force coefficients for ice shape IV: smooth flow (left) and turbulent flow (right)
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Table 6. Dynamic test series

ice shape flow
surface of 

ice
wind velocity

[m/s]
angles

[°]
hysteresis check 

angles [°]

II
smooth rough [22, 27, 31, 36, 41] [90, 85,…, -85, -90] [90, 80,…, -80, -90]

turbulent rough [13, 17, 22, 27] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

III
smooth rough [22, 27, 31, 36, 41] [90, 85,…, -85, -90] [90, 80,…, -80, -90]

turbulent rough [13, 17, 22, 27] [-90, -85,…, 85, 90] [-90, -80,…, 80, 90]

IV
smooth rough [22, 27, 31, 36, 41] [0, 5,…, 175, 180] -

turbulent rough [13, 17, 22, 27] [0, 5,…, 175, 180] -

reference smooth no ice [22, 27, 31, 36, 41] - -

Table 7. Model dynamic properties used for dynamic testing

ice shape vibration [direction] freq [Hz] damping [% of crit.] rig + model Mass [kg] MMI [kg·m³/m]

II
vertical 1.63 0.08

10.25 0.35
torsional 4.99 0.43

III
vertical 1.64 0.08

10.14 0.36
torsional 4.97 0.41

IV
vertical 1.64 0.07

10.14 0.38
torsional 4.99 0.56

V
vertical 1.65 0.06

10.01 0.37
torsional 4.99 0.51

Fig. 14 Dynamic response for model with ice shape II. Non-dimensionalised STD of vertical displacement
(top), STD of pitch in radians (bottom). Smooth flow (left) and turbulent flow (right)
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Fig. 15 Dynamic response for model with ice shape III. Non-dimensionalised STD of vertical displacement
(top), STD of pitch in radians (bottom). Smooth flow (left) and turbulent flow (right)

Fig. 16 Dynamic response for model with ice shape IV. Non-dimensionalised STD of vertical displacement
(top), STD of pitch in radians (bottom). Smooth flow (left) and turbulent flow (right)
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For the purposes of analyzing the figures and for the development of instability plots,

aerodynamic “instability” is defined as any normalized STD vertical displacement greater than 0.05,

i.e., 5% of the base cylinder diameter, as it was found that buffeting response dominates below this

level. 

For the turbulent flow tests, it can be seen that aerodynamic instability in the vertical direction

occurs near the wind angle of attack at which the ice was formed. This is particularly true for ice

shapes III and IV, where instability is observed exclusively in the range ±20°. Instability for ice

shape II in turbulent flow occurs within two intervals on each side of the stagnation point (0°),

namely between -25° and -10°, and between 25° and 40°. 

For the smooth flow tests, aerodynamic instability is generally more scattered. Instability occurs

not only in the regions found for turbulent flow, but also for other wind angles-of-attack. Thus, the

turbulent flow is shown to exhibit a stabilizing effect for certain angles. 

Axial rotational instability, defined as a rotation greater than 0.5x10-3 rad, seems to be coincident

with vertical instability in most cases. However, it should also be noted that this rotation is

relatively small and is most probably due to the offset between the cross-sectional center of mass

and center of rotation.

8. 3-DOF quasi-steady model

The static force coefficients obtained from the static tests were used for a galloping instability

analysis employing quasi-steady theory. An adapted version of the 3-DOF quasi-steady model

(accounting for the lack of horizontal translation) initially proposed by Gjelstrup and Georgakis

(2011) and Gjelstrup et al. (2008) was used and is summarized herewith.

Fig. 17 shows a schematic model of a cylinder section with ice accretion. It is assumed that this is

representative of an iced hanger section and the model is two-dimensional, with a section that is

Fig. 17 Schematic model of cable section with ice accretion, (XG , YG) = mass centre.



402 H. Gjelstrup , C.T. Georgakis and A. Larsen

straight and rigid. The stiffness of the spring supports of the model is constant for all degrees-of-

freedom, i.e., stiffness does not change with respect to movement in x and y or rotation about the

structural axis (θ ). Also it is assumed that the structural damping force is proportional to velocity

and that the wind velocity U is constant. Furthermore it is assumed that the rotational velocity can

be represented by a cross-sectionally dependant radial length times the radial rotational velocity, .

Finally it is assumed that quasi-steady assumptions apply, that gravitational forces do not influence

the model and that the cable is at rest at the initiation of any aerodynamic instability.  

