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Abstract. Multivariate simulation is necessary for cases where non-Gaussian processes at spatially
distributed locations are desired. A simulation algorithm to generate non-Gaussian wind pressure fields is
proposed. Gaussian sample fields are generated based on the spectral representation method using wavelet
transforms method and then mapped into non-Gaussian sample fields with the aid of a CDF mapping
transformation technique. To illustrate the procedure, this approach is applied to experimental results
obtained from wind tunnel tests on the domes. A multivariate Gaussian simulation technique is developed
and then extended to multivariate non-Gaussian simulation using the CDF mapping technique. It is
proposed to develop a new wavelet-based CDF mapping technique for simulation of multivariate non-
Gaussian wind pressure process. The efficiency of the proposed methodology for the non-Gaussian nature
of pressure fluctuations on separated flow regions of different rise-span ratios of domes is also discussed.

Keywords: domes; wavelet; CDF mapping technique; multivariate; non-Gaussian; stochastic simulation;
wind pressure field; wind tunnel experiment

1. Introduction

Simulation of time histories of wind loading is necessary for several wind engineering

applications. The objective of this study is to develop a computer simulation technique for the

generation of random wind pressure time series (e.g., Seong and Peterka 1997) in order to provide

realistic forcing function statistics for fatigue test or for analysis of structural components subjected

to fluctuation wind pressures. Gurley and Kareem (1997a) have shown described that highly non-

Gaussian localized wind loads are often encountered on structures, particularly in separated flow

regions, which may lead to the increased damage on glass panels and higher fatigue effects on

building envelope and cladding components. Therefore the development of algorithms to generate

sample functions of non-Gaussian stochastic processes and fields (e.g., Huang et al. 2000) is critical

to address the loading in these regions.

In many cases the non-Gaussian excitations acting on a structure cannot adequately be modeled as

a point process at a single location. Large structural systems may be subjected to a number of

spatially separated random loads not acting in unison. In order to simulate the response of complex
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nonlinear multiple input systems under extreme conditions, the non-Gaussian loads must be

simulated with appropriate correction among components. Li et al. (2010) assessed the worst

negative wind-induced pressures in the non-Gaussian region of a curved roof by the discretizing and

synthesizing of random flow generation technique (DSRFG) which is used to produce a spatially

correlated turbulent inflow field for the simulation of wind load. In this paper, the robust simulation

techniques in Gurley and Kareem (1998a) are extended to include the simulation of multiple

correlated non-Gaussian realization. Signal decomposition using a class of localized basis functions,

or wavelets, is a popular new method of nonstationary signal analysis and stochastic simulation.

Gurley and Kareem (1997b) have applied wavelet decomposition to the simulation of nonstationary

signals through a stochastic manipulation of the decomposition coefficients.

Methods for simulating multi-correlated random signals based on multivariate process with

specific cross-spectral density as the sum of sinusoid functions with random phases have been well

established and widely used in many engineering applications. Yamazaki and Shinozuka (1988)

proposed an iterative method for the generation of sample fields of a multi-dimensional non-

Gaussian homogeneous stochastic field with a target power spectral density and marginal

distribution function. Deodatis and Micaletti (2002) extended their work to the simulation of

multivariate, multi-dimensional non-Gaussian stochastic fields. Grigoriu (1998) also developed a

simulation algorithm for generating non-Gaussian stationary translation processes with prescribed

marginal distribution and covariance function. A detailed analysis of several non-Gaussian

simulation algorithm including performance comparisons is found in Masters and Gurley (2003).

These methods are widely accepted for a variety of applications and can reliably produce

realizations that match the target power spectral densities (PSDs) and cross-power spectral densities

(CPSDs) models of typical domes. A detailed analysis of several non-Gaussian simulation algorithm

including performance comparisons is found in Masters and Gurley (2003).

This paper presents a simulation technique to produce multivariate non-Gaussian wind pressure

fluctuation using a wavelet transforms approach and a CDF mapping technique. The tool is

applicable for both analysis and simulation of structural response and wind pressure data. The

simplicity and effectiveness of this methodology is demonstrated using the measured non-Gaussian

pressure data from the wind tunnel experiment on the separated regions of the different rise-span

ratios of domes by matching with the targets of higher order moment coefficients, wind pressure

time series, power spectral densities (PSDs) and cross-power spectral densities (CPSDs). 

