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Abstract. This paper develops and discusses a method by which it is possible to evaluate the Equivalent
Static Force (ESF) of wind in the case of long-span bridges. Attention is focused on the alongwind
direction. The study herein carried out deals with the classical problems of determining the maximum
effects due to the alongwind action and the corresponding ESFs. The mean value of the maximum
alongwind displacement of the deck is firstly obtained both by the spectral analysis and the Gust
Response Factor (GRF) technique. Successively, in order to derive the other wind-induced effects acting
on the deck, the Gust Effect Factor (GEF) technique is extended to long-span bridges. By adopting the
GRF technique, it is possible to define the ESF that applied on the structure produces the maximum
alongwind displacement. Nevertheless the application of the ESF so obtained does not furnish the correct
maximum values of other wind-induced effects acting on the deck such as bending moments or shears.
Based on this observation, a new technique is proposed which allows to define an ESF able to
simultaneously reproduce the maximum alongwind effects of the bridge deck. The proposed technique is
based on the GEF and the POD techniques and represents a valid instrument of research for the
understanding of the wind excitation mechanism. 

Keywords: Long-span bridge; alongwind effects; Proper Orthogonal Decomposition; Gust Effect Factor
technique; Equivalent Static Force.

I. Introduction

The codes in force and in particular Eurocode 1 (UNI EN 1991-1-4 2005) do not furnish any

indication in order to calculate the Equivalent Static Force (ESF) of wind in the case of long-span

bridges, such as suspension and cable-stayed bridges. 

The ESF of wind should represent the force able to reproduce all the maximum load-effects of the

deck. In this way engineering calculation may be carried out applying on the structure only one

static load.

The first methods aimed at determining an ESF able to simultaneously reproduce the maximum

effects due to the wind action have been pioneered in recent years with regard to large-span roofs

and vertical structures. More precisely Katsumura, et al. (2005) proposed a universal Equivalent

Static Wind Load (ESWL), expressed by a combination of eigenmodes, simultaneously reproducing

maximum load effects on large-span cantilevered roofs. Repetto and Solari (2004), with reference to
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vertical structures, developed the Global Loading (GL) technique defining a unique loading

condition able to furnish, for each motion direction, all maximum load effects. The GL technique is

based on the Influence Function Technique (IFT) and expresses the ESF through a polynomial

expansion. It is proposed in two different versions: one is based on the application of the Gust

Factor (GF) technique and is denoted by GL/1; the other is used within the framework of the Load

Combination (LC) technique and is denoted by GL/2. 

In this paper attention is focused on the GL technique. Differently from vertical structures, the GL

technique does not furnish correct results in the case of long-span bridges; this is due to the

orthogonality properties between power functions and the influence lines of wind-induced effects

such as displacements, bending moments or shears, that is bridge influence lines and power

functions have not similar shapes.

Thus, in order to define a load distribution suitable for long-span bridges and able to estimate

simultaneously the maximum alongwind effects of the deck, a modified GL/1 technique is

proposed. It consists in expressing the ESF through a linear combination of spectral or covariance

eigenfunctions. Spectral and covariance eigenfunctions are derived by the Proper Orthogonal

Decomposition (POD) of the wind velocity field, which is decomposed in a summation of fully

coherent terms, statistically uncorrelated, referred to as the modes of the loading process. POD is

called Spectral Proper Transformation (SPT) or Covariance Proper Transformation (CPT) according

to whether the loading components are the eigenfunctions of the cross power spectral density

function (cpsdf) or of the covariance function of the process.

Thanks to the use of POD the problem considerably simplifies and assumes noteworthy analytical

and conceptual properties. In fact a limited number of loading modes is enough to express the ESF

simultaneously reproducing the maximum alongwind effects of the deck. Moreover the proposed

method allows a physical interpretation of the wind excitation mechanism; it particularly enables to

quantify the capacity of the single wind modes to dynamically excite the structure.