The equations of motion of the model presented in Fig. 23 can, per unit length, be written as

(3)

(4)

(5)

where the notation for time-dependant variables, x(t), y(t) and θ (t), is represented as x, y and θ,

respectively. Derivatives with respect to time are written as  (d/dt)x =  and (d2/dt2)x =  . m is the

mass of the system and J is the rotational inertia in relation to the mass centre Csxx, is the structural

damping in the x direction Csyy , is the structural damping in the y direction, Csθθ, is the structural

damping in the θ direction, kx, ky and kθ are the structural stiffnesses in the x, y and θ directions,

respectively, Le is the length to the centre of mass from the point of rotation, ϕ = γ0 + θ, γ0 is the

angle offset for mass centre, θ is the structural rotation. Fx, Fy  and Fθ are the aerodynamic forces

per unit length in the x direction, y direction and for torsion respectively, which are given by

(6)

(7)

(8)

where αR = (α0 + θ + β ), α0 is the static wind-angle-of-attack, β is the angle between static and

relative wind directions, ReR is the relative Reynolds number, ρ is the fluid density, D is the

characteristic width of a section model (the diameter for circular models), CD is the static drag

coefficient, CL  is the static lift coefficient and CM is the static moment coefficient. UR is the relative

wind direction due to structural motion and rotation.

Again, following Gjelstrup and Georgakis (2011), the aerodynamic instability of the cable section

is determined based on a linearization of the cable section’s equations of motion (3)-(5) about the

velocity . This linearization results in a dynamic force, which can be represented

by the Jacobian damping matrix (Ca) multiplied with the sectional velocity in the three directions,

(C
a
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(9)

With the aforementioned assumptions, the aerodynamic stability of the 3-DOF cable section can

now be evaluated by rewriting Eqs. (3)-(5) into state space and solving the resulting eigenvalue

problem. 

The proposed 3-DOF quasi-steady galloping instability model can be used to generate 2-

dimensional plots of vertical aerodynamic instability in the parameter plane of wind angle-of-attack

against wind velocity. 

9. Comparison of predicted and measured instability

As ice shapes II-IV were tested dynamically, a comparison between the predicted and measured

vertical aerodynamic instabilities is made. This comparison can be viewed in Figs. 18-20.

Ca
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·
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Fig. 18 Vertical aerodynamic instability for ice shape II as predicted from quasi-steady theory (left) and as
determined from the dynamic tests (right). Smooth flow (top) and turbulent flow (bottom). Unstable
regions are shaded. Darker regions qualitatively indicate increased level of damping needed to avoid
instability
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Fig. 19 Vertical aerodynamic instability for ice shape III as predicted from quasi-steady theory (left) and as
determined from the dynamic tests (right). Smooth flow (top) and turbulent flow (bottom). Unstable
regions are shaded. Darker regions qualitatively indicate increased level of damping needed to avoid
instability

Fig. 20 Vertical aerodynamic instability for ice shape IV as predicted from quasi-steady theory (left) and as
determined from the dynamic tests (right). Smooth flow (top) and turbulent flow (bottom). Unstable
regions are shaded. Darker regions qualitatively indicate increased level of damping needed to avoid
instability
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Generally, there is very good agreement between the predicted and measured aerodynamic

instabilities, although some discrepancies can be evidenced. There are several potential reasons for

this, including the small non-linearities in the dynamic test rig, the asymmetric flow conditions and

the determination of the ice-accreted cylinder’s cross-sectional radial length (Gjelstrup and

Georgakis 2011). 

10. Conclusions

It has been shown herewith that a thinly iced cylinder is prone to aerodynamic instability for

specific wind angles-of-attack. Furthermore it has been found that only small changes in the wind

angle of attack from the angle of attack from which the ice was formed, are necessary to induce this

aerodynamic instability. This is an important observation, as it implies that only small changes in

wind angle-of-attack are necessary to facilitate cylinder vibrations. This effect had been

hypothesised by Gjelstrup et al. (2007) for suspension bridge hangers. 

The static wind tunnel tests on (simulated) iced cylinders reveal the significant effect of ice on the

static force coefficients of the cylinder. Utilizing example dynamic properties of a bridge hanger,

together with the static force coefficients in an adapted 3-DOF quasi-steady instability model, produces

regions of predicted vertical aerodynamic instability. These regions are predicted for both smooth and

turbulent flow. Wind tunnel tests of the cylinders using a dynamic rig reveal actual regions of

aerodynamic instability. When compared, it is shown that the 3-DOF quasi-steady model is capable of

predicting the vertical aerodynamic instability observed from the dynamic wind tunnel tests. 
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JH

Table A. Positions measured, starting from “Side 2” of the wind tunnel

smooth flow

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Position [mm] 12 19 26 33 40 47 54 61 68 75 122 232 342 452

Point 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Position [mm] 562 672 782 892 925 932 939 946 953 960 967 974 981 988

turbulent flow

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Position [mm] 9 16 23 30 37 44 51 58 63 72 116 226 336 667

Point 15 16 17 18 19 20 21 22 23 24 25 26 - -

Position [mm] 777 887 931 938 945 952 959 966 973 980 987 994 - -
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Appendix A: Velocity profiles

Example plots of the found velocity profiles are shown below. The variation seen in the turbulent

velocity profiles could be attributable to the location of the turbulence grid, due to the relatively

short distance between the hotwire measurements and the grid.

Smooth flow 

Turbulent flow 




