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Wind velocity simulation of spatial three-dimensional
fields based on autoregressive model
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Abstract. This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-
dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields.
Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model
deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-
relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of
freedom of structures; the improved Gauss formula to calculate the numerical integral equations which
integral functions contain oscillating functions; the mixed congruence and central limit theorem of
Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank
of the AR model. The numerical examples show that all those methods are stable and reliable, which can
be used to simulate the wind velocity of all large span structures in civil engineering.
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1. Introduction

The fluctuating wind loads, which are related to the shape and height of the structure, are

multiple-points random loads and one of the main dominating loads of the large structures in civil

engineering. In the study on the wind-induced effects of the structure, the wind velocity is

indispensably considered, but to obtain an accurate wind velocity model usually needs expensive

cost through a full-ruler observation or a wind tunnel experiment. Therefore, it is significant to

study the wind velocity simulation by numerical simulation methods.

The AR model was applied widely to forecast the time series in the wind engineering, because of

its many merits: simple algorithm and rapid calculation; besides, it can consider not only the space

dependent characteristic but also the time dependent characteristic of the wind history, also, those

advantages can be facile to implement by computer programming. Though the autoregressive

moving average (ARMA) is superior to the AR model (Samaras, et al. 1985, Li and Kareem 1990,

Kamal and Jafri 1997, Kho, et al. 2002), the parameter estimation for the ARMA model is much

more difficult than the AR model (Kizilkaya and Kayran 2006). Hence, this paper still concerns

with the issues of the AR model while using it to simulate the natural wind velocity processes.

Before 1980, simulation techniques were primarily adopted to forecast single wind history.
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However, the single wind history could not meet the requirements of the structure with a great

number of degrees of freedom. 

Iwatani (1982) proposed the use of an AR model (multidimensional AR process) to simulate

multiple wind velocities firstly (Iwatani 1982). The author built a FORTRAN program and gave out

two examples, simulation of shear flow in the vertical direction and simulation of two-dimensional

homogenous flow at many points in the horizontal direction, to validate the availability of the AR

model. Iannuzzi and Spinelli (1987) compared the methods of simulating both single and multiple

wind velocities (Iannuzzi and Spinelli 1987). Huang and Chalabi (1995) used an AR model which

could produced non-stationary Gaussian random processes to simulate the wind velocity for the

greenhouse and adopted a Kalman filter to estimate the parameters of the AR model (Huang and

Chalabi 1995). All these above researchers used algorithms of iteration and recursion which usually

result in accumulative errors while calculating the model parameters. 

Stathopoulos, Kumar and Mohammadian (1996) established a first-order AR model to simulate

the fluctuating wind loads of monoslope roofs with different geometrics (Stathopoulos 1996).

Though the first-order AR model was not enough for the complex structures, the study showed that

the AR model could be used to analysis the wind-induced responses of the engineering structures.

Facchini (1996) used a hybrid model to simulate wind velocity and pointed that the AR model

could be calculated directly from the spectral densities without solving the Yule-Walker equations,

but it needed huge calculation to obtain covariance functions integrated from the spectral densities

of the target processes (Facchini 1996). 

Li and Dong (2001) introduced a matrix method to determine the parameters of the AR model

without the iteration and recursion, which effectively avoided the accumulative errors in the

simulation (Li and Dong 2001). Although the improved method was applied in the simulation of the

wind velocity of the double-layer reticulated shell of Chinese National Grand Theater, there were

still some incorrectness in reasoning the covariance matrix and some incorrect descriptions of the

formula parameters.

Poggi, et al. (2003) used an AR model to simulate wind speed in Corsica and compared to the

experimental data to check the correction of the simulated wind speed (Poggi, et al. 2003). Roy and

Fuller (2001) and Kim (2003) discussed the bias of estimators for AR model parameters and evaluated

the effects of bias-correction for AR model parameter estimation (Roy and Fuller 2001, Kim 2003). 

