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Abstract. The vortex-induced vibration of an -shaped bridge deck sectional model is studied in this
paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition
of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed
increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however,
much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by
existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property
of the -shaped sectional model, a time domain force identification scheme is proposed to identify the
time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid
forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF)
can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain.
The RFRF model is proven effective to characterize the correlation between the wind forces and bridge
deck motions, thus can explain the aeroelastic behavior of the -shaped sectional model. 
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1. Introduction

Vortex-shedding is an interesting phenomenon that happens to bluff bodies. It becomes the major

concern when the structure, such as the deck of cable supported bridges, is flexible and damped

very lightly.

The general problem of vortex-induced vibration has been subjected to intensive studies. Early

researchers, such as Iwan and Blevins (1974) and Billah (1989) developed wake-body-coupled models

in which the body oscillation and wake oscillation are coupled through interaction terms. Other

researchers such as Chen, et al. (1995), Ehsan and Scanlan (1990) and Gupta, et al. (1996), utilized

single dynamic equation with aeroelastic terms, which can be identified by experiments. 

Experimental studies on fluctuating wind forces on prisms with various sectional properties are
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plenty. Kim and Sakamoto (2006) used forcing devices to “reproduce” the free vibration of a circular

cylinder in the cross-flow direction and measure the fluctuating lift forces to investigate, among other

issues, the work done by the fluctuating lift force and the phase between the body motion and fluid

force. It was reported that the phase between the fluctuating lift force and the cylinder displacement

changes abruptly as the reduced velocity increases. Takai and Sakamoto (2006) studied torsional

vibrations of rectangular prisms and classified the vibration into six patterns depending on the width-to-

depth ratio. For more complex cross sections, Choi and Kwon (2003) studied the effect of corner cuts

on the Strouhal number of rectangular cylinders with various dimensional ratios and various angles of

attack. The test results show that the Strouhal number of the model with various corner cuts has a

fluctuating trend as the angle of attack changes. For each cutting ratio as the angle of attack increases at

cutting ratio above 15o, the Strouhal number decreases gradually, and these trends are more evident for

larger corner cut sizes. Experimental studies are also reported by Cheng and Tanaka (2005), Tamura and

Dias (2003) Itoh and Tamura (2002), Leonard and Roshko (2001), Mills, et al. (2003) and others.

It can be inferred from the literatures reviewed above that many of the current studies on vortex-

induced force on prism structures are based on indirect measurements of the fluid force. It would be

useful if the fluid force can be identified directly from the response of the oscillating body, and the

properties of the aeroelastic system can be investigated by direct relating the fluid force time history

with the body motion time history. It is particularly the case when complex patterned vortex-

shedding exists as what has happened to the Sectional model studied in this paper.

2. The sectional model 

The bridge deck model (Fig. 1) studied in this paper is excited by the motion-induced vortices,

which are generated at the leading edge of the girder. At low wind speed, the flow separates from

the leading edge and reattaches to the sectional model. Because the lower surface of the model is

open, exposing the transversal and axial girders to the reattached wind flow, complex flow pattern is

generated. As wind speed increases from 2.5 to 4.0 m/s, the reattachment point moves downstream,

finally, the flow does not re-attach. During this process, the model experiences a transition of the

predominant vibration mode from the vertical to the rotational degree of freedom. 

The transition of the predominant vibration mode indicates the bifurcation of the bridge behavior

in a time-varying wind speed environment: the vibration could switch between vertical and rotational

degree of freedom due to small change of the mean wind speed. The frequency ratio of the vertical

and rotational vibration (3.3 Hz /5.3 Hz) was designed to match the frequency ratio of the prototype.

Therefore the transition of the predominant vibration mode is considered as the inherent characteristic

of the problem that can not be bypassed by setting the frequency ratio to a different value. A

Fig. 1 The Sectional Model (Dimension in mm)
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theoretical explanation of this phenomenon might be complex and it is beyond the scope of this

research, which would rather focus on “curve fitting” instead of explaining the phenomenon. 

In this case, it would be easier to identify the dynamic wind forces directly to obtain the frequency

domain properties of the wind forces, i.e. to find a linearized mapping between the bridge deck

motion and the aerodynamic forces: f(K) = H(K)x(K), where f(K) is the dynamic wind forces in

reduced frequency, K, domain; H(K) is the reduced frequency response function (RFRF) and x(K) is

the displacement of the structure in reduced frequency domain. 

Therefore, the objective of this paper is to propose a method for the direct identification of the

aerodynamic forces so that the above mentioned reduced frequency response function can be computed.

For the sake of completeness, the RFRF is identified for both wind speed increasing and decreasing cases.

