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Abstract. In this paper, optimum methods of wind-induced vibration control of high-rise buildings are
mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method,
are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target
functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs
are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel
building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison
analysis to validate the feasibility and validity of the optimum methods considered. The results show that
the distributions of damping coefficients along structural height for mass proportional damping (MPD)
systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of
MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of
reducing structural wind-induced vibration response and are superior to other damping systems. Standard
deviations of structural responses are influenced greatly by different target functions and the influence is
increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the
influence of higher modes should be considered when strict requirement of wind-induced vibration
comfort is needed for some special structures.

Keywords: high-rise buildings; wind-induced vibration; viscous damping optimum control; genetic algo-
rithms; Rayleigh damping method.

 1. Introduction
 

In recent years, many experts and scholars at home and abroad have performed a lot of theoretical

and experimental studies on placement and parametric optimization of structures with viscous

dampers and highly effective results were obtained, which established favorable foundation for

engineering applications of dampers in all kinds of structures. Gürgöze and Müller (1992) presented

a numerical method of finding the optimal placement and the optimal damping coefficient for a single

viscous damper in a prescribed linear multi-degree-of-freedom system. Hahn and Sathiavageeswaran

(1992) performed several parametric studies on the effects of damper distribution on earthquake

response of shear buildings, and showed that, for a building with uniform story stiffness, dampers

should be added to the lower half floors of the building. Zhang and Soong (1992) used a sequential
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optimization procedure to determine the optimal location of viscoelastic dampers in multi-storey

building structures. Gluck, et al. (1996) utilized the optimal solution for the linear quadratic

regulator problem to obtain the optimal damping matrix, which was then used to determine the

damper coefficients in different storeys. Takewaki (1997) and Takewaki, et al. (1997) used a

gradient-based approach to search for the optimal solution that would minimize a desired system

transfer function. Recently, Singh and Moreschi (2001) also used a gradient-based approach to

obtain the optimal distribution of classical viscous dampers for a continuous description of the

performance function. Tsuji and Nakamura (1996) proposed an algorithm to find both the optimal

story stiffness distribution and the optimal damper distribution for a shear building model subjected

to a set of spectrum-compatible earthquakes. De Silva (1981) presented a gradient algorithm for the

optimal design of discrete passive dampers in the vibration control of a class of flexible systems.

The algorithm are aimed at making the modal damping and natural frequencies of the system reach

the preassigned values. Constantinou and Tadjbakhsh (1983) derived the optimum damping

coefficient for a damper placed on the first storey of a shear building subjected to horizontal

random earthquake motions. Trombetti and Silvestri (2002, 2004, 2007) studied analytical

formulation and efficiency of MPD system in shear-type structures with viscous dampers. Inaudi

and Kelly (1993) proposed a procedure for finding the optimal isolation damping for minimum

acceleration response of base-isolated structures subjected to stationary random excitation. Ou

(1998) studied parameter influence of passive energy dissipators, viscous, viscoelastic, metallic and

frictional dampers in series with bracing members on suppressive effectiveness of structural

vibration under earthquake and suggested the rational range of parameters for the design of passive

energy dissipation systems. Zhou and Xu (1998) proposed five different optimum design methods

for installation of dampers in structure and presented an example about optimum control analysis of

a ten-floor reinforced concrete. Xu and Zhou (1999) proposed the optimum design regarding the

relative displacement as the control function and performed the seismic response analysis of the

viscoelastic structure using the time history analysis method and the mode superposition method.

Most of the researches above aimed at optimization analysis of structure with dampers under

earthquake action but not under wind-induced vibration action. However, with the rapid

developments of new techniques, new materials and new structural systems, more and more high-

rise buildings and super skyscrapers are built recently. The higher the structure is, the more flexible

it becomes, and then wind load may become the controlled load in structural design of high-rise

buildings. Therefore, it’s much important and necessary for engineers and researchers to perform

studies on structural wind-induced vibration, especially on damping control, because it is one of the

most safely and effective methods to reduce structural dynamic response induced by wind and

researches on structural wind-induced vibration optimum using both GA theory and Rayleigh

damping theory are very few at present. The authors of this paper (2008) have studied wind-induced

vibration control of high-rise building based on GA method and the results showed that GA method

was feasible to optimize structural wind-induced responses. But the above studies are not limited

and further studies on control optimization of structural wind-induced vibration are urgent needed.