2. Multivariate non-Gaussian simulation tools

The purpose of this study is to enhance the database of wind tunnel tested dome shapes through

existing data sets and application of stochastic simulation algorithms. Considerable work has been

done in the simulation of Gaussian processes (Shinozuka and Jan 1972, Borgman 1990, Shinozuka

and Deodatis 1991, Girgoriu 1993, Shinozuka and Deodatis 1996) and elements of these methods as

well as new techniques have been applied to the simulation of non-Gaussian sample functions (Cai

and Lin 1996, Gurley et al. 1997, Popescu et al. 1998, Masters and Gurley 2003, Grigoriu et al.

2007), non-stationary sample functions (Priestly 1967, Vanmarcke and Fenton 1991, Zhang and

Deodatis 1996, Li and Kareem 1997), non-Gaussian and non-stationary sample functions (Phoon et

al. 2002, Sakamoto and Ghanem 2002) and conditional non-Gaussian sample functions (Elishakoff

et al. 1994, Gurley and Kareem 1998b, Hoshiya et al. 1998). The majority of these methods reply
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on two numerical techniques to infuse prescribed spectral and probabilistic contents into each

random signal or field: the spectral representation method (SRM) and the random variable

transformation.

2.1 Spectral representation method

This paper addresses the problem of random field simulation by using a wavelet expansion, which

is used widely in engineering and science applications (Daubechies 1992). Zeldin and Spanos

(1996) introduced the wavelet bases into the simulation of random fields, and reconstructed wavelet

coefficients in every scale space based on AR method. Based on Zeldin’s method, Kitagawa and

Nomura (2003) performed the simulation of one-dimensional random field.

2.1.1. One-dimensional stochastic wind field simulation in wavelet analysis

The orthogonal compactly supported wavelet basis of L2(R) constructed by Daubechies (1992)

wavelets is used in this study. It can be written as 

(1)

where ψ(x) is a wavelet function with support in the segment [0,2M−1]; M is an integer parameter

and j is scale. The reconstruction algorithm can be expressed as

(2)

where  is a scale coefficient and

       

       is wavelet coefficient.
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(6)

where uk are the uncorrelated zero mean, unit variance random variables that are statistically

independent of .

A higher order AR model (AR(p)) is appropriately equivalent to ARMA(p,q),(p1 >> p) , so it can

be used to determine ARMA model parameter. AR( p1) model can be expressed as the following

form.

(7)

Using the solutions of Eqs. (3), (4), (5) and (7), α, β can be calculated. α, β are required to solve

once for each scale . Then, they can be substituted into Eq. (6) to compute .

2.1.2 Simulation of multiple wind time histories

A large class of problems in stochastic analysis requires the generation of correlated multiple

random processes. Spinelli et al. (1987) suggested the simulation procedure that minimizes

computational time and storage. In order to obtain the specified spectral densities for the processes

u(t) , the individual spectra are divided into two constitutive elements,  and .

(8)

where  =  is the spectrum of the processes , chosen as the common area of

individual spectra ; and is the spectrum of the process ε i(t).(Fig. 1)

A family of correlated random processes

(9)
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, the lower triangular matrix L in Eq. (9) must be satisfy the relationship.

(10)

where 

(11)

This is related to with the cospectrum by the Wiener-Khinchin equation (Bendat and Perisol

1986). where

(12)

is determined; then

(13)

but

(14)

L in Eq.(10) can be calculated by a Choleski factorization of . After L is determined, ,

ε(t) and L can be substituted into Eq.(9). Thus the series of wind pressure time histories with spatial

correlation can be obtained.

2.1.3 Algorithm of wavelet analysis

Summarizing the preceding discussion, the proposed algorithm for synthesizing random fields

specified by the auto-correlation function can be formulated as follows:

(1) Select the appropriate wavelet basis. Note that these wavelets are differentiable functions and

generated field can be readily used in applications necessitating differentiation of the generated field

samples.

(2) Find the correlation of the wavelet and scale coefficients using Eqs.(3)-(5).

(3) Synthesize a sample of the random process for a relatively coarse scale j by simulating a

small-dimensional vector, c j.

(4) Generate the vector d j by using Eq. (6).

(5) Based on the realizations of c j and d j, synthesize a sample of the random process on the next

(j−1) scale by using Eq. (2).

(6) If the ratio of the wavelet coefficients to the variance of the scale coefficients is not

adequately small, proceed to a refined scale and return to Step (4).

(7) Extend multivariate Gaussian simulation from univariate Gaussian simulation using the

approach detailed in section 2.1.2.

2.2 Random variable transformation

Three typical forms of the random variable transformations are given below
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(a) Analytical Filter

When available, a deterministic equation is often the most efficient approach to altering the

probability content a stochastic sample function. The modified Hermite polynomial is one such

transformation, and its details are explained further in the Hermite-based spectral correction section

(e.g., Gurley et al. 1997).

