
Wind and Structures, Vol. 13, No. 3 (2010) 235-256 235

Prevention of suspension bridge flutter using
multiple tuned mass dampers

Filippo Ubertini*

Department of Civil and Environmental Engineering,

University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

(Received January 16, 2009, Accepted October 20, 2009)

Abstract. The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied.
The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic
indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the
aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state
variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic
framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible
sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in
a form which requires a lower computational effort and it is then applied to a general case study in order to
analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is
devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned
mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned
mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning,
which may weaken their feasibility for technical applications. In order to overcome this drawback, an
irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal
design of this device is finally pursued via a full domain search, which evidences a remarkable robustness
against frequency mistuning, in the sense of the simplified design approach.

Keywords: deck flutter; indicial functions; Hopf bifurcation; multiple tuned mass dampers; frequency mis-
tuning; robust control.

1. Introduction

Long-span suspension bridges are lightly damped structures where wind loads may produce large

amplitude oscillations or even catastrophic instability. Thus, increasing the safety against aeroelastic

instability is mandatory in bridge engineering.

Mechanically speaking, the flutter instability of a bridge deck section ensues from a Hopf

bifurcation which leads to unstable coupled bending-torsional motions (Piccardo 1993, Simiu and

Scanlan 1996, Chen, et al. 2000a). The aeroelastic stability analysis requires therefore self-excited

loads to be modeled. To this end, either frequency domain (Robertson, et al. 2003) or time domain

(Chen, et al. 2000b, Lazzari, et al. 2004) formulations can be adopted. Likewise in response
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problems (Gusella and Materazzi 2000, Cluni, et al. 2007, Tubino and Solari 2007), time domain

formulations have the advantage of easily handling the presence of structural nonlinearities. The

most effective and up-to-date method to express aeroelastic forces for bridge deck sections in the

time domain, is probably represented by the load model using indicial functions (Scanlan, et al.

1974, Costa and Borri 2006, Salvatori and Borri 2007). This model was formulated directly in the

time domain for the thin airfoil. Its extension to bluff cross-sections is due to Scanlan, et al. (1974)

and it is based on the exponential approximation of Wagner’s function. Practically, indicial functions

are often approximated via truncated series of exponential filters and the unknown parameters are

identified from measured aeroelastic derivatives via optimization procedures (Costa and Borri 2006).

Though slightly approximated, this simple approach is very popular because well-established

experimental techniques currently exist only for the determination of the aeroelastic derivatives.

Nonetheless, it must be mentioned that some promising studies for a direct experimental assessment

of indicial functions were already proposed by some researchers (Caracoglia and Jones 2003).

Structural control is nowadays a well-established field in the technical literature (Soong 1991,

Breccolotti, et al. 2007, Casciati, et al. 2007, Ubertini 2008a, Faravelli, et al. 2009, Faravelli and

Ubertini 2009) and it is commonly accepted as a key point of modern structural design. Within this

topic, a great attention was recently devoted to conceiving control strategies against bridge flutter.

On this respect, many studies were focused on the use of single and multiple tuned mass dampers

(Gu, et al. 1998, Lin, et al. 1999, 2000, Pourzeynali and Datta 2002, Kwon 2002, Chen and

Kareem 2003, Kwon and Park 2004, Ubertini 2008b), although active control solution were also

investigated (Preidikman and Mook 1997, Kwon and Chang 2000). Single tuned mass dampers

(STMDs) are especially prone to mistuning effects (see for instance, Lin, et al. (2000)). This

circumstance, in the case of the classic coupled flutter instability of a bridge deck, makes the STMD

solution practically unfeasible. Indeed, in such a case, the calculation of the optimal tuning of the

device, close to the critical frequency of the system, is affected by aerodynamic and structural

uncertainties and mistuning is basically unpreventable. Multiple tuned mass dampers (MTMDs),

with equal amount of mass with respect to the STMDs, are known to enhance the control

robustness in presence of mistuning effects (see for instance, Kwon and Park (2004)). These devices

are composed by several small tuned mass dampers (TMDs) whose natural frequencies are equally

spaced around a mean value which corresponds to the frequency that has to be controlled (Abe and

Fujino 1994, Kareem and Kline 1995). The concept of irregular multiple tuned mass dampers

(IMTMDs) for deck flutter control was also proposed by Kwon and Park (2004). These devices are

obtained by irregularly distributing either the natural frequencies or the damping ratios of the small

TMDs. Such an approach allows to obtain enhanced control effectiveness with respect to the regular

MTMD case (Kwon and Park 2004). However, despite the rich technical literature devoted to the

topic, some aspects about the use of regular and irregular MTMDs still deserve further investigations.

Indeed, these control devices significantly enhance the complexity of the system and the optimization

of the control parameters may become a very difficult task, especially when IMTMDs are concerned

(Kwon and Park 2004). Therefore, a complete understanding of all the involved aspects related to

the aeroelastic stability of deck-MTMDs systems is still missing.

The paper presents an investigation on the use of regular and irregular MTMDs to increase the

critical velocity leading to bridge flutter. Due to the large number of degrees of freedom of the

considered mechanical system, applying the classic iterative search of the Hopf bifurcation point in the

frequency domain (Simiu and Scanlan 1996, Robertson, et al. 2003) becomes especially troublesome.

Therefore, the aeroelastic stability analysis is performed in the time domain, via a direct eigenvalue
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problem, by representing the aeroelastic loads through indicial functions. A general technique for the

optimal robust design of MTMDs is then presented, which makes use of a probabilistic measure of

control effectiveness and it is based on a level 1 reliability analysis. The method, which allows to fully

consider the role played by all kind of uncertainties affecting the system, is then simplified in a less

computationally expensive form and applied to a general case study. The results show that a correct

design of the regular MTMD may enlarge the frequency band of control effectiveness with respect to

the STMD. However, some asymmetry in the behavior of the system with respect to frequency

mistuning is evidenced, which partially reduces the feasibility of the device for technical applications.

