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Abstract. For a detailed investigation of the dynamic behaviour of slender bridges under wind action
especially the motion-induced fluid forces should be available not only for harmonic motions but also for
more general ones. If linear transfer behaviour is assumed, the force-displacement relation for almost
arbitrary motions can be handled in the frequency domain using aerodynamic transfer functions. In
aerospace engineering as well as in bridge engineering, these functions are usually approximated by
special kinds of complex-valued rational functions which depend on complex frequencies. The quality of
this approximation is evaluated for several bridge cross sections in this article. It is shown that rational
functions are for some sections scarcely suitable to realistically represent the transfer behaviour of motion-
induced aerodynamic forces for arbitrarily complex frequencies.
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1. Introduction

Modern bridges can be built as very slender structures especially when new materials and

innovative construction methods are applied. This trend is accompanied by an increased susceptibility

to oscillations. The design of extremely slender bridges, such as large-span road or filigree

pedestrian bridges, is therefore decisively influenced by their vibration behaviour. Special attention

has to be given to wind-induced vibrations. In recent years, a number of techniques have been

investigated to improve the vibration behaviour of bridges under the influence of wind by

systematically imposing additional forces with passively or actively controlled actuators like tuned

mass dampers, gyroscopes or reaction wheels (e.g., Lin et al. 1999, Pourzeynali and Datta 2002,

Kirch and Peil 2009).

A realistic and mathematically consistent description of the forces caused by the wind flow

around the bridge girder is essential for dimensioning these actuators. Usually, wind action is

divided into several types of wind forces. Along with its structural properties, motion-induced

aerodynamic forces, which are focussed on in this article, define the dynamic characteristics of the

so-called aeroelastic system. Due to the effect of motion-induced aerodynamic forces, aeroelastic

instabilities can occur in the form of flutter and aeroelastic divergence if the speed of the wind flow
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exceeds critical values. Avoiding aeroelastic instabilities crucially influences the design of very

slender bridges. An adequate mathematical description of the motion-induced aerodynamic forces is

the precondition for a detailed theoretical analysis of the system behaviour within all wind-speed

ranges.

The article is divided into four main sections. Section 2 addresses the mathematical definition and

notation of the motion-induced aerodynamic forces. Important terms of system theory are mentioned

in this context. In Section 3, the general rational approach for the transfer function and several

special cases are introduced. The correspondent functions in the time domain are used to explain the

approach in a more understandable way. Section 4 describes the quality of a special kind of rational

functions, commonly used in bridge as well as in aerospace engineering for approximating the

transfer functions of motion-induced aerodynamic forces. For two cross sections, whose motions

cause totally different flows and hence forces, the results are described in detail. Findings for other

selected cross sections are presented in table form. Finally, Section 5 explains how approximation

quality influences the dynamic model characteristics of an aeroelastic system again using the two

cross sections from the previous section. 

2. Expressions for motion-induced aerodynamic forces 

In civil engineering, motion-induced aerodynamic forces of a two-dimensional system with two

aerodynamically effective degrees of freedom are usually defined according to Simiu and Scanlan

(1996) as follows

(1)

The degrees of freedom h and α are shown in Fig. 1. In the terms outside the brackets of Eq. (1), U

symbolises the constant horizontal mean wind speed, ρ stands for the air density and B denotes the

total deck width. The dot ( ) symbolises the differentiation with respect to time t. As can be seen in

Fig. 1, L is the vertical aerodynamic force and M is the resultant aerodynamic moment related to the

middle of the deck. The coefficients  and  are functions of the reduced frequency

(2)

of the harmonic oscillation. Whereas the reduced frequency K, often used in bridge engineering, is

related to the total deck width B, the reduced frequency k is defined using the half deck width b.

Here, the variable k is preferred, as it is usually done for aircraft wings and in many studies of

bridges. The coefficients  and  can be identified experimentally or numerically (e.g., Starossek

et al. 2009). For the flat plate, analytical solutions based on the potential theory are available

(Theodorsen 1934, Küssner 1936). In this article, the flat-plate case always means the theoretical

one unless otherwise noted. 

To avoid inconsistencies, the Scanlan notation Eq. (1) is applicable for harmonic oscillations only.

Mathematical problems occur for all other kinds of motion because both time-domain and frequency-
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domain information are used. A consistent, pure frequency-domain formula is applied especially in

aerospace engineering. 