2. Modeling of the wind field

Let us consider a bridge deck immersed in a turbulent wind field. Let x, y, z be a Cartesian

reference system with the x and the z axes belonging to a horizontal plane, z being parallel to the

bridge deck axis; the y axis is vertical. 

This section deals with the longitudinal component of the wind action. The wind velocity is

schematised as the sum of a mean value, function of the position, and of a zero mean stationary

fluctuation, function of the position and of the time. For the sake of simplicity, the representation of

the wind field is here simplified introducing the following hypotheses: the mean wind velocity is

orthogonal to the bridge deck axis; the longitudinal turbulence component is uncorrelated with the

lateral and vertical components; the contribution of the vertical turbulence component is neglected;

wind actions are applied only to the bridge deck. 

The mean wind velocity  is expressed by the logarithmic law (Solari and Piccardo 2001). Under

the hypothesis of homogeneous and level ground, the mean wind velocity at the height of the deck

is constant. 

The longitudinal turbulence component is expressed as the product of the standard deviation σu

and the reduced turbulence , characterized by unit variance. The complete statistical

representation of the reduced turbulence is provided by its cpsdf , given by:

u

u' z t,( )
Su z z' ω, ,( )
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;  ;

(1)

where ω is the circular frequency; h is the height of the bridge deck; Cuz and Lu(h) are respectively

the exponential decay factor and the integral length scale of turbulence (Solari and Piccardo 2001). 

The eigenfunctions θk(z,ω) and the eigenvalues γk(ω) of the cpsdf  are expressed in

the form proposed by Carassale and Solari (2002):

; ; (k = 1,...,Ns); (2)

with:

;  ;  ;

(3)

;

where Ns is the number of significant terms and LT is the overall length of the deck.

The covariance function can be approximated by the formula (Carassale, et al. 1999):

;  ;  . (4)

The covariance eigenfunctions φk are furnished by:

;  ;  ;  (k = 2,3,...).  (5)

The whole set of the eigenfunctions θk(z,ω) and the eigenvalues γk(ω) of the cpsdf 

allows the SPT of the wind velocity field  (Carassale 2005, Carassale, et al. 2007, Di Paola

and Gullo 2001). That is, applying the POD in the form of a SPT, the reduced turbulence 

and the cpsdf  assume the form:

;  ;  (6)

where the asterisk denotes the complex conjugate, i is the imaginary unit and Wk (k = 1,...,Ns) are

uncorrelated complex-valued white noises with zero mean and unit variance.
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3. Alongwind response by Gust Factor Technique

3.1. Alongwind displacement 

Dealing with the bridge as a linear mono-dimensional system, the alongwind displacement of the

deck can be expressed in terms of normal modes of vibrations as follows:

(7)

where ϕxi(z) are the structural eigenfunctions; pxi(t) are the principal coordinates; Nt is the number of

the structural modes significant for the evaluation of the response. Separating the mean value 

and the zero-mean fluctuation x'(z, t) of the displacement x(z, t), Eq. (7) can be rewritten as:

 (8)

where  and  are respectively the mean value and the zero-mean fluctuation of the i-th

principal coordinate . Assuming the structure as classically damped, the equation of motion of

the deck can be projected in the principal space, obtaining infinite uncoupled equations in terms of

principal coordinates. Considering both the mean value  and the fluctuation , the following

equations are obtained:

  (i = 1,...,Nt) (9)

  (i = 1,...,Nt) (10)

where the dot · denotes the derivative with respect to time t; ωxi, mxi,  and  are respectively

the alongwind natural circular frequency, the modal mass, the damping ratio and the aerodynamic

damping coefficient of the i-th mode;  and  are respectively the mean and buffeting

alongwind forces.

Using a linearised quasi-steady approach, under the assumptions introduced in Section 2, the wind

forces  and  can be expressed as:

(11)

(12)

where ; ρ is the air density; cD is the aerodynamic drag coefficient; B is the deck width. 