After giving an interpretation of this phenomenon, an IMTMD with irregular mass distribution is

proposed to circumvent this drawback. Once the configuration of the IMTMD offering the best

compromise between control robustness and control effectiveness is found, optimization of damping

ratio and frequency tuning of the device is finally performed by means of a full domain search.

2. Governing relations

2.1. Mechanical system

Let us consider the aeroelastic stability of a suspension bridge subjected to an incoming wind flow

with mean velocity U and equipped with a MTMD as shown in Fig. 1(a). The aeroelastic lift force per

unit length L(x), the pitching moment per unit length M(x), the vertical degree of freedom (DOF) h(x,t)

and the twist rotation α(x,t) are defined as shown in Fig. 1(b), x being the longitudinal axis of the deck

and t denoting time. The MTMD is obtained by splitting a STMD device (Lin, et al. 2000) into n

small TMDs of the type shown in Fig. 1(b), with the same total amount of mass of the STMD case.

The MTMD is said to be “regular” if the assembled TMDs have same masses, same damping ratios

and their natural frequencies are regularly spaced. Otherwise, the MTMD is said to be “irregular”.

According to the notation adopted in Fig. 1, the i-th TMD (for i=1,2,...,n), placed at the position

xi, is characterized by: vertical DOF hTi, rotation αTi, mass mTi, mass moment of inertia ITi, vertical

stiffness kTi, damping coefficient cTi, vertical damping ratio ξTi, torsional damping ratio ξTαi, vertical

Fig. 1 (a) Sketch of the bridge-MTMD system and (b) i-th TMD device composing the MTMD
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natural circular frequency ωTi and torsional natural circular frequency ωTαi. The reference width of

the deck is denoted by B=2b, while the half brace of the TMDs is denoted by l.

Clearly, the following relations hold for the considered TMDs (for i=1,2,...,n):

(1)

The first expression of Eq. (1) indicates that, in general, the vertical and rotational natural frequencies

of the i-th TMD are distinct. However, when dealing with the classic flutter instability of bridge

decks, it is more convenient to tune the two frequencies to the same value which, in the STMD

case, nearly corresponds to the critical flutter circular frequency of the uncontrolled system. This

can be achieved by simply concentrating two equal masses at the positions of the elastic and

viscous forces, such that, in Eq. (1), it results ITi=mTil
2.

As it is well-known, suspension bridge flutter is usually dominated by the first in-plane symmetric

and the first torsional symmetric modes. Therefore, for the sake of simplicity, the motion of the

bridge is here described by means of these two modes, whose modal shapes are denoted by ϕh(x)

and ϕα(x), respectively. Thus, the vertical and torsional displacement functions can be written as:

(2)

ζ and γ being the modal amplitudes. In the following developments, the vertical and torsional mass

ratios of the i-th TMD, with respect to the corresponding generalized modal masses of the bridge 

and , are denoted by ψi and ψαi, respectively. The aeroelastic stability analysis is then performed

by means of a classic two degrees-of-freedom (DOFs) model. In presence of only one STMD

(i=n=1), the equations of motion of this simple mechanical system read as (Lin, et al. 2000):

(3)

where  and  are the displacements of the STMD in the generalized coordinate system, while

the dots denote differentiation with respect to time t. In Eq. (3), ξh, ξα denote the damping ratios

and ωh, ωα the natural circular frequencies of the considered bending and torsional modes. The

equations of motion of the system for n>1 (MTMD case) can simply be obtained by extending Eq.

(3) to the presence of n small TMDs (Kwon and Park 2004). 
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2.2. Time domain formulation of aeroelastic forces via indicial functions

The aeroelastic forces in Eq. (3) can be expressed through the well-known time domain

formulation using indicial functions ΦLh(t), ΦLα(t), ΦMh(t) and ΦMα(t) (Salvatori and Borri 2007), as:

(4)

where ρ denotes the air density while  and  are the so-called “dynamic derivatives”. These

lasts represent the derivatives of the aerodynamic lift and moment coefficients with respect to α and

evaluated for α=0. As customary in aeroelasticity (Salvatori and Borri 2007), the following approximation

of indicial functions via exponential filters is adopted in Eq. (4):

,   j = L,M   k = h,α (5)

The dimensionless parameters ai
jk and bi

jk, which appear in Eq. (5), can be identified by means of

an optimization procedure. In particular, the parameters ai
Lh and bi

Lh can be identified, for instance,

by minimizing the following cost functional ELh (Costa and Borri 2006):

(6)

where ,  denote measured aeroelastic derivatives while ,  denote calculated aeroelastic

derivatives using the identified parameters ai
hk and bi

hk. Indeed, relations between indicial functions

and aeroelastic derivatives can be derived as described in reference (Costa and Borri 2006). Similar

expressions to Eq. (6) can also be written for the remaining pairs of aeroelastic derivatives. Clearly,

the number of exponential groups Njk in Eq. (5) accounts for the desired level of accuracy in the

identification of indicial functions. Indeed, as Njk is increased, a better fitting of the aeroelastic

derivatives and, consequently, a more accurate calculation of the critical flutter solution are achieved

(Tiffany and Adams 1988). 