ξs(p) (3)

This notation is the standard for most investigations on aeroservoelasticity problems of aircrafts and

has been used since early publications on aerodynamics (Küssner and Schwarz 1940). In the

abbreviated form, the vector f contains the aerodynamic forces and the vector ξs includes the
aerodynamically effective degrees of freedom. The frequency-domain variable p stands for the

reduced complex frequency

(4)

where s denotes the non-reduced complex frequency. The imaginary part of s is the reduced

frequency k, already defined in Eq. (2). In this article, the dimensionless coefficients  and  as

well as the Q elements are all termed (aerodynamic) derivatives.

A dimensionless Q matrix is obtained when using identical dimensions for both the different types

of deformations and the different types of loads. Without any difficulty, an extension of this notation

to additional degrees of freedom, like horizontal displacement or motions of aerodynamically

effective control shields (Kirch et al. 2009a,b), is possible. When introducing a harmonic approach

in the Scanlan formula, the Eqs. (1) and (3) can be directly compared for imaginary frequencies

p = 0 + ik.

(5)

The notation of the matrix elements in the right part of Eq. (5) or similar ones (Theodorsen and

Garrick 1941, Klöppel and Thiele 1967) have several disadvantages compared with the elements of

the Q matrix. Since the reduced frequency k is separated, they cannot be seen as independent

frequency-domain functions. This can lead to several mathematical problems and inconsistencies. A

detailed discussion of these problems is not part of this article.
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Fig. 1 Two-dimensional aeroelastic system with two aerodynamically effective degrees of freedom
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When regarding its variables as unilateral Laplace transforms, Eq. (3) is the frequency domain

representation of a linear time-invariant transfer element, which is usually described as follows

ξs(p) (6)

Forces result as a product of the aerodynamic transfer function G and the displacements ξs. In this
article, the aerodynamic transfer function is alternatively termed aerodynamic admittance. Apart

from q0, the transfer function of motion-induced aerodynamic forces basically consists of the

derivative matrix Q.

Usually, analytic functions of the complex frequency are taken to express the transfer function.

With these functions, the derivatives of bridge cross sections, which are available in most cases only

for harmonic oscillations, are approximated. Harmonic oscillations are described by complex-

conjugate frequencies on the imaginary axis. Hence, the identification is only done along the

imaginary axis. Additionally, the original values of the aerodynamic derivatives are only determined

for discrete frequencies within a finite interval. It is thus questionable whether the approximation

can be used to realistically model the aerodynamic transfer behaviour for complex frequencies with

an arbitrary location in the complex frequency plane.

In Jones (1938) and Garrick (1938), first proposals for approximation functions were made in

terms of step responses in the time domain. Rational transfer functions can be regarded as a

generalisation of Jones’ approach. Further examples of analytical transfer function approximations

are Stark’s approach (Stark 1984), which can be considered as a generalisation of Garrick’s

approach, or fractions of sums of Chebyshev polynomials - that means special rational functions -

which are applied in Botez et al. (2007).

Similar to Eq. (3) or Eq. (6), gust-induced forces, which constitute another type of wind forces,

can be connected with mean-value-free, fluctuating velocity components of gusts by corresponding

transfer functions. Gust-induced forces will be only marginally mentioned in this article. 

3. Rational function approaches for the aerodynamic transfer function

Rational functions are the most commonly used analytical expressions for approximating the

aerodynamic transfer behaviour in aerospace as well as in bridge engineering. A complex partial

fraction expansion of this transfer approach is most suitable for an investigation. For one element of

the derivative matrix the approximation function is as follows

(7)

The poles of the transfer function are denoted by (-γµ) and their order or multiplicity by νµ. For the

sake of clarity, matrix indices of the derivative Q have been omitted. The polynomial part is

necessary to approximate at least the theoretical flat-plate derivatives in a reasonable way as will be

addressed in Section 4. Due to the linear and the quadratic summand of this part, a non-causality in

the transfer behaviour occurs. It disappears, when the equation of motion of the aeroelastic system

is assembled.

f p( ) G p( ) ⋅=

Q p( ) A0 A1p A2p
2 Aµκ

p γµ+( )κ
---------------------

κ 1=

ν
µ

∑
µ 1=

n

∑+ + +=



Transfer function approximation of motion-induced aerodynamic forces with rational functions 137

The rational summands become more comprehensible when examining the impulse response

 which is an element of the corresponding matrix G(t), the time-domain

analogon of the transfer function G(s). For all functions that are used in this article, it is assumed

that their values are zero prior to t = 0. Considering Eq. (7) as a result of a unilateral Laplace

transform with the reduced transform variable p, tables of Laplace transforms can be used to

determine 

(8)

The non-dimensionalised time and the associated dirac impulse are defined as follows

, (9)

The operator  symbolises the generalised differentiation with respect to . Since only the rational

summands appear for  > 0, they are also called lag terms.