In the present paper some key problems about wind-induced vibration for high-rise buildings are

studied, such as optimal method and vibration comfort. Firstly, two kinds of control optimal

technologies, genetic algorithms method and Rayleigh damping method, are introduced to optimize

installation of dampers to obtain optimized damping effect. Secondly, based on spectrum analysis

method of structural wind-induced vibration, six target functions are proposed to control the

feedback condition of GA. And then calculation procedures are designed by Matlab software to
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obtain results corresponding to different analysis cases and to perform comparison analysis among

cases. Finally, a twenty-storey high-rise steel building is taken as an example to validate rationality

of the presented methods. Results of this paper show that GA method is able to distribute damping

coefficient along structural height rationally based on structural dynamic characteristics. The

proposed methods are very helpful of decreasing wind-induced vibration response and improving

structural comfort. Systems of MPD and GAMPD have remarkable effect on reducing structural

vibration induced by wind, which almost reaches about 71.9% and 76.1% respectively.

2. Wind-induced vibration effect analysis of structures

The governing equation of motion for the building with multi-degree-of-freedom subjected to

wind loads is expressed as:

(1)

Where M, C and K are n × n mass, damping and stiffness matrix of the structure; ,  and u are

n × 1 acceleration vector, velocity vector and displacement vector respectively; F(t) is n × 1 force

vector of wind loads.

High-rise buildings are recognized as flexible systems with low damping ratio. The off-diagonal

parts of the structural damping matrix are usually assumed to be neglected and then the structural

damping matrix is considered to be satisfying orthogonality condition. So, N independent equations

with single-degree-of-freedom can be obtained from Eq. (1):

(2)

Where  is generalized wind-force of i-th mode; λi is base frequency of i-th mode; ξ i is

damping ratio of i-th mode.

 The analysis result of recording wind time-series show that if the initial non-stationary zone is

ignored, fluctuating wind is very approximate with stationary random process, the probability

distribution of each sample is also approximately equal and its probability density can be expressed by

Gaussian distribution, and then Fluctuating wind is always considered by Gauss process (Zhao and Xie

2006, Qu 1991). So, in this paper, fluctuating wind force is assumed to be zero-mean Gaussian

stationary stochastic process in this paper. So, generalized fluctuating wind force also has the same

characteristic with fluctuating wind force. Then, according to the knowledge of stochastic vibration

theory, cross correlation function of generalized fluctuating wind forces can be expressed as:

(3)

Where  is cross correlation function matrix of fluctuating wind force F.

 According to the relationships between cross power-spectrum function and cross correlation

function, power-spectrum density function of fluctuating wind force vector and cross correlation

function matrix, the power-spectrum density function of fluctuating wind-load can be obtained:

(4)
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Where [SF] and Sf (ω) are coefficient matrix of power-spectrum density function for fluctuating

wind-load vector and normal fluctuating wind-speed power-spectrum separately, which can be

defined as (Davenport power spectrum is selected as fluctuating wind-speed spectrum in this paper):

(5)

Where Pi is wind force of i-th point; ω is frequency of fluctuating wind-load and ω = 2πn;  is

the mean wind speed at 10m height; γij is cross correlation function between i-th point and j-th

point.

From Eqs. (2) equation (4), self power-spectrum density function of general coordinate qi(t) can

be obtained:

(6)

Where  is self power-spectrum density function of general fluctuating wind-load, which can

be obtained easily by Eq. (3) when i = j; H(ω) is transform function.

So, the self power-spectrum density function of structural storey-displacement response can then

be obtained: 

(7)

Where ϕ ij is i-th element of j-th mode; .