3. Aeroelastic stability analysis of deck-MTMD system

The aeroelastic stability analysis of the deck-MTMD system can be reduced to a straightforward

eigenvalue problem by rewriting the equations of motion in the form of a first order autonomous

system. This approach results rather easy in the case of the thin airfoil in which the equations of

motion of the uncontrolled system can be reduced in a 6-dimensional state space form, by adding

two additional variables based on Wagner’s function (Coller and Chamara 2004). For a general

bluff deck section, an additional state variable for each exponential filter in Eq. (5) can be

introduced as:
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   i = 1,2,...,NLh

   i = 1,2,...,NLα

(7)

   i = 1,2,...,NMh

   i = 1,2,...,NMα

In the case, for instance, in which one single exponential group is considered for each indicial

function, the superscripts in the left-hand side of Eq. (7) can be omitted and the additional variables can

simply be indicated as:

w1 = w1
Lh

w2 = w1
Lα (8)

w3 = w1
Mh

w4 = w1
Mα

For reasons that will be discussed in Section 5, this case will be considered in the following

developments of the present study. Substituting Eq. (5) into Eq. (4) and using the Eqs. (7) and (8),

self-excited lift L and pitching moment M can be rewritten as: 

(9)

Moreover, differentiating Eq. (7) with respect to time t, the following first order differential equations

are easily obtained: 

(10)

Substituting Eq. (9) into Eq. (3) and including Eq. (10) the problem can be reduced in state space
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form as:

(11)

where A is a real 12×12 matrix depending on the wind velocity U and the state vector X is defined as:

(12)

The extension of the above described procedure to consider a MTMD composed by n TMDs and to

use an arbitrary number k = NLh + NLα + NMh + NMα of exponential groups is straightforward. Eventually,

a system of ordinary differential equations (ODEs) of the form of Eq. (11) is obtained, in which the

state vector is defined as:

(13)

and A results to be a n×n matrix, with n=4(n+1)+k.

Looking at Eqs. (12) and (13) it is clear that considering a general bluff section reflects on a

larger dimensional problem with respect to the airfoil case. Indeed, the number of state variables in

Eq. (12) grows as the number of exponential filters adopted to approximate indicial functions and

the minimal dimension of the system, in the uncontrolled case, is equal to 8.

After rewriting the equations of motion in first order form (Eq. (11)), the aeroelastic stability

analysis of the deck-MTMD system can simply be performed by calculating the eigenvalues of

matrix A. The flutter instability is encountered when a pair of complex conjugate eigenvalues have

zero real parts (Hopf bifurcation point). The minimal velocity Ucrit at which this condition is

satisfied is the critical velocity of the system, while the imaginary part ωcrit of the critical eigenvalue

represents the circular frequency of the motion at criticality.

4. Optimal robust design of MTMDs

4.1. General design methodology

Before presenting a numerical example in Section 5, a design methodology for MTMDs is

presented here, with a particular attention to the mitigation of mistuning effects. 

As initial design guess, the classic Den Hartog’s rules (Den Hartog 1956) can be adopted to

calculate frequency tuning and damping parameter for the STMD (ε=0). Particularly, the

uncontrolled critical circular frequency can be utilized as the target frequency and the damping ratio

of the device can be initially fixed to the Den Hartog’s optimum ξ opt calculated with respect to the

twist mode. The adequacy of such rules for tuning STMDs for bridge flutter control is discussed in

the design example.

When MTMDs are concerned, the complexity of the system is greatly increased and design

formulas might be substituted by the solution of suitable optimization problems (Kwon and Park

2004). To this end, the following parameter η is here considered as the evaluation criterion of

control effectiveness: 
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(14)

where  denotes the critical velocity of the deck-MTMD system, while Ucrit is the

uncontrolled one. For a general IMTMD, the optimal design problem can be written as the

maximization of η in the space of the design parameters. A similar approach does not however

consider the aerodynamic and mechanical uncertainties that characterize the problem, whose main

consequence is to cause frequency mistuning that may severely impair the overall effectiveness of

the control device.

In order to obtain a robust design, the uncertainties that affect the system should be modeled and

incorporated in the optimal design problem. To this regards, Kwon and Park (2004) introduced the

concept of minimum flutter velocity , which is defined as the minimum value of the critical

velocity in the space of perturbed aeroelastic derivatives. The optimal design problem of the

IMTMD was then stated by the authors as the maximization of .

From a probabilistic point of view, aerodynamic and mechanical uncertainties might be also taken

into account by modeling the critical velocity as a random variable depending on uncertain

aeroelastic derivatives and uncertain structural parameters. In the spirit of the well-established “level

1” reliability analysis, the safety requirement of the structure is then satisfied when a characteristic value

 of the critical velocity of the bridge-MTMD system is sufficiently large. Thus, the control

effectiveness can be expressed by means of the evaluation criterion ηk which can be defined as:

(15)

where  denotes the characteristic value of the critical velocity of the uncontrolled bridge. The

optimal robust design problem of the IMTMD can then be written as:

maximize[ηk]

n,x,ωT, ,mT

         (16)

where the following vectors containing the design parameters of the single TMDs composing the

IMTMD have been introduced:

x = [x1 , x2 , ... , xn]
T   ωT = [ωT1 ,ωT2 , ... ,ωTn]

T

(17)

= [ , , ... , ]T  mT = [mT1 , mT2 , ... , mTn]
T

while xmin, xmax, ξT,min, ξT,max, ωT,min, ωT,max and mT,max are design constraints. The problem stated in

Eq. (16) can be regarded as a general probabilistic framework for the optimal robust design of

IMTMDs against bridge flutter. Finding the solution for such a problem might reveal however

computationally expensive, as it would require to perform MonteCarlo simulations at every

optimization step. Details on possible solution strategies for a similar problem, based on

evolutionary algorithms, can be found in (Kwon and Park 2004).
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4.2. Simplified design approach

The aim of the present investigation is to outline the mechanical mechanisms that regulate

sensitivity against mistuning effects. To this end, a simplified version of the problem stated in Eq.

(16) is sought to be adopted in the design example presented in Section 5. 

First of all, for the sake of simplicity, the number of freely varying parameters is reduced by

introducing the following expression of the natural frequency of the i-th TMD composing the MTMD:

,   i = 1,2,...,n (18)

The detuning parameter ε=0-1 is utilized in Eq. (18) to define the frequency bandwidth of the

MTMD, which is equal to [ωT(1−ε),ωT(1+ε)]. Thus, according to Eq. (18), ωT represents the central

frequency tuning of the MTMD. The assembled TMDs are also assumed to be placed at the mid-

span of the bridge, which is likely the best position for controlling the coupled flutter instability of

the first in-plane symmetric and the first torsional symmetric modes, and their damping ratios are

assumed to be equal to the same value ξT.