Regarding the location of their poles (−γµ), the partial fractions can be separated into several
types. The mandatory pole location in the left complex half-plane ensures impulse responses that

decrease with time. Usually, simple, real poles (νµ = 1, ) with real coefficients Aµκ are

applied. As a result, the associated impulse responses are decaying exponential functions. Pairs of

simple complex-conjugate poles with complex-conjugate coefficients are, however, possible as well.

Complex conjugates are necessary to ensure real impulse responses in the time domain which,

concerning their partial fractions, can be calculated as 

(10)

The superscript ( )c indicates the complex-conjugate value and ϕµκ the argument of the complex

coefficient Aµκ. According to Eq. (10), the impulse responses can be considered as decaying cosine

functions. In bridge engineering, a similar approach has been used for instance in Sternberg (1992).

A systematic investigation of the suitability of complex-conjugate poles for rational aerodynamic

transfer functions still needs to be done.

The poles described so far can also be multiple (νµ > 1). For this case, the impulse responses

include an additional factor in the form of  which is dominant for small time values.

The proposal to use multiple real poles was published in Eversman and Tewari (1991) and is in

their article recommended for derivatives of airfoils at high Mach numbers. Own investigations,

which have not been published so far, have shown that the application of multiple real poles is

appropriate for approximating the theoretical gust admittance of the flat plate.

Concerning the constant summand of the polynomial part and clever combinations of the rational

summands of Eq. (7), it could be an interesting task to find more or less realistic, parallel connected

mechanical systems that posses a similar transfer behaviour. This is attempted in Omenzetter et al.

(2000) for a simple real pole. Certainly, this kind of analogy would help users to understand the

rational approach in a better way.

Using simple real poles which are the same for all derivatives is most common in aerospace

G t( ) q0 Q t( )⋅=

Q t( )

Q t( ) A0δ t( ) A1D δ t( )( ) A2D
2

δ t( )( ) Aµκ

t
κ 1–

κ 1–( )!
-------------------e

γ
µ

– t

κ 1=

ν
µ

∑
µ 1=

n

∑+ + +=

t
U

b
----t= δ t( ) td

∞–

∞

∫ 1=

D t

t

γµ–( ) R
 –∈

Aµκe
γ
µ

– t
Aµκ

c
e

γ
µ

c
– t

+ Aµκ e
Re γ

µ
( )t–

2 Im γµ( )t ϕµκ–( )cos=

t
κ 1–

κ 1–( )!⁄



138 Arno Kirch and Udo Peil

engineering but has also found its way into bridge engineering (e.g., Xie and Xiang 1985, Wilde et

al. 1996, Chen et al. 2000, Boonyapinyo et al. 2007, Mishra et al. 2007, Thang et al. 2008). The

idea was first proposed in Roger (1977) and in the following form essentially in Abel (1979).

(11)

Compared to those in Eq. (7), the nominators of the rational summands in Eq. (11) additionally

contain the complex reduced frequency p. This modification allows identifying the steady values

Q(p = 0) of the derivatives with the elements of the A0 matrix. The matching of the steady values is

important for the evaluation of the divergence wind speed of the aeroelastic system in Section 5.

When the constant parts of the rational summands in Eq. (11) are separated and combined with the

A0 coefficient, Eq. (11) becomes for the single matrix elements of Q equivalent to the formulation

chosen before. Concerning the foregoing explanations it should be stressed that the equivalence of

different time-domain approaches with convolution integrals and impulse responses can be easily

shown in this way. Usually, constraints for  are not included in the approximation

procedure. Apart from Dirac impulses, the impulse responses in the time domain thus differ from

the original values at t = 0. Without any further constraints, the coefficients Aj, ( j > 0) are

determined by a least-squares fit after suitably placing the poles (−γl). Hence, the approximation
procedure is often called Least-Squares Method. In an extended variant, the pole location on the

negative real axis is repeatedly optimised by a nonlinear procedure whose results after each iteration

step are used for a new least-squares fit of the Aj coefficients. The following content of the article

refers to this so-called Extended Least-Squares Method (Tiffany and Adams 1988). Through the use

of identical poles for all elements of the derivative matrix, the size of the equation system for the

aeroelastic system can be significantly reduced. A further size reduction without relevant loss of

approximation quality can be achieved by using the more matrix-based (Extended) Minimum-State

Method (Karpel 1981), which in other respects basically complies with the Extended Least-Squares

Method.