3. Method for the identification of dynamic wind forces

For a two-dimensional sectional model with degrees of freedom in vertical and rotational direction,

the vibration equation can be written as: 

(1)

where  is the state variable; 

(2)

is the state matrix;  is the input matrix;

 is the  output matrix; D = CaM
−1 is the feed through due to the

measurement of acceleration and f(t) = , the wind force vector.

In the expressions above, x(t) = {h(t), α(t)}T is the displacement time history vector comprising of

vertical displacement, h(t), and rotational displacement, α(t); M is the mass matrix of the model, Km

and Cm are the stiffness and damping matrix respectively; Cd Cv Ca are the influence factor for

displacement, velocity and acceleration measurement respectively; Fh(t) is the lifting force and Fα(t)

is the rotational moment.

In this study, only displacement is measured, therefore, C =  and D is a null matrix.

In the equation, all the wind forces, including the vortex-shedding forces, have been put into the

force vector f(t), so that the state matrix is purely structural. 

In discrete time format, the same system above is:
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Where 

 and

 . (4)

in the equation, i = 0, 1, 2, ..., n indicates the sequence of the sampled data. 

To perform the computation using displacement time history only, a similarity transform is performed,

i.e. use X* = TX as a new state vector, where  is the transform matrix.

After the transform, the discrete state space equation is 

(5)

where, ,  and . The state vector is , where x(i)

is the discrete measurement of displacement and z(i) is a variable containing a force term. 

The structure of matrix A* can be certified to be in the form of (Jakobsen and Hansen; 1995) 

(6)

and the output matrix C* = . 

Substituting A* B* and C* into Eq. (5) leads to 

(7)

where  and . 

This equation describes an autoregressive model with external input (ARX), whose parameters,

, are predefined by the autoregressive parameters . The autoregressive coefficient

matrix can be identified directly from the free vibration of the sectional model under no-wind

condition with an AR model. 

If k + 2 measurements are available, Eq. (7) becomes

. (8)

where , (i = 1, …, k + 2) are the displacement time history measurements. 
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Multiplying Eq. (8) by a pseudo-inverse of matrix , the wind force is estimated in the

least squares sense:

 = , (9)

where  is the pseudo inverse of  so that = I. Eq. (9) offers one set

of the possible force time histories that can drive the model to vibrate in the recorded way. 

4. Identification of reduced frequency response function (RFRF) for the wind forces

The identified wind forces are random processes with predominant frequencies. The effect of such

forces is affected by factors such as the instantaneous phase angle between the wind force and the

model displacement. The distribution of the random phase angle is thus important in understanding

the response of the model. This information can be obtained by introducing the wind force reduced

frequency response function (RFRF).

, (10)

where K is reduced frequency; the complex valued H(K) is the response function in reduced

frequency domain; x(K) and f(K) are Fourier transformed displacement and wind forces in reduced

frequency domain, respectively.

Noted is that the fluid is the system to be identified with model displacement as the input. The

absolute value of H(K) reflects the magnitude of the wind forces activated by unit displacement at

reduced frequency K. The phase angle of H(K) indicates the wind forces are leading ahead or

lagging behind the model motion. 

In extracting the reduced frequency response function, a chirp signal of the input term, i.e. the

body displacement time history with continuously changing frequencies, is preferred so that a fine

resolution of the RFRF is possible. While the frequency of the free vibration is not changeable, a

chirp signal can be obtained in dimensionless time domain by controlling the mean wind speed to

vary at a very low changing rate.

When there is continuously changing wind speed, the interval of the dimensionless time is defined as

, (11)

where ∆S is the interval of dimensionless time S,  is the positive instantaneous average value

of wind speed over time step ∆t centered around time t and B is the deck width.

Thus, the dimensionless time may be defined by 

(12)
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reduced frequency from  to , where n is the body oscillation frequency.

If the lock-in reduced frequencies fall between K1 and K2, the frequency response function of the

vortex-shedding forces can be expressed in reduced frequency domain as shown in Eq. (10). 

5. The experiments and results

As shown in Fig. 2, the model was suspended by eight springs to allow for vertical and rotation

free vibration. The lateral motion was restrained by thin wire. The spring constant and the spring

anchorage point were so chosen such that they have a combined stiffness producing the vertical

frequency of 3.3 Hz and the rotation frequency 5.3 Hz. Two laser displacement sensors were

installed below the front and rear edge of the model to record the vertical and rotational

displacement. The sampling frequency was 50 Hz. One hotwire anemometer was installed in front

of the model to record the horizontal wind speed. No turbulence generating device was used. The

typical turbulence intensity is less than 2 percent. Therefore, the oncoming wind was considered

smooth.