(b) Empirical or Analysis Gaussian to Non-Gaussian Mapping

Grigoriu et al. (1984) used the following relationship to map a Gaussian signal u(t) into a

prescribed non-Gaussian signal x(t) through their respective cumulative distribution (CDF)

functions: the prescribed non-Gaussian cumulative distribution function Fx and the Gaussian

cumulative distribution function .

(15)

This translation can either take the form of an analytical relation, or an empirical mapping

scheme.

(c) Empirical Non-Gaussian Mapping

Deodatis and Micaletti (2002) expanded the Gaussian to non-Gaussian mapping concept by

generalizing to an empirically based non-Gaussian to non-Gaussian CDF mapping. Masters and

Gurley (2003) developed a spectral correction algorithm based on CDF mapping technique by

modifying the technique of Deodatis and Micaletti (2002). 

(16)

where the arbitrary non-Gaussian sample function  is mapped through its CDF  into the

cumulative distribution FX to create a sample function x, non-Gaussian. 

2.2.1. CDF map-based spectral correction

Using a general non-Gaussian CDF mapping technique (Masters and Gurley 2003), the

multivariate Gaussian simulation process can be transformed to generate multivariate non-Gaussian

simulation. This algorithm is easily programmed and is very robust and reliable in its convergence

to the desired PSD. This convergence is demonstrated to be discussed in coming up section. Fig. 2

illustrates the procedures of this simulation technique. There are four portions in CDF map-based

spectral correction algorithm. 

(1) Establish targets for the power spectral density (PSD),   and coherence function, . 

(2) Create a univariate Gaussian sample function using the spectral representation method (SRM)

such as wavelet transform method.

(3) Extend multivariate Gaussian simulation from univariate Gaussian simulation using the

approach detailed in section 2.1.2

(4) Begin the iterative procedure

(a) Correct the probability to the target using non-Gaussian CDF mapping. This leaves the correct

probability but distorted spectral contents.

(b) In the frequency domain, the phase of the signal is maintained and the Fourier amplitude to

match  is replaced. The signal now has the correct spectral content but distorted

probability.

(c) Qualify the probability distortion by measuring error in skewness and kurtosis with respect to
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the target values established from the first CDF mapping iteration.

(d) If the error is less than a user-determined tolerance, the simulation is complete.

(e) Otherwise, repeat steps (a)-(c).

2.2.2. Concept of CDF mapping technique

The CDF mapping of algorithm requires an additional consideration for second and higher

iterations. After frequency domain spectral correction, the CDF of the sample function, , is a

function of the specific corrections to the Fourier coefficients and changes with each iteration.

Masters and Gurley (2003) discuss that a signal of infinite length has an empirically determined

CDF bounded by zero and unity. However, the empirical CDF of a finite length signal is bounded

by [1/(M+1)L M/(M+1)], where M equals the number of points in the signal. Application of Eq.

(16) maps this empirical CDF  into an analytical CDF. The cumulative distribution range of the

sample function is adjusted from [1/(M+1) ··· M/(M+1)] to (ε1L, ε2), where ε1 approaches zero and ε2
approaches to unity. After the initial Gaussian process is generated, the random minimum and

maximum values of the process are compared to normal cumulative distributions to determine the

F
Xˆ

F
Xˆ

Fig. 2 CDF map-based spectral correction using wavelet transforms
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minimum and maximum F-values. These minimum and maximum probabilities are set as the limits

(ε1L, ε2) for the empirical CDFs ( ) that are then mapped to the desired CDF.

2.2.3. Validation and limitations of the simulation algorithm

This section discusses the efficiency, limitations and accuracy of the multivariate stochastic

simulation algorithm developed in this study. In this paper, it is shown that the algorithm simulates

as many as four pressure taps of varying correlation on the angles of direction of domes

successfully. The target coherence function in this simulation depends on the angles of direction of

dome, frequency interest and separation distances. 

During the development of the simulation software, the several exponentially decaying spectral

models (adapted from wind PSDs) were tested to improve the accuracy and robustness of the

algorithm. It is depended on the windward and leeward sides of domes because the spectra in these

sides have same characteristics. Due to the same target of spectra in each side, the length of

simulation time is shorter than the time consumption of the different characteristics of spectra. 