As mentioned above, the approximation is done for discrete derivatives in an interval along the

imaginary frequency axis. With p = 0 + ik the real and imaginary part of the derivatives are

, (12)

In Fig. 2, the behaviour of the summands is illustrated for a single derivative with the coefficients

Ai = 1, ( ) and A2 = −1. The curves of the rational summands are displayed for equally spaced
pole locations (−γl) between (-0.1) and (-1.0). For the initial least-squares fit, the poles should be
placed − concerning their absolute value - within the range of the absolute values of the imaginary
frequencies at which the measured data is available (Tiffany and Adams 1988). The reason for this

arrangement can be explained with Fig. 2 and Eq. (12) because the imaginary part of a rational

summand with a pole at (−γl) has its extreme value above the imaginary axis at the reduced
frequency . Hence, the poles have their highest influence within the bandwidth of original

values. The different suitability of rational functions for the approximation of derivatives of motion-
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induced forces will be explained in the following section, mainly by means of two selected section

shapes.

4. Approximation quality of rational functions

4.1 Motion-induced aerodynamic forces of the flat plate

The theoretical derivatives of the flat plate according to Theodorsen (1934) are determined for

selected imaginary frequencies  and are approximated with Eq. (11) pursuant to the

Extended Least-Squares Method. Steady values are incorporated in the A0 matrix. Contrary to the

recommendation given in the previous section, the initial positions of the poles are selected within the

interval [−1.0; 0] as will be justified later on.
The approximation results are as follows: Nearly independent of the number of lag terms nL, the

coefficients of the polynomial summands almost exactly include the non-circulatory aerodynamic

forces and parts of the circulatory ones. A polynomial part of degree two is thus justified for

approximating the theoretical flat plate derivatives. The rational summands contain the remaining

parts of the circulatory forces. For the flat plate, the particular suitability of the lag terms with

negative real poles can be qualitatively explained in the time domain. The decaying exponential

functions describe the effect of drifting vortices arising at the leeward edge and their girder-bound

counterpart.

In Fig. 3, the theoretical derivatives and their rational approximations with nL = 5 are exemplarily

illustrated for the derivative Q11 against reduced frequencies of the imaginary axis. Their behaviour

along the negative part of the axis follows from their complex-conjugate properties. Along this axis,

the extremely good approximation is evident.

A surface plot of the Q11 real part over an area of the complex frequency plane is displayed in

Fig. 4. The poles are visible in the interval [−1.0; 0] of the negative real frequency axis. For the flat
plate, derivatives can also be theoretically evaluated for complex frequencies based on the

generalised Theodorsen function (Edwards 1977). In Fig. 5, the difference between the theoretically

exact values and the rationally approximated ones is shown for the real part of the already

mentioned derivative. Since the theoretical values are not defined for frequencies on the negative

k 0.1 10;[ ]∈

Fig. 2 Summands of the rational approximation of a derivative according to Eq. (12); real parts on the left,
imaginary parts on the right
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real axis and at the origin, the difference is not displayed. Even if the poles have other initial

positions in a larger interval, the nonlinear optimisation places them in the complex frequency

interval [−2.0; 0]. The imaginary part of the generalised Theodorsen function features a perceptible
discontinuity within this interval. The result of the location optimisation is thus predictable and it is

justified to initially place the poles within the smaller interval. In the left half-plane, the difference

between the original values and their approximation vanishes for complex frequencies with high

absolute values. In the right half-plane almost no differences are visible. The strip-like area

 in the left frequency half-plane is important for the aeroelastic system because the

eigenvalues especially in this low-damped area is closely connected to the quality of its dynamic

behaviour. Hence, a good approximation of the fluid force is necessary there. Perceptible deviations

only exist near the pole with the smallest absolute value. Imaginary parts of the reduced frequency

of bridges that are interfered by this pole are not to be expected. Apart from this small area, the

approximation within the strip can be judged as excellent on the basis of this figure.