The self power-spectrum density function of story-acceleration response and story-velocity

response can be deduced from Eq. (7):

(8)

Finally, structural response variances of displacement, velocity and acceleration can be achieved

according to its relationship with self power-spectrum density function:
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3. Work principle and computing mode of viscous damper

Oil dampers are mainly made up of viscous fluid, piston, cylinder tube, as shown in Fig. 2. Piston

will be forced to generate reciprocating motion in cylinder tube under earthquake action or strong

wind action. Then viscous fluid in viscous dampers under pressure force will be flowing with a high

speed through damping holes or gaps from one side to the other side. In this process, two kinds of

forces are caused: one is damping force (the most important force for dampers), which is generated

by viscosity of viscous fluid and has capacity of dissipating energy greatly induced by earthquake or

wind. The other is spring force (very little and be ignored usually for viscous dampers relative to

damping force), which is generated by compressibility of viscous fluid and embodies stiffness

characteristic of oil dampers in the process of working.

Because of the spring force of viscous dampers are very little and can be ignored, the damping

force of viscous dampers can be defined as:

F = Cvα (10)

Where F, C, α, v are damping force, damping efficient, velocity factor and motion velocity of

viscous dampers separately.

 The relationship curve of force-velocity of viscous dampers is shown in Fig. 2. Apparently, force-

velocity curve of dampers is linear and dampers have characteristic of linear relation between

damping force and motion velocity when α = 1. Force-velocity curve is nonlinear and dampers have

characteristic that damping force appears very bigger relative to less motion velocity but arise little

with increase of the motion velocity when α < 1. Force-velocity curve is also nonlinear but dampers

have opposite characteristic with case α < 1, which have less damping force relative to less motion

velocity but arise promptly with increase of the motion velocity when α < 1.

Fig. 2 Structure figure of oil damper

Fig. 2 Force-velocity curve of viscous damper
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4. Base theory of Genetic Algorithms (GA)

4.1. Basic principle

Genetic algorithms (GA) presume that the potential solution of any problem is an individual and

can be represented by a set of parameters. These parameters are regarded as the genes of a

chromosome and can be structured by a string of values in binary form. A positive value, generally

known as a fitness value, is used to reflect the degree of “goodness” of the chromosome for the

problem that would be highly related to its objective value. Genetic algorithms are heuristic random

search techniques based on the concept of natural selection and natural genetics of population, and so

they are of “population-based” method of searching large combinatorial design spaces to find the

optimum combination of design variables. Detailed discussion on the mechanisms of GA can be

found in Holland (1975) and Goldberg (1992). GA has been proven to be a versatile and effective

approach of solving optimization problems and have been used in many research fields. The

successful application of genetic algorithms to both combinatorial and discrete optimization problems

(Koumousis and Georgiou 1994) motivated the employment of GA to solve mixed-discrete non-

linear optimization problems (Jenkins 1997, Lin, et al. 1995). Furuya (1998) applied the genetic

algorithm to obtain the proper placement of the passive dampers in each storey of a building.

The basic steps of Genetic algorithm can be expressed as follows and also be shown in Fig. 3.

1. Some cells with problem information will be created by stochastic manner, and each cell is

made up of one kinds of code (such as binary encoder, Gray encoder and so on);

2. The sufficiency of target function for each cell in grope will be appraised. Higher sufficiency

cells can be reserved and washout lower cells;

3. New daughter lines can be created by there kinds of methods, namely ① father cells creates

daughter cells by cross method, ② father cells creates daughter cells by mutation method, ③

excellent father cells are copied and form daughter cells;

4. The new created gropes perform next genetic optimum operation, and then cycle operation for

step 2 and step 3 until optimization result arrives predefined target.

Fig. 3 Flow chart of GA
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4.2. Target functions

Target functions are employed by Genetic algorithms to decide selection, cross and mutation

characteristic of creating new daughter cells. Apparently, the better or inferior results obtained by

GA optimum are influenced by target functions greatly. So, the rational selection of target functions

is very important for Genetic algorithms to obtain the best excellent cells. 