The wind velocity simulated by numerical simulation methods needs to be as close to the real

situation as possible and the simulated method ought to be efficient and general. In the past

research, though the AR model was constantly improved, it is not enough for the application of the

AR model more widely. The drawbacks of the poor simulated accuracy of the AR model have not

been resolved completely yet. Therefore, this paper attempts to deduce the AR model by matrix

form and solves the raised issues of the AR model in simulating the wind velocity of the spatial 3-

D fields systematically, and presents the corresponding solving methods whose computing programs

are implemented in MATLAB.

2. AR model

The fluctuating wind velocity is a random time series in essence, the basic formula of the AR model

simulating the wind velocities [u(t)] of M spatial points, which are stationary Gaussian multivariate

stochastic processes, can be expressed as (Iwatani 1982, Iannuzzi and Spinelli 1987, Li and Dong 2001):
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(1)

where [N(t)] = [N1(t), ..., NM(t)]T, Ni(t) is the i th normally distributed stochastic process with zero mean

and unit variance, i = 1, ..., M, [ψk] is the coefficient matrix, k = 1, ..., p is the rank of AR model,

and ∆t is the time step of the series.

The process of the simulation can be delivered as:

2.1. Calculation of coefficient matrix [ψk]

After multiplying two sides of Eq. (1) by [u(t − j∆t)] and calculating the expectation, we can get the

following formula:

Since the covariance between stochastic process u(t) and u(t − j∆t) can be expressed as 

, and the stochastic process

N(t) is independent to stochastic wind velocity u(t), then, the relationship between the covariance

Ru( j∆t) and the regressive coefficient [ψk] can be written as:

(2)

in which j = 1, 2, ..., p. After transpose, Eq. (2) can be rewritten in the matrix form:
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According to random vibration theory, the relationship between the power spectral density and the

correlation function accords with the Wiener-Khinchin theorem (Strube 1985): 

(6)

in which f is the frequency,  is the auto-power spectral density if i = k, the cross-power

spectral density if , .

2.2. Calculation of the normally distributed random processes [N(t)]

The normally distributed random processes [N(t)] can be obtained from:

(7)

where ,  is the ith independent normally distributed random

process with zero mean and unit variance, in which ;  is from the Cholesky

decomposition of , in which  is calculated from the following equation

obtained by multiplying two sides of Eq. (1) with  

(8)

2.3. Calculation of the fluctuating wind velocity

Using the results of Eq. (2) and Eq. (7), with the presumption of , while , the Eq.

(1) can be dispersed and rewritten as 

(9)

in which ∆t is the discrete time step.

2.4. Calculation of the final wind velocity

The final wind velocity can be generated by: 

(10)

where  is the mean component of wind velocity which can be obtained by means of the following

logarithmic profile (z < 100 m) (Panofsky 1974)

(11)

where  is the mean component of wind velocity with height z, z1 = 10 m is the standard height,

z0 is the roughness length. 
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2.5. Selection of the AR model rank

Iwatani pointed out that low rank of the AR model can meet the requirements in general

engineering with the permitted error (Iwatani 1982). But, for the large and complex structures, it is

not credible to solve the rank of AR model based on the empirical analysis only. However, much

work has already been done and many experimental results have been given in Schlindwein, and

Evans (1990), Akaike (1974), and Pappas, et al. (2006) proposed a new method to select the

AR(MA) model order by translate the n-variate AR model equations into state-space form. Different

from those former work, in this study, based on MATLAB programming, a new method of

resolving the rank of AR model is developed based on the principle of the AIC(Akaike Information

Criterion). The AIC can be expressed as (Akaike 1974)

(12)

where N is the sample time length,  is the variance.

With the increasing rank of the AR model initially, the value of the variance  decreases,

neither do the value of  AIC( p). However, the value of AIC( p) will increase with the rising rank.

Hence, p0 is taken as the best rank of the AR model if it is determined by the formula for a special

rank m

It is a huge job to calculate the variance  for a multidimensional sequence. In this paper, the

authors propose that the variance  can be replaced by the absolute of the maximum eigenvalue

of the matrix [RN]. Then, N becomes the modified model parameter, and N = 10 ~ 15 for large span

structure. Examples show that it is efficient for ascertaining the rank of the AR model of the

multidimensional random sequences.