As already mentioned, including uncertainties in the analysis would strongly increase the

computational effort. However, if the sensitivity of the system to a perturbation ∆ωT of ωT is

reduced, the capability of the system to counteract possible frequency mistuning is certainly

improved and ηk is increased. To this end, the following two requirements should be met:

- the η vs ωT curves should be “wide” around the optimal tuning ωT = ωT,opt;

- the variation of η should not be sensitive to the sign of ∆ωT.

The former condition stated above is quite trivial, while the latter entails that the η vs ωT curves

should be almost symmetric around the optimal tuning. As it is well-known (Abe and Fujino 1994),

the former condition can be satisfied by slightly enlarging the detuning parameter ε in Eq. (18).

Concerning the latter condition, as it will be shown in the design example discussed in Section 5,

the symmetry of the η vs ωT curves around the optimal tuning is essentially dictated by the

position, in the complex plane, of the critical eigenvalue at the perfectly tuned condition. For the

reasons that will be better explained in Section 5, this fundamental requirement can be met by

considering an irregular mass distribution of the TMDs. Here, the following rule is considered,

which preserves the total amount of mass of the regular MTMD:

,   i = 1,2,...,n   (19)

where ψ indicates the total generalized vertical mass ratio of the MTMD. From Eq. (19) it is clear

that δ indicates the quote of the total mass which is equally distributed among the TMDs, while (1-

δ) indicates the quote of the total mass which is linearly distributed among them. Obviously, the

regular MTMD can be interpreted as the considered IMTMD with δ=1. 

Now, on the basis of the previous observations and by exploiting the Eqs. (18) and (19), Eq. (16)

can be simplified into a suboptimal design problem that still accounts for mistuning effects while

relying on the deterministic objective function defined in Eq. (14). The proposed approach is based

on the definition of a minimum required control effectiveness  that must be guaranteed for a

ωTi ωT 1 ε
2ε i 1–( )⋅

n 1–( )
--------------------------–+⎝ ⎠

⎛ ⎞=

ψi
ψ

n
---- δ ψ+ 1 δ–( ) i 1–( )

k

k 1=

n 1–

∑

---------------⋅ ⋅ ⋅= 0 δ 1≤ ≤

η
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given maximum perturbation amplitude ∆ωT of the frequency tuning. This last is obviously related

to the severity of possible frequency mistuning and, consequently, to the level of uncertainties. A

feasible approach is to define ∆ωT as a characteristic value of the variation of the uncontrolled

critical circular frequency with respect to the nominal case. Once the value of ∆ωT is chosen, an

optimal solution is searched under the constraint that  for ωT varying in the interval

, being the optimal tuning. The final design problem can thus

be written with the following mathematical structure:

maximize[η] with  for 

n,ωT,ξT,ε,δ

      (20)

By operating in the above described way, it is expected that ηk corresponding to the final design is

greater than , because, with a given level of confidence, frequency mistuning is confined in the

interval . Clearly, this simplified approach relies on the fundamental

hypothesis that, at a first approximation, mistuning can be assimilated to a perturbation of ωT.

Nonetheless, an a posteriori confirmation that  can easily be obtained through a straightforward

MonteCarlo simulation of the control effectiveness of the designed IMTMD, considering all sources

of uncertainties involved in the problem.

5. Control effectiveness of multiple tuned mass dampers

5.1. The case study

A case study is considered to investigate the effectiveness of MTMDs for suppressing the onset of

the flutter instability of bridge decks. The considered structure is represented by the New Carquinez

Bridge (NCB), which is a suspension bridge crossing over the Carquinez Strait in California. The

bridge has a main span of 728 m and two lateral spans of 147 m (southern) and 181 m (northern).

It is implicit, however, that the results presented in this work do not refer to the real safety and

capacity of the structure.

The mechanical and geometric characteristics of the considered model are summarized in Table 1,

where m and I are the vertical and rotational masses of the deck per unit length. These properties,

along with the structural mode shapes, have been deduced from a finite element model of the bridge

updated on the basis of output only system identification results, using on-site recorded structural

responses, in a previous work (Ubertini 2008b). 

As reported in (Scanlan and Jones 1998), the deck of the NCB exhibited different aeroelastic

derivatives in cases the direction of the incident flow was westward or eastward. This circumstance

is due to the flow modifications induced by the presence of another bridge, built in 1958, close to

the NCB on one side. The aeroelastic stability analysis performed by Scanlan and Jones (1998)

through wind tunnel experiments showed that a flutter instability of the NCB occurred at 74 m/s for

eastward wind velocity. On the contrary, no aeroelastic instability was detected for westward wind

velocity up to 150 m/s and over. Thus, the aeroelastic behavior of the bridge in the former case is

considered in this paper.

η η>
ωT opt,

∆ωT ωT opt,
, ∆ωT+–[ ] ωT opt,

,

η η> ωT opt,
∆ωT ωT ωT opt,

∆ωT+≤ ≤–

ξT min,
ξT ξT max,

ωT min,
ωT ωT max,

≤ ≤ ≤ ≤ 0 ε 1≤ ≤ 0 δ 1≤ ≤

η

ωT opt,
∆ωT ωT opt,

, ∆ωT+–[ ]

ηk η>
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Indicial functions of the NCB have been here identified from measured aeroelastic derivatives

using Eqs. (5) and (6) through an evolutionary algorithm (Ubertini 2008b). Entering in deep details

of the identification phase goes beyond the purposes of the present study. However, some

preliminary results, which are necessary for choosing the number of exponential filters in Eq. (5),

are presented before analyzing the control effectiveness of regular and irregular MTMDs. 

In the uncontrolled case, the exact solution of the flutter equations in the frequency domain,

calculated through the procedure described in reference (Robertson, et al. 2003), leads to the results

summarized in Table 2, which well agree with those reported by Scanlan and Jones (1998). The

critical condition is also calculated through the time domain approach using indicial functions. The

direct eigenvalue problem is solved by adopting increasing numbers of exponential groups for each

indicial function in Eq. (5), up to Njk =3. Some relevant results obtained in these cases are also

summarized in Table 2, which show that, as expected, the overall accuracy is improved as the

number of exponential filters is increased. 