The quasi-steady theory is substantially reliable since the alongwind response is generally little

influenced by vortex shedding (Simiu and Scanlan 1996).

The aerodynamic damping coefficient , representing the contribution that the self-excited force
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adds to the damping of the deck, and the term mxi are respectively given by:

;  .  (13)

Expressing u'(z, t) and  through the Fourier-Stieltjes integral (Priestley 1981) and

considering together Eqs. (8) and (10), the following expression of the power spectral density

function (psdf) of x'(z, t) is obtained: 

(14)

where  is the cpsdf of the principal coordinates  and .

The Gust Response Factor (GRF) technique is an approximate method based on the spectral

analysis. 

According to the spectral analysis (Davenport 1964), in order to evaluate the mean maximum

alongwind displacements in absolute value of the bridge deck, the following expressions are

introduced:

   (15)

where gx(z) and σx(z) are respectively the peak factor and the root mean square (rms) value of the

process x'(z, t) (Solari 1982). 

Applying the SPT to the wind velocity field, the cpsdf  can be written as:

  (i, j = 1,...,Nt) (16)

where Dik(ω) is the i,k-th cross-modal participation coefficient, given by:

.  (17)

Eq. (16) derives from the joint application of the modal analysis and of the POD and is therefore

the result of the Double Modal Transformation (DMT) technique (Carassale, et al. 2001, Solari and

Carassale 2000, Solari and Tubino 2005, Tubino and Solari 2007). The generic coefficient Dik(ω)

quantifies the influence of the k-th loading spectral mode on the i-th structural mode of the bridge.

The GRF technique (Davenport 1967) is based on the hypothesis that the structural response is

principally given by the first mode of vibration and the contribution of the other modes of vibration

is negligible. It consists in expressing the maximum displacement  as follows: 

 (18)
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(19)

σQx(z) and σDx(z) being respectively the rms values of the quasi-static and resonant parts of x'(z, t).

The terms gx and  are evaluated with Nt = 1. If the harmonic content of the process u'(z, t)

rapidly decreases as the circular frequency increases and the structural damping ratio is , for the

rms values  and  the following expressions can be derived:

 (20)

(21)

 being the cpsdf of . The GRF technique allows also to calculate the ESF

, that is the force distribution that statically applied on the structure produces the maximum

alongwind displacement : 

.  (22)

Since the GRF technique takes into account only the first mode of vibration, it does not furnish

effective results in the case of bridges with more spans. Nevertheless it is consistent with the codes

in force with regard to the calculation of the ESF of wind, pointing out the lack of valid methods to

this purpose.

In fact it is worth noticing that the codes in force and in particular Eurocode 1 (UNI EN 1991-1-4

2005) expressly do not furnish any indication in order to calculate the ESF of wind acting on long-

span bridges such as suspension and cable-stayed bridges. Wind actions are only defined for bridges

consisting of a single deck with one or more spans. In this case Eurocode 1 introduces a simplified

method which can be used only if a dynamic response procedure is not necessary, but it is apparent

that this approximation is not acceptable for long-span bridges. In general for structures Eurocode 1

furnishes also a detailed procedure which takes into account the resonance amplification and can be

used only if the following conditions apply: the structure corresponds to one of the general shapes

referred to as vertical, horizontal (parallel oscillator) and point-like structures; only the alongwind

vibration in the fundamental mode is significant and this mode shape has a constant sign. Thus also

the detailed procedure loses its efficacy in the case of long-span bridges. Moreover from a direct

inspection of the formulation provided by Eurocode 1, it can be deduced that the ESF obtained by

the GRF technique (Eq. (22)) represents an extension of the detailed procedure to long-span bridges.

Due to the inadequacy of the GRF technique, there finally emerges the necessity of new methods in

order to calculate the ESF of wind in the case of long-span bridges. 