3. Implementation of the AR model

There are three important points in the implementations of the AR model based on the MATLAB

programming (Fig. 1):

3.1. Solving the ill-posed equation (3) resulting from the increasing degrees of freedom

of the structure

The Eq. (3) can be solved by a general iterative method for the structure with a few degrees of

freedom. However, the large dimension of the coefficient matrix [R], which results from a number

of degrees of freedom of the structure, will bring the Eq. (3) to the ill-conditioned equation.

Therefore, the complicated method with better accuracy is needed for resolving the problem. Here,

over-relaxation iteration (Martins, et al. 1996) is used to calculate the large sparse matrix equation.

The iteration formula of the algorithm is

(13)

AIC p( ) σ
α

2
ln 2p / N+=

σ
α

2

σ
α

2

AIC p0( ) min
1 p m≤ ≤

= AIC p( )

σ
α

2

σ
α

2

ψij

K 1+
1 ω–( )ψij

k ω

ri i
---- rij ri lψl j

k 1+

l 1=

i 1–

∑– rilψl j

k

l i 1+=

pM

∑–+=



246 Wei-cheng Gao and Yan-lei Yu

where ω is the relaxation factor which controls the convergent rate of the iteration algorithm,

. With the condition of the positive definite matrix [R], the

formula would be convergent with . It is suggested that the relaxation factor value should

be within the range of 1.01~1.05 in this study.

3.2. Solving the numerical integral equation (6) which contains oscillating function

The integral function of Eq. (6) contains the oscillating function cos( ). With the growth

of the variable , the integral function will has more points of zero value on x-axis

coordinate. Then, a general numerical interpolation can not meet the requirement of accuracy, and

neither can the compound integral method. In this study, the Gauss-Lobatto formula improved from

the Gauss formula is taken advantaged to solve the integral of oscillation function. The formula can

be expressed as (Gander and Gautschi 2000)

i 1 2 … pM  j, , , 1 2 … M, ,= =

1 ω 2< <

2π f j∆t⋅ ⋅
2π j∆t⋅

Fig. 1 Flow chart of implementing wind velocity by AR model in MATLAB
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(14)

where a, b are the endpoints of each range,  are  parameters.

3.3. Generating the random numbers

The random numbers in the Eq. (7) play very important role in the implementation of the whole

algorithm. But, generally, the random numbers generated by the default order in MATLAB are not

the real random variables that can result in the non-positive definite matrix [RN] and the failure of

the Cholesky decomposition. With the condition of the enough large sample spaces where the

random numbers produce, the numbers would be the random variables as realistic as possible. 

The mixed congruence and the central limit theorem of Lindberg-Levy (Gaenssler and Joos 1992)

are used to generate the random numbers in this study. The procedure can be expressed as

Step 1 Produce the uniformly distributed random variables with zero mean and unit variance by

the method of mixed congruence. The formula of the algorithm can be presented as

(15)

where λ is the multiplying factor, M0 is the modulus, C is a non-negative integer. The statistical

character of the produced random numbers can be improved by choosing a proper C which is an

odd positive integer smaller than modulus M. This study proposes the values of the parameters:

x0 = 1, λ = 519, M0 = 248.

Step 2 Convert the uniformly distributed random variables produced in step 1 into the normally

distributed random variables with mean zero and unit variance using the Lindeberg-Levy central

limit theorem. In case of some uniformly distributed random variables  in (0, 1), then,

the variable η below is gradually becoming a normally distributed random variable.

(16)

The number of sample spaces produced by the above method can reach 248 rather than 230

produced by the MATLAB random.m function.

4. Examples

4.1. Example 1 four spatial points

Using those methods mentioned above can simulate the wind velocity of the four-space points

(Fig. 2). The parameters used in the simulation are: roughness length z0 = 0.4 m, the standard mean

component of the wind velocity = 25 m/s, the rank of the AR model p = 4, and the discrete time

∆t = 0.1s. The wind velocity power spectrum is the Davenport spectrum. The 3-D spatial
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corresponding coefficient related to the frequency of the wind velocity is adopted in the simulation.

The same example is applied in Li and Dong (2001). The results of the simulation are shown in

Figs. 3 to 5.