The errors in the calculation of Ucrit and ωcrit, when using one single exponential group for each

indicial function, result to be equal to 6.2% and 3.9%, respectively. For the purpose of this study,

Table 1 Mechanical characteristics of the model assumed as case study

B (m) l (m) ωh (rad/s) ωα (rad/s) m (kg/m) I (kg·m2/m) ξh ξα

27.2 13.6 1.22 2.89 21105 2.02·106 0.03 0.03

Table 2 Results of the aeroelastic stability analysis in the uncontrolled case

Exact solution in the frequency domain

Ucrit (m/s) ωcrit (rad/s)

74.1 2.55

Approximate solutions in the time domain

Njk NMH NLα NMα Ucrit (m/s) ωcrit (rad/s)

1 1 1 1 78.7 2.65

2 2 1 1 74.0 2.67

3 3 3 1 74.8 2.57

Fig. 2 Fitted (continuous lines) and measured (square points) aeroelastic derivatives of the NCB (1 group for
each indicial function)
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which is to outline a general methodology and to apply it to a sample case study, this case is

considered here and regarded as “exact” in the numerical calculations presented below. Indeed,

along with a good approximation of the critical solution, this choice guarantees a reduced

computational effort and a limits the complexity of the problem by minimizing the dimension of the

state matrix A. It must be mentioned, however, that more accurate estimations of ωcrit, such as the

one obtained in the third case reported in Table 2, might be convenient for real design applications.

Indeed, errors in the target frequency should be as much smaller as possible than the maximum

expected mistuning caused by aerodynamic and mechanical uncertainties. 

The comparison between measured and approximated aeroelastic derivatives of the NCB, showing

to some extent the quality of the optimization results, is shown in Fig. 2, where Ured denotes the

reduced velocity (Simiu and Scanlan 1996).

5.2. Design assumptions

In the considered case study, assuming ψ=0.01, corresponding to a total generalized torsional

mass ratio ψα=0.0193, the following design criteria have been chosen in Eq. (20): perturbation

amplitude  and minimum control effectiveness = 30%. Indeed, preliminary

calculations have shown that, assuming a coefficient of variation of the aeroelastic derivatives of

15%, which represents a safe estimation of the scatter observed in wind tunnel experiments of the

NCB (Caracoglia 2008), reflects on a coefficient of variation of the critical circular frequency that is

about 0.3%. Thus, the chosen value of the perturbation amplitude represents a quite safe measure of

a possible frequency mistuning, also accounting for mechanical uncertainties and model’s errors.

Moreover, the maximum control effectiveness that can be achieved through the optimal STMD, in

the presented case, is estimated as 45%. Thus, the chosen value of  represents a reasonable

minimum control effectiveness to be required in a “large” frequency bandwidth. Clearly, for a fixed

value of the mass ratio, the minimum required control effectiveness  should be decreased as ∆ωT

is increased. On this respect, it is also worth noting that the maximum control effectiveness

achievable for a fixed value of the mass ratio strongly depends on the case study and cannot be

generalized. Indeed, in the work by Kwon and Park (2004), larger control effectiveness than those

obtained here were achieved for another case study by adopting a similar value of the mass ratio.

On the other hands, literature works can be found in which the control effectiveness of STMDs with

similar mass ratios are either smaller (see for instance, the experimental work by Gu, et al. (1998))

or approximately similar (Lin, et al. 2000) to the one obtained here.

Regarding the choice of the number n of the assembled TMDs, it is worth noting that, according

to Eq. (18), a larger n entails that the TMDs are more closely spaced in terms of frequencies (with

the same frequency bandwidth), which is expected to entail beneficial effects on the control

effectiveness as the interactions between the TMDs are enhanced. On the other hand, however, as n

grows the masses of the single TMDs decrease with the consequence that their control effectiveness

diminishes. Clearly, an optimum value of n must be sought, which is expected to depend upon the

detuning parameter ε, i.e., on the frequency bandwidth. Here, n=5 has been chosen on the basis of

preliminary calculations that are not reported for the sake of brevity. 

5.3. Regular MTMD

The first topic under investigation is the effect of the frequency tuning of the MTMD on the

∆ωT 0.05 ωT opt,
⋅= η

η

η
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control performance, by considering different values of the detuning parameter ε. To analyze this

point, the critical conditions are solved for different values of ωT and for the following values of the

detuning parameter: ε=0 (STMD case), ε=0.05, ε=0.10 and ε=0.15. 

The results of the analysis, presented in Fig. 3(a), emphasize that the STMD is the most sensitive

to mistuning effects with a peak of control effectiveness η of about 36% for a non-optimum

damping ratio. An increment of the detuning parameter (see for instance, the case ε=0.10) guarantees

a reduction of the sensitivity to mistuning effects, i.e., the frequency bandwidth of control effectiveness

is enlarged, at the expense of reducing the peak of effectiveness at the perfectly tuned condition.

Finally, as the detuning parameter reaches relatively large values, the η vs. ωT curves evidence an

overall loss of control effectiveness of the MTMD.

Fig. 3(b) shows the reduced critical circular frequency Kcrit = Bωcrit/Ucrit of the system as a

function of ωT. In the STMD case, the optimal tuning may either correspond to a sharp point or

even a cusp of the Kcrit vs. ωT line, in which Kcrit attains a global minimum. The effect of an

increasing detuning parameter ε is to smoothen this sharp minimum.