3.2. Alongwind effects 

The maximum alongwind effects  can be calculated by applying the Gust Effect Factor

(GEF) technique. This technique has been developed in literature (Piccardo and Solari 2002,
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Repetto and Solari 2004) in the case of vertical structures, characterized by load effects with a

constant sign and for which it is sufficient to take into account only the first mode of vibration. In

the current treatment the GEF technique is extended to long-span bridges for which the above

assumptions are not valid; in fact long-span bridges are characterized by crossed loading effects and

the contribution of higher vibration modes is not negligible. 

Any load effect e at section r due to the wind loading in the x direction is a random stationary

Gaussian process, defined as the sum of a mean value  and of a zero mean stationary fluctuation .

Any effect ex under wind action can assume positive or negative values. Therefore the GEF

technique is applied considering the maximum and minimum effects in absolute value and the

following expressions are introduced:

;  (23)

;  (24)

with:

;

 (25)

;

; (26)

;  ; (27)

(28)

where  and  are the GEFs for the load effect ex due to the wind loading in the x

direction;  is the peak factor of e'x;  and  are respectively the rms values of the

quasi-static and resonant parts of e'x;  and  are respectively the expected frequencies of

e'x and of its quasi-static part;  is the effect influence mass in the x direction of the k-th

structural mode (Piccardo and Solari 2002); T is the duration of wind loading;  is the

influence function of ex, that is the value of ex at the point having abscissa r due to a unit static

action in the x direction applied in correspondence of abscissa z. The above expressions have been
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circular frequency increases, the structural damping ratio is  and the natural frequencies of the

bridge are well separated. Focusing on the maximum effects, the ESF that produces the effect

 in section r is given by: 

. (29)

The ESF so defined depends on the effect e and the section r considered. In fact, since wind

induced responses vary in time and space, the maximum load effects do not occur simultaneously. 

Generally in the case of long-span bridges the application of the ESF associated to the maximum

displacement (e = d) does not furnish the correct maximum values of other wind-induced effects e

acting on the deck such as bending moments (e = b) or shears (e = s), that is in a generic section r

 and . These aspects make the GEF technique

unsuitable for engineering applications.

4. Proposed method

In the light of the above considerations, a modified GL/1 technique is proposed which defines a

unique ESF able to simultaneously reproduce the maximum alongwind effects of the bridge deck. 

It consists in expressing the alongwind ESF through a combination of spectral or covariance

eigenfunctions. Adopting spectral eigenfunctions θk(z, ωx1), the ESF is expressed as:

(30)

where cxk (k=1,2,....N) are N coefficients used to impose that Eq. (30) gives rise to the correct values

of the N specified load effects and ωx1 is the first natural circular frequency of the deck in the x
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According to the IFT, in order to produce the N specified maximum effects , the ESF for

each of them has to satisfy the following relationship: 
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Applying the GEF technique and considering together Eqs. (31) and (23), the following system of
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allows to quantify the capacity of the single wind modes to dynamically excite the structure.

5. Numerical application

The numerical applications deal with the case of a self-anchored cable-stayed bridge with two

spans, a curtain suspension, stays disposed fanwise and an A-shaped pylon (Fig. 1). 

The linearised equation concerning the motion of the deck in the x direction has been derived by a

continuous variational formulation in a non-linear field based on the application of Hamilton’s principle

and is reported in Appendix. The structural eigenfunctions ϕxi(z) (i=1,...,Nt) have been obtained by

applying the numerical method proposed by Monaco and Fiore (2005). By the application of the

orthogonality conditions of the structural eigenfunctions, the equation of motion of the deck has been

projected in the principal space, obtaining infinite uncoupled equations in terms of principal coordinates.