β 0.15<

Fig. 3 Derivative Q11 of a flat plate along the imaginary axis of the complex frequency plane. The original,
theoretical values are displayed with markers, the rational approximations with lines

Fig. 4 Real part of the flat plate’s derivative Q11 above the complex frequency plane. The approximation
along the imaginary frequency axis is graphically accentuated. Absolute values are limited by the
displayed maximum values of the vertical axis
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4.2 Motion-induced aerodynamic forces of real bridge cross sections

The unsteady frequency-domain approach, which is based on a linear dependence of forces on

displacements, is problematic for bluff and sharp-edged cross sections, as they are often applied for

real bridge girders. In contrast to the theoretically described flat plate, the forces also depend on the

mean angle of attack. These difficulties are not discussed herein.

The derivatives for real bridge cross sections cannot be analytically calculated with the potential

theory. As mentioned above, they are usually experimentally determined for imaginary frequencies

in a wind or a water tunnel with a scaled section model. Additionally, numerical, CFD-based

procedures have been established in recent years to achieve comparable results (e.g., Larsen and

Walther 1998, Chen et al. 2002, Starossek et al. 2009). In this article, experimentally determined

derivatives of idealised cross sections according to Bergmann (2004) are used. The selected cross

sections are shown in Fig. 6. Bergmann’s results are also used in Starossek et al. (2009).

Measured derivatives are extracted for most cross sections in intervals  as they are

relevant for bridges. Once again, the rational function approximation procedure is carried out with

the Extended Least-Squares Method. Initial positions of the poles are defined as explained in

Section 3 and the steady values of the derivatives are again incorporated into the A0 matrix. 

Table 1 and Table 2 list the approximation results in a simplified way. The used total approximation

error J is defined according to Tiffany and Adams (1988).

(13)

In this definition Qjl stands for the original value which is given for nk discrete reduced frequencies

ikλ, and  is the approximation.

The Tacoma bridge cross section can be exemplarily used to explain problems that occur when

derivatives of real bridge sections are approximated with rational functions. Contrary to the moved

k 0.1  1.05;[ ]∈
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Fig. 5 Difference between the real part of the flat plate’s derivative Q11 and its rational approximation above
the complex frequency plane. Absolute values are limited by the displayed maximum values of the
vertical axis
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flat plate, there are also more or less distinct vortices arising from the windward part of a bluff and

sharp-edged profile. Especially in the case of the Tacoma bridge cross section, these vortices

decisively affect the flow around the bridge deck (e.g., Larsen 2000). Its derivatives clearly differ

from those of the flat plate.

First of all, as shown in Fig. 7, there is a qualitatively acceptable approximation above the

imaginary axis. Unlike the flat plate case, the frequency range of the poles is not essentially

changed by the nonlinear optimisation of their location. The rational functions rather approximate

the derivatives by a strong weighting of the rational summands. For increasing absolute pole values,

the coefficients of the rational summands of Eq. (11) appear with changing signs. Thus, the sum of

the rational summands results in the desired behaviour along parts of the imaginary axis. Fig. 8

displays the real part of the Q11 derivative over an area of the complex frequency plane. In contrast

Fig. 6 Cross section shapes addressed in this article. Measured derivatives according to Bergmann (2004)

Table 1 Averaged absolute values of the coefficients of the rational approximation. The upper and lower values
correspond to the coefficients of the polynomial and rational summands, respectively

nL
Flat Plate

(Pot. Theory)
First Tacoma

Narrows Bridge
Storebælt Bridge

(East Part)
Gibraltar Bridge

(Draft)
Second Chongqing

Bridge

3
0.6146 2.480 0.4555 0.3413 3.037

0.1557 5.305 0.3983 0.5780 109.4

5
0.6146 5.593 0.5304 0.3363 2.175

0.2625 237.8 7.078 0.9102 104.3

7
0.6146 8.827 0.5031 0.2623 0.9595

3.878 6457 170.8 254.2 1150

nL Trapezium Millau Viaduct Severn Bridge
Rectangle
(8:1)

Plate
(25:1)

3
0.5224 0.5513 0.5326 0.7108 0.6210

0.4811 0.2171 0.3449 0.7934 0.3407

5
0.5220 0.5989 0.5613 0.7815 0.6978

2.369 0.9331 0.7919 4.785 12.13

7
0.6253 0.7378 0.6217 1.001 0.9241

351.7 184.6 226.8 911.9 349.4
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to the corresponding Fig. 4 of the flat plate, the pole-influenced areas, where the approximation

functions are strongly distorted, are widely extended. When comparing the averaged absolute values

of coefficients of the rational summands in the upper fields of the first two columns in Table 1, this

effect becomes apparent as well. It must be pointed out that the values should only be considered in

their order of magnitude because the derivatives are determined for different cross sections and

different pole locations. As can be seen in Table 1, the mentioned values also increase when more

lag terms are used, that is when the approximation tends towards an interpolation. This can also be

observed for the flat plate described by the potential theory. When comparing the coefficients of the

rational summands of all cross sections, it can be found that, especially for sections with large

vortices arising from the windward side, the approximation is performed with highly weighted lag terms.