Lastly, it should be noted that the univariate Gaussian simulation can then be transformed into the

simulation of multivariate non-Gaussian wind pressure using the help of a wavelet-based CDF

mapping technique with the aid of iteration. Thus, the simulated cross-power spectral densities can

be obtained to match with their targets on each direction. It affects the temporal correlation structure

but reduces the number of non-positive definite matrices in the Cholesky decomposition. Given the

close proximity of the pressure taps, this simplification are determined to have a negligible effect on

simulation results. Masters et al. (2004, 2010) found that the spectral analysis reveals that imaginary

components make up less than 2% of the magnitude of the CPSD ordinates (the phase < ~0.02

radians).

2.2.4. Accuracy of the simulation algorithm

Previous studies have demonstrated the accuracy of the simulation method for generating

realizations that match the input targets (cf. Deodatis and Micaletti 2002, Grigoriu et al. 1998,

Masters and Gurley 2003). Simulations were performed for each angle of direction including wind

direction and compared against PSD target models to validate the accuracy of the algorithm. 

In this simulation algorithm, the CDF mapping procedure is applied to the individual taps as the

last step before dilation and translation to install the proper first and second moments. The accuracy

of this mapping procedure has been shown to be highly accurate, and thus the probability

descriptors for the individual taps will match the targets without fail (Masters and Gurley 2003).

Therefore, an explicit comparison of target and simulated PDFs is not provided. However, accuracy

is confirmed for this study. A quantitative comparison of higher order moments is provided in the

results section when the simulation algorithms are generated.

3. Cases studies

3.1 Wind tunnel datasets on the domes

The pressure data used in this study was collected from wind tunnel at the Wind Engineering

Research Center of Hunan University in China. Two models is 1/200 models were used. The first

dome model is made of FRP and has a rise-span ratio of 1:2 (Fig. 3). The second is made of

F
Xˆ
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organic glass and has a rise-span ratio of 1:5. Data was collected at 325 Hz using a Scanivalve

system. In total data was collected from 24 incident wind angles, with a 15o separation. Data was

recorded for nominally 20 seconds (6600 data points). The pressure tap grid is shown in Figs. 4 and 5.

3.2 Regions of Gaussian and non-Gaussian regions on domes

Based on skweness and kurtosis values, the measured time histories have subsequently been

Fig. 3  Testing points on dome model

Fig. 4 Wind tunnel testing points on dome (h:l =1:2)

Fig. 5 Wind tunnel testing points on dome (h:l =1:5)
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classified into Gaussian and non-Gaussian regions. Theoretically, the skewness and kurtosis are 0

and 3 for Gaussian region. In the practical application of wind engineering, there is no a unified

criterion to define Gaussian and non-Gaussian feature of wind pressure. Concerning this issue, Sun

et al. (2007) brought forward two principles for determining dividing standards: (1) the relations

between skewness and kurtosis satisfy a certain changing trend; (2) exceeding probabilities for

skewness and kurtosis are nearly the same. According to the above two principles, values of

skewness and kurtosis of domes are calculated. Thus, in this study, the measured pressure taps with

absolute values of skewness and kurtosis greater than 0.5 and 3.5 are classified into non-Gaussian

region respectively. Fig. 6 shows the distribution of Gaussian and non-Gaussian regions on domes,

in which the shaded parts represent the non-Gaussian regions and h is the dome height. The non-

Gaussian pressure taps on different types of domes were collected on zero wind direction (Fig. 7). 

3.3 Power spectral density (PSD) models and coherence model 
The spectral representation method (SRM) requires target PSDs to generate Gaussian signals.

Based on the similarities found in spectra for various zones, a suitable analytical model was adapted

to produce a universal pressure spectra model for simulation. Within this context, several well-

known curve-fitting techniques have been employed to extract a suitable target for spectra. Using a

least-square fitting method, the two-term exponential model, y = a exp(bx) + c exp(dx), gives a

better statistical fit than other models. A detailed analysis procedures of fitting method with the help

Fig. 6 Gaussian and non-Gaussian zones on domes 

Fig. 7 Locations of non-Gaussian points on domes
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of MATLAB can be found in Kumar et al. (1997) and, Kumar and Stathopoulos (1998). Both two

types of domes are assigned the same non-Gaussian target spectral density function  given by

(17)

where  is the target spectral density function, f is the interest of frequency, a1 and a2 are the

position constants and c1 and  c2 are the shape of constants. 

Moreover, frequency of interest, separation distances and angle of direction might be emphasized

and that allows for reduction in coherence with increase separation and change of angle of direction.