With reference to Eqs. (10) and (13), the terms mx(z) and  are given by:

;  (33)

;  (34)

where γC is the specific weight of the stays;  is the length of the

generic curtain cable span; aC is the area per linear metre of the suspension cables; mT is the mass

per length unit of the deck; ; ξC and ξT are respectively the damping

ratios of the stays and of the deck. Simplified expressions of the functions CV(z) and  have

been obtained by Monaco and Fiore (2005). From a direct inspection of Eq. (34) it can be noted

that the coefficient  expresses the overall damping of the deck, taking into account also the

influence of the stays. 
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Fig. 1 Cable-stayed bridge under examination
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Table 1 provides the geometrical and mechanical data of the bridge. As to the wind action, the

following parameters are assumed: cD = 0.1 (Larose and Livesey 1997), ρ = 1.25 kg/m3, yo=0.01 m,

u* = 2.38 m/s, Cuz = 10, T = 600 s, where u* and yo are respectively the shear velocity and the

roughness length. Thus the mean wind velocity at the height h of the deck is equal to = 49.41 m/s.

It also results σu = 6.46 m/s and Lu(h) = 148.48 m.

Fig. 2 shows the first three structural and spectral eigenfunctions. Fig. 3 provides the cross-modal

participation coefficients D1k(ω) and D2k(ω) (k=1,...,5). In correspondence of structural and loading

eigenfunctions having similar shapes, the cross-modal participation coefficients are much greater

than the others.

The alongwind response is firstly evaluated by applying the spectral analysis. Observing Fig. 2, it

can be noted that the first and the second structural modes are connected respectively to the maximum

displacements of the second and the first span of the bridge; moreover the harmonic content of

turbulence rapidly decreases as the circular frequency increases and the natural frequencies of the

bridge are well separated.

Therefore the response can be evaluated considering only the contribution of the first two structural

u

Fig. 3 Cross-modal participation coefficients D1k (k=1,…,5) and D2k (k=1,…,5)

Fig. 2 First three structural and spectral eigenfunctions

Table 1 Geometrical and mechanical characteristics of the cable-stayed bridge

l1=147.42 [m] LT=358.02 [m] hP=74.2 [m] h=40.4 [m] B=23.46 [m] mT=19.68 [kNs2/m2]

g=9.81 [m/s2] ∆z=21.06 [m] ξC=0.001 ξT=0.004 aC=0.000537 [m2/m] γC=7.85 10-5 [kN/cm3]
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modes (Nt = 2) without making a significant mistake. This statement can be easily verified comparing

the diagram of mean displacements  obtained by Eq. (8) (with Nt= 2) with the one calculated by

a finite elements structural analysis code (SAP2000) applying on the bridge deck the mean force .

Fig. 4a shows the psdf Sxx(z, ω) obtained by applying Eqs. (14) and (1) (Ns = ) and its modal

recomposition obtained by introducing Eq. (16), calculated in correspondence of the section

z = 252.72 m; it can be noted that for Ns = 5 the two curves coincide. This remark points out that it

is sufficient to take into account only the first five loading modes (Ns = 5) for the evaluation of the

response. Fig. 4b shows the diagrams of the mean and maximum displacements of the bridge deck

obtained by applying respectively Eqs. (8) and (15).

The solutions so obtained are compared with the results of the GRF technique. Fig. 5 provides the

diagrams of the mean and maximum displacements of the bridge deck obtained by applying

respectively Eqs. (8) (with Nt = 1) and (18). Since the GRF technique takes into account only the

first mode of vibration, it furnishes correct solutions only for the second span, as it can be noted

comparing Figs. 4b and 5. In particular the application of Eq. (18) leads to a maximum alongwind

displacement in correspondence of z = 252.72 m equal to 6.6 cm (Table 2). 

x z( )
Fx

∞

Fig. 5 Displacements  and  according to the GRF techniquex z( ) xmax z( )

Fig. 4 a) Psdf Sxx(z,ω) in correspondence of z = 252.72 (m); b) displacements  and  according to
the spectral analysis

x z( ) xmax z( )

Table 2 Results obtained by the GRF technique

Gx vx [Hz] gx σx(252.72) [m] (252.72) [cm] (252.72) [cm]

2.988 0.39 3.478 0.0127 2.2 6.6

x xmax
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As to the GEF technique, Figs. 6a and 6b show the mean, maximum and minimum values respectively

of the bending moments (e=b) and shears (e=s) obtained by applying Eqs. (27), (23) and (24).