Off the imaginary axis, the dominance of the rational summands leads to a strongly distorted

behaviour of the approximation. Since the derivatives of real bridge sections are normally not

Fig. 7 Derivative Q11 of the Tacoma bridge cross section along the imaginary axis of the complex frequency
plane. The original, theoretical values are displayed with markers, the rational approximations with
lines

Fig. 8 Real part of the derivative Q11 of the Tacoma bridge cross section above the complex frequency plane.
The approximation along the imaginary frequency axis is graphically accentuated. Absolute values are
limited by the displayed maximum values of the vertical axis
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determined for true complex frequencies with non-zero real parts, they are not available for

reference. Nevertheless, it can be stated that aerodynamic forces are expressed in an absolutely

wrong manner within the already mentioned area  if the coefficients of the lag terms are

too large. Conclusions concerning the quality of the dynamic system based on these distorted

descriptions of fluid forces are expected to significantly differ from reality. 

Increasing the number of lag terms is not associated with continuously reducing the approximation

error (Table 2). As can be shown with results not presented here, this effect is only local. In

principle, a higher number of rational summands leads to a better approximation of the derivatives

above the imaginary axis, normally accompanied by a larger distortion in the adjacent frequency

regions on the imaginary axis and the complex plane. The coefficients of the polynomial are not

independent of the number of lag terms but their absolute values remain in the same order of

magnitude (Table 1). Problems caused by these coefficients are addressed in Section 5.

5. Approximation effects on the aeroelastic system

5.1 Modelling and investigating the aeroelastic system

The time-domain representation of the motion-induced forces results in general when applying the

convolution theorem of the Laplace transform to Eq. (6)

*ξ s ξ s (14)

It is commonly known that it is also possible to use equivalent formulas with step responses or

similar expressions instead of the impulse response G(t). The integrals must be evaluated for each

time step. The numerical effort to solve this equation is hence rather high. Especially when the

coefficients of the rational summands of Eq. (11) have high values, the time axis around 

must be discretised in very small steps to take very strong variations of the impulse response into

account.

β 0.15<

f t( ) G t( )
t

= t( ) G t τ–( )
0

t

∫ ⋅= τ( )dτ

τ t≈

Table 2 Total approximation error J · 104 according to Eq. (13) divided by the number nk of frequencies where
derivatives are measured

nL
Flat Plate

(Pot. Theory)
First Tacoma

Narrows Bridge
Storebælt Bridge

(East Part)
Gibraltar Bridge

(Draft)
Second Chongqing

Bridge

3 0.4632 1039 147.3 20.36 236.3

5 0.1754 857.5 134.4 15.33 171.5

7 0.2170 813.7 129.0 29.97 142.5

nL Trapezium Millau Viaduct Severn Bridge
Rectangle
(8:1)

Plate
(25:1)

3 91.30 42.36 47.87 104.6 42.84

5 87.39 25.24 33.45 73.84 36.80

7 85.70 27.09 33.34 81.88 20.58
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If the transfer function is described with rational functions there is a major advantage. The

rational summands can be transformed into linear differential equations with constant coefficients

after introducing artificial aerodynamic states ξa,l, which are also called lag states.

ξa = (ξ  ··· ξ )T (15)

ξa, l = ξ s  ξa, l = −γlξa, l + ξ s (16)

Usually, for investigations of the dynamic behaviour, the bridge structure can also be appropriately

described by linear differential equations with constant coefficients. If necessary, the structural

stiffness has to be linearised. Thus, the aeroelastic system can be represented by a linear, time-

invariant state-space model.

Dx(t) = Ax(t), x(t) = (ξ Dξ ξ )T (17)

The elements of the system matrix A can, for instance, be taken from Tiffany and Adams (1988).