The testing program was performed in two steps: the structural parameters under no-wind

condition were identified first by triggered free decay vibration and  and  were

obtained; the response of the sectional model when the smooth wind flow was applied was then

recorded. The wind changed from higher wind speed to lower wind speed monotonously and then

ramp up to a higher wind speed, covering the wind speed range of interest. The changing rate of the

wind speed was controlled to be as slow as 1m/s/500s, to allow full development of the vortex-

shedding response. 

As is shown in Fig. 3, due to the special cross section shape, the model is active both in the

vertical and rotation direction within the wind speed region between 2 to 4 m/s due to the vortex-

shedding excitation. Measurements of the dynamic wind forces on the fixed model by force

transducers show Strouhal Numbers of 0.85 for vertical motion dominant period and 0.79 for the

rotational motion dominant period. (The Strouhal number is computed as  where Ns is

the vortex-shedding frequency D is the characteristic dimension of the model and U wind speed)

It can be observed that in the wind speed decreasing case, the vortex-shedding locks onto the

K1 = 
nB

U1

------- K2 = 
nB

U2

-------

a0[ ], a1[ ] b0[ ], b1[ ]

St = NsD/U

Fig. 2 The Suspension System 
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rotational motion first and sticks to the rotation motion, showing a roughly symmetric amplitude

envelope. The lock-in in the vertical motion is suppressed, with only weak signs of existence after

the rotational lock-in region has passed. In the wind speed increasing case, however, the vortex-

shedding locks onto the vertical motion first and then comes to a sudden stop, giving way to the

lock-in in the rotational direction. The rotational lock-in then becomes predominant. Both the

vertical and rotational amplitude envelopes are not symmetric in this case. 

In order to have a better understanding of the data, the proposed force identification method is

applied. In the analysis, the wind forces are identified for wind speed decreasing case and increasing

case separately to avoid confusion of the data in reduced frequency domain. In the analysis, the data

was de-noised before the force identification is performed by using the wavelet decomposition

which has good performance in maintaining the original phase relations. 

To test the effectiveness of the proposed method, a comparison study was performed. A segment

of measured displacement time history in Fig. 3 between 1200s-1500s was subjected to the

proposed procedure to identify the force vector, which was subsequently used as the driven force on

the same numerical model to produce the reconstructed response signal. A segment of results are

shown in Fig. 4. It can be seen that the discrepancies between the two signals are acceptably small.

Therefore the force identification method proposed in the paper works reasonably well. 

6. The wind speed increasing case

The identified wind forces for the wind speed increasing case are shown in Fig. 5. As expected, in

an operational environment, the estimated input forces of a dynamic system should contain noise.

However, the prediction errors are usually wide banded in frequency domain. Therefore, if the result

Fig. 3 Displacements and Wind Speed vs. Time
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is used in frequency domain instead of time domain, it would be more reliable as meaningful part

of the signal may be concentrated in a narrower frequency band while the errors spread over a

wider frequency band, resulting in a low intensity of energy. 

The fast Fourier transform (FFT) result of the identified forces in reduced frequency domain are

shown in Fig. 6. It can be seen that the lifting force has two major reduced frequency bands. One is

around 0.6 (dimensionless) and the other falls between 0.83 to 0.93. The vertical response of the

model mainly concentrates between 0.58 to 0.7, matching the lower frequency center of the lifting

force. The rotational moment also has two peaks covering from 0.58 to 0.7 and from 0.83 to 0.93.

The rotational displacement shows predominant frequency between 0.83 to 0.93. Very weak

responses exist around 0.6. 

These observations might suggest that the rotational moment at the lower frequency region is

Fig. 4 The Measured and Reconstructed Signal Driven by the Identified Force

Fig. 5 Identified Wind Forces (Wind Speed Increasing Case)
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generated by the vertical movement and the lifting force at the higher frequency is related to the

rotational motion. 

The phase angle of the RFRF is shown in Fig. 7. In the figure, “A” represents rotation direction;

“H” denotes vertical direction; “AH” denotes the rotational moment due to displacement in the

vertical direction. The phase angle of AH is the angle by which the rotation moment leads the

vertical displacement. “AA, HH, HA” are defined in the similar way. 

Because the wind forces are random processes with predominant frequencies, the phase angles show

dispersals. However, these figures do show concentrations of phase angle within upper and lower

lock-in region.

From reduced frequency 0.58 to 0.7, the rotational moment slightly lags behind the rotational

Fig. 6 FFT of Displacements and Wind Forces in Reduced Frequency Domain (Wind Speed Increasing Case)
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displacement (Angle AA), whose effect is positive damping and negative stiffness (be noted the minus

signs in matrix Ac of Eq. (2)). Therefore, even the rotational moment is large within this region, the

model response remains small. In the plot “HH”, there is a migration of the phase angle from 1800 to 00,

generating negative aeroelastic damping. The vertical motion predominates due to smaller effective

vertical damping. It is also observed in plot “AH”, the correlation between the rotational moment and

vertical displacement is clear, suggesting the aeroelastic coupling between rotational and vertical direction.