Figs. 7a and 7b compare the maximum effects  and  respectively with the

bending moments bFx,eq and shears sFx,eq produced by the ESF Fx,eq calculated by the GRF technique

(Eq. (22)), which represents an extension to long-span bridges of the detailed procedure provided by

Eurocode 1. It emerges that the application of the ESF associated to the maximum displacement

does not furnish the correct maximum values of other wind-induced effects e acting on the deck

such as bending moments (e = b) or shears (e = s). In particular the application of the load

distribution Fx,eq involves an underestimation of the maximum effects in the first span and an

overestimation in correspondence of the pylon.

The proposed method is firstly applied in order to research the load distribution that in a specified

section r of the deck simultaneously produces the mean maximum values of the displacement

(e = d), bending moment (e = b) and shear (e = s) effects. In this case the system (32) is constituted

by N = 3 equations in N = 3 unknowns cxk. Figs. 8a and 8b show the distributions of the ESF Fx,eq(z)

simultaneously generating the maximum effects  (e = d, b, s) respectively in the sections

r = 147.42R m and r=252.72 m (pedices R and L mean immediately at the right and at the left of

the point r=147.42 m); the corresponding coefficients cxk (k = 1,2,3) are reported in Table 3. In each

of Figs. 8a and 8b also the forces  (e = d, b, s) that singly produce the corresponding

maximum effects  in the considered sections are represented. 

Nevertheless the load distributions so obtained, referring to just one specified section, do not

provide the correct values of maximum effects in many other sections of the bridge deck. 

This remark can be observed in Figs. 9a, b, c, where the diagrams of ,  and

bx max, r( ) sx max, r( )

ex max, r( )

Fx eq,

e
r( )

ex max, r( )

dx max, r( ) bx max, r( )

Fig. 7 Diagrams of  and of the load effects  generated by the ESF Fx,eq (GRF): a) e = b; b)
e = s

ex max, r( ) eFx eq, r( )

Fig. 6 Diagrams of ,  and : a) e = b; b) e = sex r( ) ex max, r( ) ex min, r( )
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 are compared respectively with the diagrams of displacements , bending moments

 and shears  generated by the ESF corresponding to the sections r = 252.72 m (Fig. 8b).

Thus the method is utilized in order to research a load distribution whose application on the

bridge deck produces displacement, bending moment and shear diagrams as close as possible to the

diagrams of the maximum values of these effects, represented in Figs. 4b, 6a and 6b. 

Using spectral eigenfunctions, N = 14 conditions are enough to obtain a good approximation.

sx max, r( ) dFx eq,

r( )
bFx eq,

r( ) sFx eq,

r( )

Fig. 8 Diagrams of  (e=d, b, s) and  in correspondence of the section a) r = 147.42R (m); b)
r = 252.72 (m)

Fx eq,

e
r( ) Fx eq, z( )

Table 3 Coefficients cxk (k=1,2,3)

r [m] cx1 cx2 cx3

147.42R 2.014 0.373 0.344

252.72 1.265 -0.974 0.414

Fig. 9 Diagrams of  and of the load effects eFx,eq generated by the ESF Fx,eq(z) corresponding to the
section r = 252.72 (m): a) e = d; b) e = b; c) e = s

ex max, r( )
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Considering the following maximum effects:

 (252.72),  (21.06),  (126.36),  (147.42),  (189.54),

 (252.72),  (273.78),  (0),  (63.18),  (147.42L),

 (147.42R),  (252.72),  (315.9),  (336.96),

the N = 14 coefficients cxk (k = 1,...,14) calculated by solving the corresponding system assume the

values reported in Table 4. Fig. 10a shows the shape of the ESF  so derived. In Figs. 10b,

10c, and 10d the diagrams of displacements, bending moments and shears generated by the

described ESF  are compared respectively with the diagrams of their maximum values. Figs.