 In this paper, in order to perform comparison analysis, select preferable target functions and then

obtain some valuable conclusions to structural optimum design of wind-induced vibration control,

six kinds of target functions are present according to the deduction of section 1.

4.2.1. Target function T1

Taking structural top-acceleration response variance of the first mode as target function T1, which

can be expressed as:

(11)

4.2.2. Target function T2

Taking the mean value of inter-story displacement angle variance of the first mode as target

function T2:

(12)

Where 

4.2.3. Target function T3

Taking structural top-acceleration response variance of the first ten modes as target function T3:

(13)
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(14)

4.2.5. Target function T5

Taking both structural top-acceleration response variance and mean value of inter-story

displacement angle variance of the first ten mode as Target function T5:

T5 = T1 × T2 (15)

4.2.6. Target function T6

Taking base-shear variance of the first mode as target function T6:

(16)

5. Rayleigh damping optimum theory

In the dynamic systems considered in this paper internal damping is neglected, so that the

damping matrix derives from the effects of added viscous dampers only. Considering a system

added viscous dampers which leads, for the generic N-storey linear elastic structure (show as Fig.

4), to a Rayleigh damping matrix. The Rayleigh damping matrix has the following expression:

(17)

Where M and K are structural mass- matrix and stiffness-matrix; α and β are constant and with

units of S-1 and S separately.

Two following damping matrices can be defined according to Eq. (17) (Trombetti and Silvestri

2004, 2007, Trombetti, et al. 2002):

1. If the damping matrix of dampers is proportional to the storey mass matrix, this system is

called “MPD system” (show as Fig. 5a) and its damping matrix can be defined:
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Fig. 4 Six-storey shear-type structure equipped with Rayleigh damping system
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CMPD = αM (18)

(2) If the damping matrix of dampers is proportional to the lateral stiffness matrix, this system is

called “SPD system” (show as Fig. 5b) and its damping matrix can be defined:

C SPD = βM (19)

The installation ways of dampers are different for MPD and SPD systems, which can be easily

seen from Fig. 5. Dampers are installed between one story and a fixed point for MPD system and

dampers are installed between two adjacent stories for SPD system. So, the two damping systems

can be defined as follows:

MPD system: dampers are placed in such a way as to connect each storey to a fixed point and the

damping coefficient matrix is proportional to the corresponding storey mass matrix;

SPD system: dampers are placed in such a way as to connect two adjacent storeys and the

damping coefficient matrix is proportional to the corresponding lateral stiffness matrix.

In order to make meaningful comparisons of the dissipative performances offered by different

Fig. 5 Sketch figures of MPD and SPD systems
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damper systems, it is necessary to introduce a constraint upon their total size. The total size, , of a

generic damper system made up of N added viscous dampers is defined herein as the sum of the

damping coefficients of all N viscous dampers, as expressed by:

(20)

When various damper systems are compared, the equal “total size” constraint implies that all

systems must have the same value .

Substituting Eq. (20) into Eq. (17) gives Rayleigh damping matrix:

(21)

Where , , γ is constant without units and has span of [0,1]. Note that γ = 0

identifies the MPD system, whilst γ = 1 identifies the SPD system. 

6. Example analysis

A 20-storey high-rise steel building is taken as an example in this section. The basic parameters

of the building are given in table 1 and the first ten periods and frequencies of the building are

shown in Table 2.

Some first-phase preparations are here presented in order to perform further optimum analysis.

Firstly, Linear viscous dampers are installed in the example building and the whole damping

coefficients  of all viscous dampers in different cases are defined to be equal, ,

so as to analysis structural dynamic performance comparatively. Secondly, some original parameters,
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Table 1 Basic parameters of the building