Fig. 2 Four-space points (unit: m)

Fig. 3 Wind velocity curves of nodes of example 1
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Fig. 3 shows the final wind velocities of the four-space points, including the mean and fluctuating

components of the wind velocity. The wind velocity curves also illuminate that the wind velocity is

a random process accompanying the varieties of time, and the fluctuating components of the wind

velocity which displays by the fluctuant curve in Fig. 3 will results in the vibration of the structure,

even strengthens the resonance effect of the flexible structure.

Fig. 4 Wind velocity power spectral density curves of nodes of example 1

Fig. 5 Correlation functions
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Good agreements between the simulated power spectrums and the target power spectrums are

shown in Fig. 4. The fluctuant phenomena of the calculated curves result from the fluctuating

components of the wind velocity. The beginning and ending of the theoretical values depend on the

lower and upper cutoff frequencies respectively. The upper cutoff frequency should be twice larger

than the highest natural frequency of the wind velocity. 

The auto- and cross-correlation functions in Fig. 5 present the spatial correlation characteristics of

the spatial four points. The auto-correlation function 1 is the auto-correlation function of node A;

the cross-correlation function 2 is the cross-correlation function between node A and node B; the

cross-correlation function 3 is the cross-correlation function between node A and node C; the cross-

correlation function 4 is the cross-correlation function between node A and node D. As shown in

Fig. 5, the fluctuating curves open out that the wind velocity histories conclude a certain extent of

periodicity. However, for most random processes, the relativity is weaker with the longer in time

interval and the farther in spatial distance. The correlation function is correlated by itself so as to

the maximum value when the time is zero and tends to be zero while the time is infinite. In other

words, the closer points in distance have the stronger corresponding properties, in contrast, the

farther distance, the weaker corresponding properties. 

Fig. 5 also reveals that the relativity among the spatial points with the same height is quite

similar. With the fall of height, the maximum of the correlation function will decrease and translate

in the negative direction on the time-axis, as described in Wang (1994). 

In the above simulation, the rank of the AR model taken in the example is equal to the one in Li

and Dong (2001) in order to compare the results. Using the improved AIC mentioned, the rank of

the AR model can be newly ascertained by (N=15)

As shown in Table 1, the rank of the AR model p=3 can meet the accuracy requirement of the

wind velocity simulation for the four-space points. 

4.1.1. Example 2

A K6-6 type single-layer spherical latticed shell model, with 342 elements and 127 nodes in total,

is chosen as an actual engineering example. The node number is shown in Fig. 6. The structural

parameters of the shell are: 30m span, rise-span ratio of 1/6, rigidity node constraint, hinged-support

boundary constrained linear displacement of three directions only. The type of all poles of the shell

is Φ114 × 4.

The parameters adopted in the simulation are the same as the ones of the example 1 except for

the rank of the AR model. 

At first, the rank of the AR model in the simulation of the shell structure, using the improved AIC

developed in this paper, is calculated in Table 2 (N=15). As shown by the data in Table 2, the rank

of the AR model p = 5 is the most suitable value of the wind velocity simulation for the K6-6 type

Table 1 Ascertain of AR model rank (Example 1)

Model rank Values of AIC

p=1
p=2
p=3
p=4
p=5

AIC(1)=1.8304
AIC(2)=1.5260
AIC(3)=1.4683
AIC(4)=1.4847
AIC(5)=1.5684
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single-layer spherical latticed shell.

The results of the simulation are shown in Figs. 7 to 9.

Fig. 7 shows the final wind velocities of the K6-6 type single-layer spherical latticed shell,

including the mean and fluctuating components of the wind velocity. 

Fig. 6 Node number of K6-6 single-layer spherical latticed shell model

Fig. 7 Wind velocity curves of nodes of latticed shell

Table 2 Ascertain of AR model rank (Example 2)

Model rank Values of AIC

p=1
p=2
p=3
p=4
p=5
p=6

AIC(1)=4.5772
AIC(2)=4.8891
AIC(3)=4.5392
AIC(4)=3.1897
AIC(5)=2.0064
AIC(6)=2.0201
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Good agreements between the simulated power spectrums and the target power spectrums are

shown in Fig. 8. The upper cutoff frequency should also be twice larger than the highest natural

frequency of the wind velocity.