11a, b, c, d show respectively the reconstructions of , ,  and  on

increasing the number of loading modes.

Using covariance eigenfunctions (φk,1), at least N = 17 conditions are necessary in order to obtain

a satisfactory representation of the ESF. Considering together the 14 effects above listed and the

maximum effects , , , the ESF Fx,eq(z) assumes the shape

reported in Fig. 12a. Figs. 12b, c, d compare the diagrams of displacements, bending moments and

shears generated by the ESF so obtained with the diagrams of their maximum values. 

It is apparent that spectral eigenfunctions are more effective if compared to covariance eigenfunctions;

in fact a smaller number of loading spectral modes is enough for a suitable prediction of the ESF.

Moreover it is worth noticing that the GL technique introduced by Repetto and Solari (2004) for

vertical structures does not furnish correct results in the case of long-span bridges. In fact if the ESF

is expressed through a polynomial expansion, the problem does not admit convergence solutions.

For example Fig. 13a shows the ESF obtained by using power functions and considering the same

dx max, bx max, bx max, bx max, bx max,

bx max, bx max, sx max, sx max, sx max,

sx max, sx max, sx max, sx max,

Fx eq, z( )

Fx eq, z( )

Fx eq, z( ) dFx eq,

r( ) bFx eq,

r( ) sFx eq,

r( )

bx max, 42.12( ) bx max, 294.84( ) sx max, 189.54( )

Fig. 10 a) ESF Fx,eq(z) obtained by using spectral eigenfunctions and imposing 14 conditions; b-d) diagrams
of  and of the load effects eFx,eq generated by the ESF Fx,eq(z): b) e = d; c) e = b; d) e = sex max, r( )
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Fig. 11 Reconstruction of: a) the ESF Fx,eq(z) obtained by using spectral eigenfunctions and imposing 14
conditions; b) ; c) ; d) , on increasing the number N of loading modesdFx eq,

r( ) bFx eq,

r( ) sFx eq,

r( )

Table 4 Coefficients cxk (k=1,...,14)

cx1 cx2 cx3 cx4 cx5 cx6 cx7 cx8 cx9 cx10 cx11 cx12 cx13 cx14

2.06 -0.33 0.95 -0.086 0.48 0.50 0.07 -2.32 -0.097 1.04 0.64 0.046 0.71 -1.93

Fig. 12 a) ESF Fx,eq(z) obtained by using covariance eigenfunctions and imposing 17 conditions; b-d) diagrams
of  and of the load effects eFx,eq generated by the ESF Fx,eq(z) : b) e = d; c) e = b; d) e = sex max, r( )



254 Alessandra Fiore and Pietro Monaco

17 maximum effects adopted in the case of covariance eigenfunctions. The shapes of the corresponding

diagrams of displacements, bending moments and shears are reported in Fig. 13b. It emerges the

ineffectiveness of this technique in order to simulate the ESF of wind in the case of long-span

bridges; this is due to the scarce similarity between power functions and influence lines of loading

effects of the bridge deck.

The use of POD enables some formal simplifications and suggests a physical interpretation of the

phenomena that produce the external load. 

In both cases of spectral and covariance eigenfunctions a small number of POD modes is enough to

provide a good representation of the ESF. More precisely it is sufficient to impose a limited number of

conditions in order to properly reconstruct the diagrams of maximum displacements, bending moments and

shears; that is the ESFs obtained by imposing a limited number of conditions referring to specified

significant sections, provide the correct values of maximum effects also in other sections of the bridge deck

(Figs. 10, 12). This aspect yields an apparent computational advantage. In particular the numerical

application has shown that using spectral eigenfunctions is more effective than adopting covariance modes.