The role of the damping ratio ξT of the MTMD also deserves some attention. To analyze this

point, the critical conditions are solved by varying the ratio ξT/ξopt for the case ωT=2.46 rad/s, which

represents the optimal tuning for ε=0 in Fig. 3(a). The results, presented in Fig. 4(a), emphasize that

the optimal damping ratio of the MTMD depends on the detuning parameter ε. Indeed, the optimal

Fig. 4 (a) Control effectiveness of MTMDs by varying the damping ratio and the detuning parameter ε (ξ opt

denotes the optimum Den Hartog’s value for the twist mode, ωT=2.46 rad/s) and (b) control effectiveness
of MTMDs by varying the frequency tuning ωT assuming the optimal damping ratios

Fig. 3 (a) Control effectiveness of MTMDs by varying the frequency tuning ωT and the detuning parameter ε
and (b) critical circular frequency as a function of ωT and ε 
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damping ratio ξT of the STMD is roughly equal to 0.80 ·ξ opt, in the cases ε=0.05 and ε=0.10 it is

close to 0.38 ·ξ opt and 0.32 ·ξ opt, respectively, while for ε=0.15 it is slightly larger than 0.5 ·ξ opt.

These results suggest that the Den Hartog’s rule gives a satisfactory approximation of the optimal

damping ratio of the STMD. On the contrary, for ε>0 it becomes a poorer indicator, although it can

still be useful for an initial design guess. In particular, the presented results show that as ε is

increased the optimal damping ratio initially decreases. Then, when ε becomes relatively large, the

assembled TMDs become weakly interacting and the optimal damping ratio tends again to the

optimum value of the STMD, with a reduced peak of control effectiveness. It is also worth noting

that, in Fig. 4(a), the lines η vs. ξT/ξopt evidence cusps and jumps at certain values of ξT/ξopt. This

circumstance entails that, in some cases, a small variation of the damping of the system may reflect

on a significant loss of control effectiveness. Thus, damping optimization reveals to be extremely

important to fully exploit the control capabilities of the MTMD.

Fig. 4(b) shows the curves of control effectiveness of MTMDs by fixing the damping ratios to

their optimal values obtained in Fig. 4(a). First of all, it must be mentioned that the optimal tuning

of the STMD reveals to be only about 6% times smaller than the optimal Den Hartog’s criterion.

This confirms, to some extent, the accuracy of such a tuning rule in the case of STMDs for bridge

flutter control. On the contrary, similarly to the damping case, as ε becomes greater than 1, the

behavior of the system becomes more complex and such a rule partially loses its effectiveness. It is

also important to note that the η vs. ωT curves in Fig. 4(b) sometimes assume an asymmetric aspect

of the “softening-type”, which means that the optimal tuning tends to be located on the edge of the

optimal region. This circumstance, in the presented case, is particularly evident for ε=0.05 and

ε=0.10 and was also observed in other case studies (Ubertini 2008b) that are not reported here for

the sake of brevity, as well as in other literature works (Lin, et al. 2000). The main consequence of

this behavior is that the system might be rather sensitive to a detuning below the optimal value of

ωT. An interpretation of this phenomenon is given below.

The mechanical way in which tuned mass dampers increase the critical velocity is by preventing

the eigenvalue of the controlled mode from approaching the instability boundary. This can be

achieved by collocating, in the complex plane, the eigenvalues of the tuned mass dampers in the

vicinity of the controlled eigenvalue. If the control device is properly designed, instability is finally

attained, at a larger critical velocity with respect to the uncontrolled case, by one of the eigenvalues

of the tuned mass dampers. It might happen, however, that the critical eigenvalue corresponds to the

TMD having the lowest frequency ωT(1-ε) or to that having the largest one ωT(1+ε). In such cases a

weak direction for mistuning exists, in which mistuning makes the controlled eigenvalue reach the

instability boundary without being strongly interacted. This, indeed, causes a severe loss of control

effectiveness. From these considerations it is clear that, when the critical eigenvalue corresponding

to the optimal design point is the one having central frequency ωT, the η vs. ωT curves are expected

to be almost symmetric around the optimal tuning because no weak direction for frequency

mistuning exists. As it will be discussed in Section 5.4, this result can be obtained through an

irregular mass distribution.

The above described phenomenon can be also illustrated with reference to the case study. To this

end, let us consider the optimal tuning of the MTMD with ε=0.10, which is approximately equal to

ωT,opt=2.39 rad/s. For such a case, the root locus of the eigenvalues of the system, by increasing the

wind velocity up to criticality, is shown in Fig. 5(a), while a detailed view of the path of the critical

eigenvalue is shown in Fig. 5(b). A total of 12 pairs of complex conjugate eigenvalues correspond

to the DOFs of the structural system. The remaining 4 real eigenvalues, corresponding to the
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additional variables wi introduced in Eq. (8), complete the total number of eigenvalues of the system.

For the sake of clarity, only the upper left quadrant of the complex plane and only the structural

eigenvalues are shown in Fig. 5, where λ denotes a general eigenvalue. The indication of the

correspondence between eigenvalues and mechanical DOFs is also reported in Fig. 5(a). 

The results presented in Figs. 5(a) and 5(b) evidence that the critical eigenvalue is the one

corresponding to the twist motion of the TMD having natural frequency ωT(1+ε). By slightly

reducing ωT below the optimum value of 2.39 rad/s, a sudden loss of control effectiveness is

observed in Fig. 4(b). In this case, as expected, the critical eigenvalue is the one corresponding to

the twist motion of the deck (typical case without control). This phenomenon is evidenced in Fig.

5(c) in which the parameters ε=0.10 and ωT=2.30 rad/s are adopted in the calculation of the root

locus. On the contrary, by increasing ωT above 2.39 rad/s, instability is attained, one after the other,

by the eigenvalues corresponding to the remaining TMDs. As an example, in the case ε=0.10 and

ωT=2.50 rad/s, the critical eigenvalue is the one corresponding to the TMD having the central

frequency ωT (see Fig. 4(d)). Eventually, when ωT is sufficiently large and the device is essentially

ineffective, instability is again attained by the DOF corresponding to the twist motion of the deck.