This exponential coherence model (Nyi and Ye 2010) can be expressed as

(18)

where H is denoted by  and Lij is . Here, Lij is separation
distance

distance of two testing points at points i and j; (xi, yi, zi) and (xj, yj, zj) are coordinates at points i

and j; f is frequency of interest; θ is angle of direction from wind direction; and D is span of dome.

The overall least-squares fit parameters a, b, c and d for exponential model for coherence function

were 0.8656, -0.1037, 0.1852 and -0.0152, respectively.

3.4 Measurement of Error

Quantifying probabilistic and spectral deviation in the simulation from their respective defined

targets depends upon the application of the simulation. It is described in Eq. (19).

3rd and 4th Central Moment Error =  (19)

where = skewness ,  = kurtosis and  = target and  = current iteration

If the error is within the specified tolerance, the algorithm stops and non-Gaussian process is

output with the target spectrum . If the error is not within the specified tolerance, next iteration

is begun. Here, the kurtosis value is a more robust characteristic since it summarizes the effect of all

excessive peaks, which make the non-Gaussian. In many cases (e.g., Steinwolf et al. 2006,

Steinwolf and Stepten 2006), the high skewness of the field data can be negligible, and it can be

emphasized in terms of kurtosis only to get target values, which now will become a single target for

the CDF mapping transformation.
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Table 1 Estimation of parameters for target power spectrum density

Dome types Zone a1 a2 c1 c2

h:l  = 1 : 2
windward 0.0027 0.000068 0.2661 0.1987

leeward 0.0015 0.000046 0.2321 0.2085

h:l = 1 : 5 windward 0.0005 0.000023 0.2200 0.2353
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4. Results of multivariate non-Gaussian simulation

The targets of power spectral density models and coherence model are required to develop the

simulation of multivariate non-Gaussian wind pressure fields on the domed structures. The target

coherence model in this simulation depends on the angles of direction of the domes, frequency

interest and separation distances. Thus we collect the study taps on the angles of direction of the

domes shown in Fig. 8.

4.1 Targets and simulations of skewness and kurtosis coefficient 

Cases (1-2) are considered for both windward and leeward sides of different rise-span ratios of

domes using two pressure taps. Cases (3-4) consider the windward side of the dome (h:l=1:5) using

three and four pressure taps respectively. All pressure taps are shown in Fig. 8. These cases show

the sum of the percent difference between the target and simulated values and the percent difference

from target kurtosis in Table 2. 

From Cases (1-4), one common feature of the target signals is that they are positively skewed on

Fig. 8 Pressure taps location on the dome models

Table 2 Resultant errors in the skewness and kurtosis values of simulation
Case (1) Two pressure taps non-Gaussian simulation of dome (h:l=1:2) (windward and leeward)

Point*
Skewness Kurtosis Sum of % diff. 

from target

% diff. from 

kurtosis targetTarget Simulated Target Simulated

13 0.4375 0.4823 4.0594 4.0823 10.8041% 0.5641%

20 0.4086 0.4648 4.0510 4.0548 13.8481% 0.0938%

85 -0.5047 -0.4026 3.5791 3.7171 24.0856% 3.8557%

99 -0.5282 -0.4179 4.0284 4.1515 23.9381% 3.0558%

128 -2.0244 -2.4128 19.4050 19.9220 21.8502% 2.6643%

140 -0.8156 -0.6359 5.1505 5.2491 23.9472% 1.9144%

187 0.5400 0.4597 3.6515 3.6672 15.3003% 0.4300%

201 0.4618 0.5607 3.6383 3.6323 21.5811% 0.1649%
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the windward side of the domes but negatively skewed on the leeward side of the dome. The

skewness and kurtosis coefficients in leeward side are larger than the windward sides. The values of

target and simulated higher order moments coefficients in Table 2 are in close proximity, and they

are correlated each other. The error percent from kurtosis target is favorable with the better

agreement occurring between the percent difference of targets and simulated higher order moments

(see Table 2).

From Table 2, the simulated kurtosis values are very close to their targets. It can be found to

emphasize in terms of kurtosis only to get target values which now will become a single target for

this simulation technique and it is important parameter to get a non-Gaussian signal. The error

percents from kurtosis target in windward sides are in the range below 1%, but the one in leeward

side is greater than 1%. From those reasons, the windward of domes is better than the leeward to

match well with their targets by using this simulation technique.