Nevertheless, focusing on spectral eigenfunctions, N = 14 POD modes are necessary to reconstruct

the alongwind ESF associated simultaneously to maximum displacements, bending moments and

shears, while the alongwind response is perfectly estimated with 5 POD modes. This remark

demonstrates that more loading modes affect the generalised bending moments and shears with

respect to displacements and points out the necessity to take into account simultaneously more

loading effects in order to define an effective ESF. 

The physical phenomenon can be clarified by analyzing the integrals  (e = d,

b, s). In fact, while the analysis of the cross-modal participation coefficients enables to quantify the influence

of loading modes only on the displacement effect, the analysis of the integrals 

allows to quantify at the same time the influence of loading modes on all three of the displacement, bending

moment and shear effects. Figs. 14a, b and c show the values of the integrals 

(k = 1,...,15) respectively in the case of e = d, e = b and e = s, calculated in correspondence of some

θk z ωx1,( )ηx

e
r z,( ) zd

0

LT

∫

θk z ωx1,( )ηx

e
r z,( ) zd

0

LT

∫

θk z ωx1,( )ηx

e
r z,( ) zd

0

LT

∫

Fig. 13 a) ESF Fx,eq(z) obtained by using power functions and imposing 17 conditions; b) shapes of the
diagrams of ,  and dFx eq,

r( ) bFx eq,

r( ) sFx eq,

r( )
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values of r.

It can be noted that for k > 5 the values of these integrals are negligible in the first case (e = d),

while are significant in both the second and third cases (e = b; e = s). This confirms that, differently

from displacements, more loading modes affect bending moments and shears; in particular bending

moments and shears are influenced respectively by seven and twelve wind modes.

6. Conclusions

The aim of this paper is defining an ESF of wind suitable for long-span bridges, focusing on the

alongwind direction. In fact the codes in force do not furnish any indication about this topic. Moreover

the ESF that produces the maximum alongwind displacement generally does not furnish the correct

maximum values of other wind-induced effects acting on the deck, such as bending moments and shears.

Based on these considerations, a new method has been proposed which defines an ESF able to

simultaneously reproduce the maximum alongwind effects of the deck. The method is based on the GEF

and POD techniques and consists in expressing the ESF through a combination of wind modes. The number

of loading modes to be considered in defining the ESF is the one allowing to obtain diagrams of the effects

under consideration as close as possible to the diagrams of their maximum values. Generally it is sufficient

to impose a limited number of conditions referring to significant sections in order to obtain an effective ESF.

The use of POD simplifies the numerical analyses and clarifies the physical phenomenon. In fact, as just

discussed, a limited number of loading modes is enough to properly reconstruct the ESF. In addition the

introduction of POD allows to quantify the capacity of the single wind modes to dynamically excite the

structure. In particular the application of the proposed method has shown that more loading modes affect

bending moments and shears with respect to displacements. This remark has demonstrated that a

satisfactory representation of the ESF must simultaneously take into account all the significant load effects.

Fig. 14 Integrals  (k = 1,...,15): a) e = d; b) e = b; c) e = sθk z ω x1,( )ηx

e
r z,( ) zd

0

LT

∫
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Appendix

The linearised equation of motion of the bridge deck in the x direction is given by:

with:

;  ;  ;

;    ;

  ;

;  ;

;  ;  Jxy = JTxB
2 / 4;  ccT = 2mTωx;  ccC = 2ωxaCγC / g.

The function CE(z) has been linearised (Monaco and Fiore 2005). The numerical applications have

been carried out considering the data reported in Table 5. Moreover the value kN/cm2

has been assumed.
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Table 5 Data of the cable-stayed bridge used for the numerical applications

ACA = 0.0346 (m2) AC= 0.0113 (m2) ET= 21000 (kN/cm2) EP = 3122 (kN/cm2)

JTx = 0.36 (m4) JP = 112.26 (m4) JT = 10 (m4) gT = 193.11 (kN/m)