Before analyzing the behavior of IMTMDs in the next section, it is worth noting that, in all the

considered cases, when instability occurs, mechanical and wind couplings make both bending and

twist structural modes participate to the critical motion along with the DOFs of the MTMD. As an

example, the critical solution in the case ε=0.10 and ωT=2.39 rad/s, obtained via numerical

integration, is shown in Fig. 6. The presented results evidence that the critical condition is, as

expected, characterized by a coupled harmonic motion which, in this case, has 12 DOFs.

Fig. 5 Root loci of the eigenvalues of the deck-MTMD system by increasing the wind velocity U up to
criticality: (a) and (b) ωT=2.39 rad/s, ε=0.10, ξT/ξ

opt=0.34, Ucrit
MTMD=107.0 m/s; (c) ωT=2.30 rad/s,

Ucrit
MTMD=88.4 m/s and (d) ωT=2.50, Ucrit

MTMD=104.9 m/s
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5.4. Irregular MTMD

The results presented in Section 5.3 have shown that a MTMD composed by n TMDs having

equal masses, equal damping coefficients and equally-spaced circular frequencies, guarantees

enlarged frequency bandwidth if compared to the STMD. However, the system exhibits non-

symmetric η vs. ωT curves of control effectiveness around the optimal tuning. This last circumstance

is especially undesirable in technical applications because it produces a sudden loss of control

effectiveness when the device is detuned below the optimal tuning. In order to circumvent this

drawback, an IMTMD is considered herein.

As already observed in Section 5.2, the asymmetry of the η vs. ωT curves occurs when the

optimal tuning corresponds to the instability of the TMD with largest frequency ωT(1+ε). On the

contrary, the η vs. ωT curves are expected to be almost symmetric around the optimal tuning when

the critical eigenvalue at that point corresponds to the torsional eigenvalue of the TMD having

frequency ωT (central frequency of the MTMD). A possible way for modifying the critical

eigenvalue at the perfectly tuned condition is to adopt an IMTMD. This last can be obtained in

many ways by destroying the regularity of the MTMD as, for instance, by considering irregular

frequency spacing between the TMDs, different damping coefficients and so on. Since the mass

ratio is the parameter that mostly affects the interactions between closed eigenvalues, the irregular

mass distribution given by Eq. (19) is considered here to mitigate mistuning effects. Preliminary

calculations have also shown that such an approach gives better results if compared to an irregular

frequency spacing for the purposes of this study. In particular, according to Eq. (19), the IMTMD is

obtained from the regular MTMD by increasing the mass ratios of the TMDs with lower

frequencies and reducing the mass ratios of the TMDs with larger frequencies. This, indeed,

enhances the interactions between the torsional eigenvalue of the structure and the eigenvalues of

the MTMD corresponding to lower frequencies, while reducing these interactions with the eigenvalues

of the MTMD corresponding to larger frequencies that are, in this way, stabilized. Thus, when an

optimum value of δ is found, instability at the perfectly tuned condition is attained by the twist

Fig. 6 Critical flutter solution for ωT=2.39 rad/s, ξT/ ξ
opt=0.34 and ε=0.10
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eigenvalue of the TMD having central frequency ωT. 

In order to investigate the effectiveness of the considered IMTMD, the performance index η is

calculated by varying the frequency tuning ωT, for the cases δ=0.80 and δ=0.60, assuming the

optimal damping ratio for each case. The results, presented in Fig. 7, confirm that the η vs. ωT

curves of the IMTMD are almost symmetric around the optimal tuning when δ attains an optimum

value. Fig. 8(a) shows the comparison between the STMD and two relevant cases of IMTMDs. The

presented results clearly outline the benefit obtained by considering IMTMDs instead of the STMD

in terms of sensitivity against frequency perturbations. A detailed view of the root locus of the

eigenvalues of the IMTMD with ε=0.10 and δ=0.75 at the perfectly tuned condition is reported in

Fig. 8(b). The presented results confirm that, in this case, instability is attained by the eigenvalue

corresponding to the TMD having central frequency ωT. 

The IMTMD with ε=0.10 and δ=0.75 proves to be a good compromise between control

effectiveness and robustness. Indeed, this case is characterized by a rather “large” optimal region

where the performance index η is larger than  (see Fig. 8(a)). Moreover, in such a case the

global optimum seems to be located in the middle of such region, thus entailing that global

optimization also produces robustness against frequency mistuning in the sense of Eq. (20). The

final effort is now to contemporary optimize both ωT and ξT for the case ε=0.10 and δ=0.75. This

will allow to find a sort of global optimal solution accounting for both control effectiveness and

robustness. To this end, a full domain search of the point of maximum control effectiveness is

performed. Figs. 9(a) and 9(b) show the variation of the objective function η with frequency

η

Fig. 7 Improved robustness against mistuning effects through irregular MTMDs

Fig. 8 (a) Comparison between control effectiveness using single TMD and irregular MTMDs and (b) detailed
view of the root locus of the eigenvalues of the system for the case ωT=2.50 rad/s, ε=0.10, δ=0.75
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tuning ωT and damping ratio ξT. The results outline that the objective function has five distinct

relative maxima which are related to the presence of the five TMDs. These relative maxima are

placed above a wide region of large control effectiveness (see Fig. 9(b)) and are almost aligned

along the same value of the damping ratio, which is nearly equal to 0.32 ·ξ opt. The middle peak

among the five relative maxima is the global optimum, which corresponds to a performance

index of 35.8%. The sections of the objective function along the lines corresponding to the

optimal damping ratio and the optimal frequency tuning are also shown in Figs. 9(c) and 9(d).

These results confirm that the optimal design point (corresponding to ωT,opt=2.50 rad/s) satisfies

Eq. (20) with =30% and ∆ωT=0.05 ·ωT,opt=0.125 rad/s. However, it must be mentioned that the

system is sensitive to variations of the damping ratio below the optimal value. This entails that

assuming ξT>0.32ξ opt appears to be a safer choice with respect to the design of the IMTMD

using the theoretical optimal damping ratio.