Case (2) Two pressure taps non-Gaussian simulation of dome (h:l=1:5) (windward)

Point*
Skewness Kurtosis Sum of % diff. 

from target
% diff. from 

kurtosis targetTarget Simulated Target Simulated

22 0.7254 0.7418 4.6915 4.6822 2.4591% 0.1982%

32 0.6023 0.5215 3.8021 3.8004 13.4600% 0.0447%

37 0.5311 0.6708 3.8384 3.8697 27.1193% 0.8154%

42 0.6542 0.5085 3.7300 3.7392 22.5181% 0.2467%

47 0.5226 0.4852 3.6314 3.6316 7.16203% 0.0055%

187 0.7657 0.8578 4.3073 4.3092 12.0723% 0.0441%

197 0.6534 0.7863 4.7450 4.7375 20.4978% 0.1581%

Case (3) Three pressure taps non-Gaussian simulation of dome (h:l=1:5) (windward)

Point*
Skewness Kurtosis Sum of % diff. 

from target
% diff. from 

kurtosis targetTarget Simulated Target Simulated

22 0.7254 0.7465 4.6915 4.6901 2.9386% 0.0298%

32 0.6023 0.5246 3.8021 3.8071 13.0320% 0.1315%

42 0.6541 0.5070 3.7300 3.7351 22.6257% 0.1367%

27 0.5062 0.4290 3.6014 3.6054 15.3620% 0.1111%

37 0.5311 0.6711 3.8384 3.8363 26.4151% 0.0547%

47 0.5226 0.4851 3.6314 3.6315 7.1784% 0.0028%

177 0.5544 0.662 3.7062 3.6854 19.9696% 0.5612%

187 0.7657 0.8577 4.3073 4.3086 12.0453% 0.0302%

197 0.6534 0.7869 4.7450 4.7376 20.5875% 0.1560%

Case (4) Four pressure taps non-Gaussian simulation of dome (h:l=1:5) (windward)

Point*
Skewness Kurtosis Sum of % diff. 

from target
% diff. from 

kurtosis targetTarget Simulated Target Simulated

14 0.4210 0.5212 3.9482 3.9505 23.8587% 0.0583%

22 0.7254 0.7477 4.6915 4.6903 3.0997% 0.0256%

32 0.6623 0.5241 3.8021 3.8078 21.0166% 0.1499%

42 0.6541 0.5085 3.7300 3.7492 22.7743% 0.5147%
*Note: Proposed points are located in Fig. 8
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Table 3 presents the errors for the windward and leeward sides of different rise-span ratios of

domes using two pressure taps and the windward side of dome (h:l=1:5) for two, three and four

pressure taps respectively. Ensemble averaged values are shown. The simulation results compare

favorably with their corresponding targets. The discrepancies of kurtosis between the simulations

and the targets are all less than 5%. The error in the simulation of skewness is slightly larger than

kurtosis. However, the kurtosis is much more important for the description of intensity of pressure

fluctuations. The better simulation of kurtosis in this manuscript can well reflect the non-Gaussian

feature of pressure fluctuations. Smaller discrepancies occur the windward side of dome (h:l=1:5)

than on both sides of dome (h:l=1:2). 

4.2. Targets and simulations of wind pressure time series and PSDs 

The wind pressure time histories present in the form of pressure coefficient (Cp) versus time (sec).

From the left sides of Figs. 9-13, the non-Gaussian processes on windward side are slightly more

similar than the leeward side to their targets because the pressure fluctuations in leeward sides has

been occupied the higher moments than the one in windward side. The windward sides of domes

appear positively going spikes which induce the low skewness and occupied the less kurtosis

coefficients (see Table 2). Due to these reasons, the one in leeward side is hard to match easily with

their targets by using this simulation technique. 

The right sides of Figs. 9-13 present the target and simulated power spectral densities (PSDs) in the

form of PSD(m2/s) versus frequency (Hz). They show that the accuracy of this simulation technique is

heavily dependent on the PSDs in windward and leeward sides of domes. The comparison of observed

Table 3 Resultant error in the ensemble-averaged skewness and kurtosis values of simulation

Number of 
taps 

&
Types of 

dome

Proposed 
pressure taps

Ensemble-averaged 
skewness

Ensemble-averaged 
kurtosis

%Diff. 
from 

skewness 
target

%Diff. 
from 

kurtosis 
target

Sum of %
 diff. 
from 
targetTarget Simulated Target Simulated

Two pressure 
taps 

 (h:l=1:2) 
windward

13-20 
& 187- 201

0.4620 0.4920 3.8523 3.8592 6.4935% 0.1719% 6.6654%

Two pressure 
taps

(h:l=1:2)
leeward 

85-99 
& 128-140

-0.9682 -0.9673 8.0410 8.2599 0.0930% 2.7222% 2.8153%

Two pressure 
taps

 (h:l=1:5) 
windward

22-32, 
32-42, 37-47 
& 187-197

0.6364 0.6531 4.1065 4.1100 2.6200% 0.0850% 2.7050%

Three pres-
sure taps 
 (h:l=1:5) 
windward

22-32-42, 
27-37-47 

& 177-187-197
0.6128 0.6298 4.0059 4.0041 2.7700% 0.0450% 2.8150%

*Note: Proposed points are located in Fig. 8
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and simulated PSDs is favorable, with the better agreement occurring between the higher frequency