The mean horizontal wind speed U occurs in the system matrix A as a parameter. There are two

reasons. The factor q0 contains U (cp. Eq. 3) and the generalised differentiation D with respect to

the absolute time t has to be used. The coefficients A0, A1 and A2 are incorporated in the stiffness,

damping and mass of the aeroelastic system, respectively. Hence, these expressions can be regarded

as parts of the corresponding properties of the air flow around the structure. In addition to the

structural degrees of freedom ξs , the state vector x contains the vector ξa of the artificial
aerodynamic states ξa,l . When taking into account gusts and other loads, the state-space equation

can be extended with an input term. Together with an output equation, a full state-space model is

thus available.

The dynamic characteristics of the aeroelastic system can be evaluated with an eigenvalue analysis

of the system matrix A. System stability is of major interest in this context. Due to the effect of

motion-induced aerodynamic forces, aeroelastic instabilities can occur in the form of flutter and

divergence. Unless otherwise explained, the two terms should specifically denote the cases of

neutral stability. Since the system matrix contains the mean horizontal wind speed U, a parameter-

dependent linear eigenvalue problem must be solved.

The two-dimensional, generalised system in Fig. 1 is used as an example with the characteristic

structural properties given in Table 3. Concerning the aerodynamic behaviour, both the rational

approximations of the flat plate described with the potential theory and the Tacoma bridge cross

section are considered.

a 1,

T

a n
L

,

T

Al 2+

p

p γl+
-------------  D Al 2+ D

s

T
 s

T
 a

T

Table 3 Structural properties of the two-dimensional bridge model

half deck width:
mass:
moment of inertia:
eigenfrequencies:

logarithmic damping decrements:

b = 15.0 m
m = 25.0·103 kg/m
I = 2.80·106 kgm2/m
ωh = 0.628 1/s
ωα = 1.76 1/s
δh = 0.0126
δα = 0.0126
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5.2 Eigenvalues for the flat-plate cross section

For the flat plate, neutral stability appears at the zero crossings of the eigenvalue real part curves

(Fig. 9) as flutter at U = 82.8 m/s and as divergence at U = 99.1 m/s. This identification is possible

when inspecting the eigenvalues and state eigenvectors. The indifferent flutter point occurs in two

complex-conjugate eigenvectors with complex elements. Its eigenfrequencies are purely imaginary

and complex conjugate (Fig. 10). In the case of the flat plate, both structural degrees of freedom

appear in the same order of magnitude, as can be predicted for the classical bending-torsional

flutter. Indifferent divergence has only one eigenvector, the element values of which are real and

vanish in the velocities Dx and the lag states ξa. Its eigenfrequency is zero.
The eigenvalues close to the negative real axis originate in the lag terms of the rational

approximation of the derivatives. This can be observed when using the reduced frequency plane, as

it is done in Fig. 10. For a system characterisation, the eigenvalues with small absolute values of the

real parts are important. They are all located within areas of a good derivative approximation.

Fig. 9 Real parts of the eigenvalues of an aeroelastic system with the flat plate cross section

Fig. 10 Eigenvalues of an aeroelastic system with the flat plate cross section displayed in the reduced complex
frequency plane
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5.2 Eigenvalues for the Tacoma bridge cross section

For the Tacoma bridge cross section, an indifferent flutter point with a dominant torsional part can

be identified at U = 29.9 m/s when considering Fig. 12 and the associated eigenvector. Almost pure

torsional flutter is typical of this section shape.

The instable range between U = 0.6 m/s and U = 8.1 m/s in Fig. 11 does not exist in reality. It is

caused by the rational function approximation. The coefficients of the polynomial terms, which have

already been mentioned in Section 4, cannot be interpreted as has been done for the flat plate case.

The A0 matrix corresponds to the stiffness that is generated by the air flow around the structure and

is derived from the steady values of the aerodynamic forces within this article. Its elements are

hence well-founded. The elements of the A2 matrix can be interpreted as part of the mass of the

fluid flow but they are negligible in comparison with the much larger mass of the structure. More

problems are caused by the A1 matrix. It is responsible for the behaviour of the imaginary parts of

the derivatives at high reduced frequencies, as can be seen in Eq. (12) and in Fig. 2. As is generally

known, the imaginary parts of the derivative elements on the main diagonal can, for positive

reduced frequencies on the imaginary axis, be regarded as a negative damping, generated by the air

flow. In the case of the Tacoma bridge cross section, such positive values of the Q22 element are

responsible for the torsional flutter. As can be observed from Fig. 7, a positive A1 coefficient causes

these unfavourable values for the Q11 element as well, but in this case outside the identification

interval. When comparing Figs. 7, 11 and 12 it can be discovered that the low, instable speed range

is provoked by this poor shape of the approximation outside the grey-coloured identification range.