6. Conclusions

An investigation on bridge flutter control using regular and irregular MTMDs is presented. The

aeroelastic stability analysis is reduced to a direct eigenvalue problem by representing the aeroelastic

loads through indicial functions. When bluff deck sections are concerned, integral terms can be

eliminated by introducing an additional state variable for each exponential group adopted in the

approximation of indicial functions. The eigenvalue problem is thus stated and the stability analysis

is straightforward.

A general methodology for the optimal robust design of irregular MTMDs is proposed which is

η

Fig. 9 Control effectiveness of IMTMD (ε=0.10 and δ=0.75) as a function of the damping ratio and of the
frequency tuning: (a) tridimensional view of the objective function η, (b) contour plot of the objective
function η in the region of the optimal solution (values in percentage), (c) sections of the objective
function along the lines corresponding to the optimal damping ratio and (d) the optimal frequency
tuning
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based on modeling the critic velocity as a random variable and on a probabilistic definition of

control effectiveness. The proposed approach relies on a level 1 reliability analysis and it is feasible

to incorporate all kind of uncertainties that affect the system. Clearly, the solution of the optimization

problem requires Monte Carlo simulations to reliably estimate the objective function, which might

call for significant computational efforts that, however, can be easily tackled today with the aid of

efficient calculators. However, for the purposes of this study, a simplified version of this design

approach is also proposed, which still allows to obtain robust designs against frequency mistuning

but it adopts a deterministic measure of control effectiveness without any need of performing Monte

Carlo simulations. 

A general case study is considered in which the simplified design approach is applied and the

control capability of MTMDs is investigated. The results show that the optimal tuning of the STMD

corresponds to a sharp minimum of the function representing the critical eigenvalue vs. the

frequency tuning. In the case of MTMDs this cusp is smoothened and a larger robustness against

frequency mistuning is achieved. Optimization of the damping ratio of the MTMD is also primarily

important to achieve optimal control solutions. Within this context, the optimal damping ratio is

seen to depend upon the detuning parameter of the MTMD. Namely, the optimum is seen to

initially decrease as the detuning parameter increases and to tend again to the optimum of the

STMD when the detuning parameter becomes large.

Despite the numerous advantages with respect to STMDs, correctly designed MTMDs may still

exhibit a softening-type asymmetry with respect to frequency mistuning. This circumstance may

impair the overall control effectiveness of the device in technical situations. After giving an

interpretation of this phenomenon, an IMTMD with unequal mass distribution is proposed to

circumvent this drawback. The IMTMD is seen able to guarantee a significant robustness against

mistuning effects, regardless the direction of the detuning. After finding the parameters of the

IMTMD offering the best compromise between control robustness and control effectiveness, the

frequency tuning and the damping ratio of the device are finally optimized by means of a full

domain search. The results show that the objective function possesses a number of relative maxima

which equals the number of small tuned mass dampers assembled in the device. These relative

maxima are distributed on a wide flat region and the global optimal solution corresponds to the

peak placed in the middle of this region. Thus, the analysis evidences, to some extent, a remarkable

control robustness of the device, in the sense of the simplified design approach.

Now, having stated the general design problem and having investigated the relevant aspects of the

behavior of IMTMDs for bridge flutter control, future developments of this study must deal with

the comparison between the results of the simplified design approach and the solution of the general

probabilistic optimization problem, with the final purpose of deriving simple design formulas to be

adopted in practical applications.
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CC

Notation

The following notation is used in this article:

U : mean wind velocity;

t : time;

x : longitudinal axis of the bridge;

L(x), M(x) : lift and pitching moments per unit length;

n : number of TMDs of the MTMD system;

h(x,t), α(x,t) : degrees of freedom of the deck;

xi : position of i-th TMD along the longitudinal axis of the bridge;

hTi, αTi : degrees of freedom of the i-th TMD;

mTi, ITi : mass and mass moment of inertia of the i-th TMD;

kTi, cTi : vertical stiffness and damping coefficients of the i-th TMD;

B, l : reference width of the deck and half brace of the TMDs;

b : half chord of the deck;

ξTi, ξTαi, ωTi, ωTαi : damping ratios and circular frequencies of the i-th TMD;

ϕh, ϕα : structural mode shapes;

ζ, γ : modal amplitudes;

ψi, ψαi : generalized mass ratios of the the i-th TMD;

, : generalized modal inertias;

: generalized coordinates of TMD number 1;

ξh, ξα, ωh, ωα : structural modal damping ratios and circular frequencies;

φLh, φLα, φMh, φMα : aerodynamic indicial functions;

τ : integration variable;

ρ : air density;

m̃ Ĩ

h̃T1 α̃T1,
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, : dynamic derivatives of lift and moment coefficients;

NLh, NLα, NMh, NMα : number of exponential filters for indicial functions approximation;

: dimensionless parameters for indicial functions approximation;

ELh : cost function for indicial functions approximation;

: measured aeroelastic derivatives;

: approximated aeroelastic derivatives;

Ured, Kcrit : reduced wind velocity and reduced critical frequency;

: additional aerodynamic variables;

X : state vector;

A : first order system matrix;

k : total number of additional aerodynamic variables;

n : first order system dimension;

Ucrit, : uncontrolled and controlled critical velocities;

ωcrit : critical eigenvalue;

, Ucrit,k, : minimum and characteristic flutter velocities;

η, η k : evaluation criteria of control effectiveness;

xmin, xmax, ξT,min, ξT,max

: design constraints;

ωT,min, ωT,max, mT,max

x, ωT, , mT : vectors of design parameters;

ε : detuning parameter;

ωT : central tuning of the MTMD;

: damping ratio of the MTMD;

ωT,opt : optimal tuning;

∆ωT : frequency tuning perturbation;

δ : mass distribution parameter;

ψ, ψα : total generalized mass ratios of the MTMD;

: minimum required control effectiveness;

m, I : mass and mass moment of inertia of the deck per unit length;

ξopt : optimum Den Hartog’s damping ratio;

λ : system eigenvalue.
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