range than the lower frequency range. Moreover, the PSDs in windward sides seem match well than

the one in leeward side of dome to converge with their targets because the leeward side occupies the

higher and negative skewness of signals and spectra normalized (see Fig. 14) of leeward is larger than

the windward in higher frequency region (Zou et al. 2008).  

The canonical equation of the wavelet transforms combined with ARMA model is based on the

Fig. 10 Comparison of target and simulation of pressure time series and PSD using two pressure taps on
dome (h:l=1:2) (leeward)

Fig. 11 Comparison of target and simulation of pressure time series and PSD using two pressure taps on
dome (h:l=1:5) (windward)

Fig. 9 Comparison of target and simulation of pressure time series and PSD using two pressure taps on
dome (h:l=1:2) (windward)
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minimum mean square of prediction error. The prediction error filters have decorrelation effect on

the wavelet transform combined with ARMA process. The spectra of wind field have comparatively

large variation by the frequency range. There is more content at low frequency, but less content at

high frequency. The decorrelation effect makes spectra to be average. It leads to significant

influence to the low frequency range, but has little influence to the high frequency range.

Fig. 13 Comparison of target and simulation of pressure time series and PSD using four pressure taps on
dome (h:l=1:5) (windward)

Fig. 12 Comparison of target and simulation of pressure time series and PSD using three pressure taps on
dome (h:l=1:5) (windward)

Fig. 14 Power spectra of wind pressure components (a) leeward side and (b) windward side
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In the case of multivariate non-Gaussian simulation, these results are only considered on the

windward and leeward sides of domes, but have no effects on the angle of direction of domes

because the proposed pressure taps are presented in the same sides, being close each other and they

occupied the same characteristics of spectra.

4.3 Targets and simulations of CPSDs for multivariate simulation 

The targets and simulated cross-power spectral densities (CPSDs) also present in the form of

CPSD (m2/s) versus the frequency (Hz) (see Figs. 15, 16, 18 and 19). The cross-power spectral

density (CPSD) is calculated from 

(20)

where  is the cross-power spectral density,  is the coherence squared function,

 is the weighted PSD of the lower pressure tap and  is the weighted PSD of the higher

pressure tap. 

Figs. 15 and 16 show the comparison of target and simulated CPSDs on windward and leeward

sides of domes. It can be found that the comparisons of CPSDs on windward sides are slightly

better than the one of leeward side, but some pressure taps on windward sides are distorted from

their targets on the range of low frequency. 

Sxy n( ) γxy

2
n( )Sxx n( )Syy n( )=

Sxy n( ) γxy

2
n( )

Sxx n( ) Syy n( )

Fig. 15 Comparison of target and simulation of CPSD using two pressure taps on dome (h:l=1:2)
(windward and leeward)

Fig. 16 Comparison of target and simulation of CPSD using two pressure taps on dome (h:l = 1:5)
(windward)
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Fig. 17 shows the characteristics of CPSDs on the windward-windward and leeward-leeward of

domes. The normalized cross-spectrum on the leeward side is larger than the one of windward in

higher frequency. Comparing the peak cross-spectra of leeward and windward sides, the windward

one shows the peak in low frequency range is larger than the higher frequency, but the one in

leeward spectrum is almost similar to each other. Due to these reasons, the cross-spectra in leeward

side also cause more distortion from their targets than the one in windward side. 

Fig. 18 gives a good comparison of the target and simulated CPSDs, and it seems to match with

their targets on both the range of low and high frequency. It is expected that the CPSDs will be in

better agreement for two taps in close proximity than two taps spaced further apart. It can be found

Fig. 17 Cross-spectra of wind pressure components (a) leeward side and (b) windward side

Fig. 18 Comparison of target and simulation of CPSD using three pressure taps on dome (h:l=1:5)
(windward)



Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures 241

that the coherence model gives a smaller error at the two adjacent pressure taps, but it gives the

larger error at the two non-adjacent pressure taps. Because, the residual errors (residual= data-fit)

between the fitting curve and the experimental data of coherence function at the adjacent pressure

taps are less than the one of coherence function at the non-adjacent pressure taps in the derivation

of this coherence model using overall least-squares fit with the help of MATLAB. For these

reasons, the simulated cross-power spectra of two adjacent pressure taps are more convergent with

their targets, but those of the two non-adjacent pressure taps are more distorted from their targets.