The auto- and cross-correlation functions in Fig. 9 also reflect the spatial correlation

characteristics of the K6-6 type single-layer spherical latticed shell well. The phenomenon in Fig. 9

is similar to the Fig. 5. The auto-correlation function 1 is the auto-correlation function of node 63;

the cross-correlation function 2 is the cross-correlation function between node 63 and node 37; the

cross-correlation function 3 is the cross-correlation function between node 63 and node 33. 

4.1.2. Example 3

A cable net structure composed of four pieces of hyperbolic paraboloid saddle cable net is chosen

as the more complex engineering structure. The horizontal projection size of the structure is 120 m

×120 m, and the height of the structure is 30 m. The sketch map of the structure is shown in Fig.

10. The node number of the cable net model is presented in Fig. 11. The height of the basement of

the structure is 10 m. 

Fig. 8 Wind velocity power spectral density curves of nodes of latticed shell

Fig. 9 Correlation functions
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The parameters selected in the simulation are: the roughness length z0 = 0.01 m, = 16m/s, and

the discrete time ∆t = 0.1 s. The wind velocity power spectrum is the Panofsky spectrum. The 3-D

spatial corresponding coefficient, which is independent of the frequency of the wind velocity, is

used in the simulation. The rank of the AR model p = 5, using the improved AIC developed in this

study, is ascertained firstly. The results of the simulation are shown in Figs. 12 to 14.

Fig. 12 shows the final wind velocity of the cable net structure, including the mean and

fluctuating components of the wind velocity. 

A good agreement between the simulated power spectrum and the target power spectrum is shown

in Fig. 13. The upper cutoff frequency should also be twice larger than the highest natural frequency

of the wind velocity.

The auto- and cross-correlation functions in Fig. 14 also reflect the spatial correlation characteristics

v10

Fig. 10 Cable-net structure model

Fig. 11 Node number of cable-net model

Fig. 12 Wind velocity curve of node 29
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of the cable net structure perfectly. The auto-correlation function 1 is the auto-correlation function of

node 29; the cross-correlation function 2 is the cross-correlation function between node 29 and node

74; the cross-correlation function 3 is the cross-correlation function between node 29 and node 119.

The cross-correlation functions in Fig. 15 are the theoretical and simulated cross-correlation

Fig. 13 Wind velocity power spectral density curve of node 29

Fig. 14 Correlation functions

Fig. 15 Verification of correlation function
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functions of wind velocity between node 29 and node 34. It also shows a good agreement between

two curves. From the Fig. 15, we can also see that the maximum value of the cross-correlation

function is slightly smaller than the cross-correlation function 3 in Fig. 14. This means that the

spatial correlation of node 29 and node 34 is weaker than the correlation of node 29 and node 74,

which due to the farther distance between node 29 and node 34.

5. Comparisons

Fig. 16 and 17 show the normal distribution probability functions of wind velocity simulated by

unimproved and improved AR model respectively. The lines in the Figures mean the data come

from the normal distribution strictly, the “+” symbols display the discrete points of simulated wind

velocity. As we known, the real wind velocity is subjected to standard normal distribution in nature.

From fig.16 and 17, we can see the wind velocity simulated by improved AR model fits the line

better than the unimproved model’s. The poor simulated accuracy of the AR model had been

ameliorated distinctly. 

6. Conclusions

The methods discussed in the simulation of wind velocity using the AR model meliorate the

accuracy of the AR model and can also be easily adopted in other similar problems by other wind

velocity simulation methods, and the method of ascertaining the rank of the AR model is proved to

be effective and credible for the wind velocity simulation of the spatial 3-D fields in terms of the

examples taken in this paper. 

The results of the comparison among power spectral densities are found to be in a very close

agreement. The correlation functions reveal the spatial and time correlation characteristics of the

wind velocity well.

The built programs can simulate the wind velocity of the spatial 3-D fields for all kinds of wind

velocity power spectrums and spatial corresponding coefficients, and afford the fluctuating wind

load in the wind induced oscillation numerical analysis of the large structure in civil engineering. 

Fig. 16 Normal distribution probability function of wind
velocity simulated by unimproved AR model

Fig. 17 Normal distribution probability function of
wind velocity simulated by improved AR model
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