From reduced frequency 0.8 to 0.93, the rotational moment is always leading the rotational

displacement by an angle slightly less than 1800 (Angle AA) reducing the effective rotational damping.

Therefore, rotational response becomes the major response within this region. On the other hand,

Fig. 7 Phase Angle between the Wind Force and the Model Displacement (Wind Speed Increasing Case)

Fig. 8 Absolute Value of the FRFs of Wind Forces (Wind Speed Increasing Case)
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the phase angles between lifting force and vertical motion (Angle HH) are symmetrically distributed

around 1800. The wind force contributes to positive stiffness. The vertical motion is, therefore,

small. The aeroelastic coupling at this reduced frequency is still clear (Angle HA), indicating the

lifting force is generated by the rotational motion.

Between 0.7 and 0.8, there is a transition region in the subplot AA and HH. The phase angles are

distributed symmetrically (or almost so) around zero line causing a cancellation of the aeroelastic

effects. This corresponds to the transition period between 1500s and 1600s in Fig. 3.

In Fig. 8, the absolute values of the wind force RFRF are shown at the reduced frequencies where

the denominator in Eq. (10) is large. The conventions of this figure are the same as Fig. 7. 

7. The wind speed decreasing case

The identified wind forces are shown in Fig. 9. The reduced frequency representations are shown

in Fig. 10. It is noticed that the magnitude of the FFT of vertical displacement is considerably lower

than the same parameter in the wind speed increasing case. The figures show there is lifting force at

the reduced frequency of the rotational movement due to the aeroelastic coupling effect. The lifting

force, however, generates weak vertical response at this frequency. The phase angle between the

lifting force and vertical motion is shown in Fig. 11, subplot Angle HH. Around the reduced

frequency of 1, where the lifting force is active, the vertical displacement leads the force by an

angle less than 1800, hence the model is experiencing positive aeroelastic damping and aeroelastic

stiffness. The vertical displacement is damped out. 

The aeroelastic coupling is indicated in the subplot Angle HA. From 0.8 to 1, the phase angle

between the lifting force and rotational displacement continuously change from 00 to an angle slightly

less than 1800, and stay constant until 1.2 is reached, indicating the coupling term is changing from

displacement related to velocity related and then changing to displacement related again. In the

Fig. 9 Identified Wind Forces (Wind Speed Decreasing Case)
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rotational direction, the situation is similar to the previous case, except for the distribution of the

phase angle is more scattered. 

In Fig. 12, the absolute value of RFRF AA and HA are shown at the rotational lock-in region.

The value of RFRF AA, to certain accuracy, is in consistence with the former case despite the large

noise component. So is the value of RFRF HA. 

8. Conclusions

The aeroelastic effects of the complex patterned vortex shedding from a sectional model of -

Fig. 10 FFT of the Wind Forces in Reduced Frequency Domain (Wind Speed Decreasing Case)
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shape are successfully studied by the proposed reduced frequency response function. This RFRF

model is realized through a time domain identification scheme for aerodynamic forces due to wind

with slow monotonously increasing or decreasing speed and may serve as an alternative to the

existing methods when the vortex shedding pattern is too complex to be described by a parametric

model. The beauty of the proposed method is that it can clearly picture the linearized mapping

relation between the displacements and aerodynamic forces. Through the proposed method, strong

aerodynamic coupling effect between the vertical and rotational motion of the bridge is discovered;

aeroelastic features of the bridge are explained by the phase of the RFRF giving insights into

whether the aeroelastic effect is damping related or stiffness related. 

Nomenclature

[a0], [a1] : Coefficient matrices

A, A*, Ac : State matrices

[b0], [b1] : Coefficient matrices

B, B*, Bc : Input Matrices

C, C* : Output matrices

Fig. 11 Phase Angle between the Wind Forces and the Model Displacement (Wind Speed Decreasing Case)

Fig. 12 Absolute Value of FRFs of Wind Forces (Wind Speed Decreasing Case)
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Cd, Cv, Ca : Measurement influence factor

Cm : Structural damping matrix of the model

D : Feed through matrices

f(t), f(i), f(K) : Wind force 

h(t), h(i) : Vertical displacement 

H(K) : Frequency response function of wind force

i, k : Indices

K : Reduced Frequency

Km : Structural stiffness matrix of the model

S : Dimensionless time

T : Transform matrix

: Instantaneous averaging wind speed

x(t), x(i), x(K) : Displacement vectors

X(t), X(i), X*(i) : State vectors

Y(t), Y(i) : Output measurements

α(t), α(i) : Rotational displacement
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