Thus, this effect must always be anticipated if positive elements occur on the main diagonal of the

A1 matrix. Further calculations show that the A1 effect appears even for streamlined sections whose

aerodynamic behaviour is similar to that of the flat plate.

Unlike the flat plate case, the pole influenced, distorted behaviour of the motion-induced forces

generates numerous eigenvalues in the left frequency half-plane off the real axis (Fig. 12). As a

consequence of the low approximation quality of rational functions for the Tacoma bridge cross

section, all results in Fig. 12 that are located outside the grey-coloured areas are questionable from a

physical point of view.

In the case of controlled aeroelastic systems, as they have been addressed in the introduction of

this article, the effects of the rational function approximation must also be kept in mind. For

Fig. 11 Real parts of the eigenvalues of an aeroelastic system with the Tacoma bridge cross section
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instance, single eigenvalues with undesired characteristics like uncontrollability, which are caused

by the poor approximation quality of rational function for motion induced aerodynamic forces, can

occur especially along the negative real axis. These problems are described in Kirch et al. (2009a,b).

6. Conclusions

The description of the transfer behaviour of motion-induced aerodynamic forces with rational

functions has been explained in a general way. The suitability of complex-conjugate and multiple

poles for non-streamlined bridge sections still requires systematic investigation. For the well-known

case of simple, real poles, the approximation of derivatives of motion-induced wind forces has been

performed using the Extended Least-Squares Method. It has been shown that this approximation

only yields convincing results off the identification interval for either the flat plate described by the

potential theory or for sections with a similar air flow around them. The quality of the

approximation of aerodynamic forces significantly affects the quality of the model of the aeroelastic

system. Additionally, positive elements at the main diagonal of the A1 approximation matrix lead to

unrealistic, unstable states of the aeroelastic system within the range of small mean wind speeds.
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Appendix

The following notation is used in this article. Table 3 defines additional variables.

h, α aerodynamically effective structural degrees of freedom of the example system (Fig. 1)

L, M motion-induced aerodynamic vertical force and moment acting on the example

system (Fig. 1)

U horizontal mean wind speed

ρ air density ( 1.25 kg/m3)

b, B half width and total width of the aerodynamically effective cross section

aerodynamic derivatives according to Simiu and Scanlan (1996)

K reduced frequency related to B

f vector of motion-induced aerodynamic forces

Q(p) matrix of aerodynamic derivatives 

Q(p) element of the Q matrix

ξs vector of aerodynamically effective structural degrees of freedom 

q0 factor in the aerodynamic transfer equation 

s complex frequency

σ, ω real and imaginary part of the complex frequency

p reduced complex frequency related to b

β, k real and imaginary part of the reduced complex frequency related to b

G(s) matrix of the aerodynamic transfer function or aerodynamic admittance function of

motion-induced aerodynamic forces

≈

Hj

*
Aj

*,
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Aj, Aµκ coefficients of the rational function approximation

γ negative value of a pole of the derivative approximation

v order or multiplicity of the pole of the derivative approximation

n total number of poles of the derivative approximation

time and non-dimensionalised time

G(t) matrix of impulse responses 

G element of the G(t) matrix

Q( ) time-domain analogon of the derivative Q(p)

Aj, coefficient matrix of the rational function approximation

nL number of lag terms in the rational function approximation 

J approximation error

Qjl, derivative and approximated derivative if both ones appear in an equation

nk number of frequencies, where derivatives are measured

time and non-dimensionalised time within an integral 

ξa, ξa,j vector and subvector of aerodynamic states

x state vector of the state-space model

A system matrix of the state-space model

j, l, κ, λ, µ matrix and vector indices

∆ difference

( ) differentiation with respect to the time t 

D, generalised differentiation (i.e., using distributions) with respect to the time t and the

non-dimensionalised time 

δ, Dirac impulse with respect to the time t and the non-dimensionalised time 

( )T transposition 

( )c complex conjugate 

i imaginary unit; i2 = –1

absolute value

ϕ argument of a complex value

Re( ), Im( ) real and imaginary part of a complex value 

symbol for corresponding variables, equations, etc. in frequency and time domain

, symbols for convolution with respect to the time t and the non-dimensionalised time 

t t,

t

Qjl

appr

τ τ,

 
·

D

δ t

  

 

*
t

*
t

t
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