 Height of the building (m)  72

 Area along wind (m2)  2356

 Story-mass (kg) m1 = m2 = … m20 = 3.2×104

 Story-stiffness (N/m)

k1 = … k4 = 3.5×107

k5 = … k10 = 3.0×107

k11 = … k16 = 2.5×107

k17 = … k20 = 2.2×107

 Field type D

 Basic wind pressure (kN/m2) 1.0

 Basic wind speed (m/s) 40.0

Table 2 The first ten periods and frequencies of the building

Mode

1 2 3 4 5 6 7 8 9 10

Ti/s 2.664 0.935 0.564 0.409 0.319 0.263 0.226 0.198 0.178 0.162

λ i/rad/s 2.358 6.718 11.137 15.345 19.686 23.868 27.785 31.734 35.265 38.782
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which are very important and necessary for the optimum analysis of Genetic Algorithm, are

presented in Table 3. Finally, according to the Genetic Algorithms method and Rayleigh damping

method deduced in section 3 and section 4, Structural optimum analysis programs are developed

based on Matlab software to calculate structural wind-induced responses.

Fig. 6 shows the distribution manners of damping coefficients along structural height for different

cases (“GAMPD” indicates that analysis result given is optimized by both Genetic Algorithms

method and Rayleigh damping method, “T1” indicates that target T1 is selected, “the first mode”

indicates that optimum analysis only considers the first mode. Therefore, it’s easy to know the

means of other cases). This figure shows that the change tendency of damping coefficients for MPD

system and SPD system without optimized is proportional to storey mass and story-stiffness

respectively: The former keeps invariable along height and the latter presents stepladder-like change

shape along structural height. However, the distribution manners of damping coefficients for all of

the optimized cases change greatly and obviously. For example, the distribution of MPD system

shows that damping coefficients at the lower part of the structure are less than that at the upper part

of building. However, the distribution of SPD system shows that damping coefficients at the lower

part of the structure are bigger than that at the upper part of structure.

Table 4 gives standard deviation of roof-acceleration response of the structure equipped with 22

damping systems considered. Fig. 7 shows standard deviation of storey acceleration for the structure

equipped with 22 damping systems considered. Fig. 8 shows standard deviation of storey

displacement for the structure equipped with 11 damping systems considered. Fig. 9 shows standard

deviation of interstorey drift angle for the structure equipped with 11 damping systems considered.

Following results can be obtained: 

① Damping systems of MPD and GAMPD have the best performance of reducing structural

wind-induced vibration responses and are superior to systems of SPD, GASPD and GA. Take the

Table 3 Original parameters of GA

Parameters
Cell

number
Genetic

generations
Variable

dimension
Variable

binary number
Cross

probability
Generation

gap

Original value 40 200 20 20 0.7 0.9

Fig. 6 Distributions of damping coefficients along height for different damping systems
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standard deviation of roof responses as an example, the average values of roof acceleration for

damping systems of GAMPD, MPD, GA, GASPD and SPD are 0.278 m/s2, 0.327 m/s2, 0.87 m/s2,

1.073 m/s2, 1.163 m/s2 respectively. Relative to SPD system, the damping ratios of GAMPD, MPD,

GA and GASPD are 76.1%, 71.9%, 25.2% and 7.74%. The reason of that is that additional

damping ratio of the first mode for MPD system is very greater than SPD system (Trombetti and

Silvestri 2006), which is very  helpful for reducing structural wind-induced responses.

② Energy dissipation effect of the structure with dampers optimized only by GA is better than

systems of GASPD and SPD but worse than plans of GAMPD and MPD. GA theory has the

Table 4 Standard deviation of roof responses of different damping systems( units: m/s2)

Plans GAMPD GASPD

Cases  T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

0.255 0.256 0.315 0.316 0.281 0.246 1.038 1.036 1.121 1.122 1.091 1.028

Average 0.278 1.073

σu 77.92 77.98 94.03 93.8 93.5 77.94 189.6 189.3 199.4 199.6 199 189.5

Average 85.86 194.4

Plans GA MPD SPD

Cases  T1 T2 T3 T4 T5 T6 First Ten First Ten

0.856 0.856 0.900 0.901 0.862 0.847 0.315 0.338 1.151 1.175

Average 0.87 0.327 1.163

σu 165.6 165.6 165.9 165.8 166 165.6 115.2 115.5 210 210.1

 Average 165.75 115.35 210.05

Notes: “First” represents that the first mode is considered in this plan, “Ten” represents that the first ten modes are consid-
ered in this case.