Fig. 19 also compares the target and simulated cross-spectral functions of the four pressure taps in

the significant frequency range. The match between target and simulated cross-spectra are excellent

in the low frequency range where there is significant energy, but the target and simulated CPSDs of

the furthest two pressure taps in Fig. 19(c) give the worst comparison with this simulation

technique.  

Fig. 20 shows the comparison of ensemble-averaged simulations and the targets of CPSDs using

two pressure taps on the windward side and leeward side of dome (h:l = 1:2). The ensemble

averaging of co-spectra are considered by point pairs separated with same distance, such as points

13-20, 187-201 and 85-99 (see Fig. 8), etc. It can be found that both sides of co-spectra in Fig. 20

have small discrepancies between the ensemble-averaged co-spectra and their targets. Fig. 21 also

shows the comparison using two pressure taps on the windward side of dome (h:l = 1:5),

Fig. 19 Comparison of target and simulation of CPSD using four pressure taps on dome (h:l=1:5)
(windward)

Fig. 20 Comparison of ensemble average simulation and target of CPSD using two pressure taps on domes
(h:l=1:2) 
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respectively. These figures demonstrate good agreement between the target and simulated cross-

spectra. The small discrepancies of the values of co-spectra in dome (h:l=1:5) occur to compare

with dome (h:l=1:2). Furthermore, due to the residual errors, it is found that the errors of the

adjacent pressure taps is less than the non-adjacent pressure taps. Therefore, Fig. 21(a) is better

agreement of the small discrepancies occurring between the comparisons of ensemble-averaged

simulation and the target of co-spectra.

5. Discussion

There are five comparisons for multivariate non-Gaussian simulation in this research such as

skewness and kurtosis coefficients, wind pressure time histories, PSDs and CPSDs. Among them, as

the validation of multivariate non-Gaussian simulation using the wavelet-based CDF mapping

technique, the comparisons of PSDs in all taps give the best results by using this simulation

technique. The CPSDs also compare favorably. The simulated skweness and kurtosis coefficients

approach to their targets. Nevertheless, the error percent between the target and simulated higher

order moments coefficients and the similarity between the target and simulated signals in terms of

PSDs and CPSDs in all pressure taps generally seem to be good.

6. Conclusions

This paper presents the simulation of multivariate non-Gaussian wind pressure on spherical

latticed domes using a wavelet-based CDF mapping technique. This multivariate Gaussian

simulation is transformed into multivariate non-Gaussian simulation by using CDF mapping

technique (Masters and Gurley, 2003). The validations and limitations of multivariate non-Gaussian

simulation of wind pressure on the separated flow regions of different rise-span ratio of domes

using CDF mapping technique are as follows:

(1) All results of simulated skewness and kurtosis coefficients in multivariate non-Gaussian

simulation are satisfied to match with their targets by using this simulation technique. But, the

Fig. 21 Comparison of ensemble average simulation and target of CPSD using two pressure taps on domes
(h:l=1:5) (windward)
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percent errors from the target kurtosis is in the better agreement than the sum percent error and the

percent error in windward sides are created better than the one in leeward side. 

(2) Regarding wind pressure time histories, the one in windward side slightly seems similar with the

targets more than the one in leeward side using this simulation technique. 

(3) Comparison of observed and simulated power spectra is favorable, with the better agreement

occurring between the higher frequency range and the lower frequency range. Furthermore, the

spectra for the windward sides are created better than the leeward side. 

(4) Due to the residual errors (residual= data-fit) between the fitting curve and the experimental

data of coherence function at the adjacent pressure taps are less than the one of coherence function

at the non-adjacent pressure taps, the simulated cross-power spectra of two adjacent pressure taps

match well with their targets. The cross-spectra in leeward side are more distortion from their

targets than the one in windward side because the windward sides occupy the lower and positive

skewness of signals and the cross-spectra of the windward one shows the peak in low frequency

range is larger than the higher frequency, but the one in leeward spectrum is almost similar to each

other. 

(5) Simulation of multiple, correlated wind pressure on different rise-span ratios of domes

demonstrates satisfactory performance of the method. Multivariate non-Gaussian simulation of wind

pressure of domes also produces a reasonable representation of the target moments, PSDs and

CPSDs.
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