σu··

σu··

Fig. 7 Standard deviation of storey acceleration for the structure equipped with 22 damping systems
considered
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property of distributing damping coefficient according to the given structural dynamic response, and

make the best use of energy dissipation performance of viscous dampers (Wang and Zhou 2008).

The average values of displacement standard deviation for system GA, GAMPD and GASPD are

165.75 mm, 85.86 mm, 194.04 mm, which are 78.91%, 40.88% and 92.55% relative to the average

value of SPD system, 210.05 mm.

③ Standard deviations of structural responses show different change tendency if varied target

functions are selected, which can be seen easily from system GASPD, GASPD and GA. According

to the vibration-absorbing effect, the best plan of a optimum system is the damping system

equipped with target  T6, and then target T1, target T2 and target T5 sequentially.

④ Standard deviations of structural responses become increase slightly when considering

Fig. 8 Standard deviation of storey displacement for the structure equipped with 11 damping systems
considered

Fig. 9 Standard deviation of interstorey drift angle for the structure equipped with 11 damping systems
considered
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influence of higher modes (such as target T3 and target T4). The standard deviations of roof

acceleration and displacement are 1.038 m/s2 and 189.6 mm for damping system GASPD with target

function T1, and 1.121 m/s2 and 199.4 mm for the same system with target function T3. Of course,

similar patterns can be seen in others systems.

Fig. 10 shows distribution of damping force for the structure equipped with five damping systems

considered. Fig. 11 shows distribution of total damping force for the structure equipped with 22

damping systems considered. Results can be obtained from the two figures. Firstly, the distribution

of damping forces throughout the structural height is the opposite for the MPD and SPD systems:

the MPD system transmits the largest dissipative force at the top of the structure, whilst the SPD

system transmits the largest dissipative force at the bottom of the structure. Secondly, the total

damping forces of all damping systems are almost the same: it is 6932kN for the “GAMPD-T1”

system, 7530kN for the “GASPD-T6” system, 7971kN for the “SPD-first mode” system, 6790kN

for the “GA-T4” system and et. al. Finally, dissipative effect of damping systems equipped with

MPD (such as the MPD system or GAMPD system) is better than that equipped with SPD (such as

the SPD system or GASPD system), the reason of that is not due to the formation of larger

damping force but due to the natural characteristics of the damping systems.

Fig. 10 Distribution of damping force for the structure equipped with five damping systems considered

Fig. 11 Distribution of total damping force for the structure equipped with 22 damping systems considered
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7. Conclusions

In this paper, optimum methods of wind-induced vibration control of high-rise buildings are

mainly studied. Two optimum methods, genetic algorithms method and Rayleigh damping method,

are firstly employed and proposed to perform optimum study on wind-induced vibration control

with the help of structural frequency-domain analysis. Six target functions are presented in genetic

algorithms and structural optimum analysis procedures are relevantly designed. A high-rise building

with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison

analysis to validate the feasibility and validity of the optimum methods proposed. Some conclusions

are summarized as follows:

1. The distributions of damping coefficients for MPD systems and SPD systems are entirely

opposite: the damping coefficients of MPD systems at the upper part of the structure are bigger than

that of SPD systems, whilst the damping coefficients of SPD systems at the lower part of the

structure are bigger than that of MPD systems.

2. Damping systems of MPD and GAMPD have the best performance of reducing structural

wind-induced vibration response and are superior to other damping systems.

3. GA optimum method can distribute damping coefficients along structural height rationally

according to the specific dynamic properties. The energy dissipation effect of the structure

optimized only by GA is better than plans of GASPD and SPD but worse than plans of GAMPD

and MPD.

4. Standard deviations of structural responses show different change tendency if varied target

functions are selected. The best plan of a optimum system is the damping system equipped with

target  T6, and then target T1, target T2 and target T5 sequentially.

5. Standard deviations of structural responses become increasing slightly when considering the

influence of higher modes. The influence of higher modes should be considered when strict

requirement of wind-induced vibration comfort is needed for some special structures.
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