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Abstract. This research investigates the adaptive input estimation method applied to the multilayer
shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the
active reaction of the system. The Kalman filter without the input term and the adaptive weighted
recursive least square estimator are two main portions of this method. The innovation vector can be
produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to
estimate the wind load input over time. This combined method can effectively estimate the wind loads to
the structure system to enhance the reliability of the system active performance analysis. The forms of the
simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the
random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed
plus the simulation error is regard as the simulated measurement and is applied to the input estimation
algorithm to implement the numerical simulation of the inverse input estimation process. The availability
and the precision of the input estimation method proposed in this research can be verified by comparing
the actual value and the one obtained by numerical simulation.
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1. Introduction

In the course of the anti-vibration design, the fatigue analysis, and the reliability assessment of the

structure system, the most important procedure is to obtain the values of the active loads to the system.

However, in the practical engineering problem, there are always difficulties in installing the load

transducers used to measure the active loads to the structure system. Besides, the impact caused by the

loads is sometimes overwhelming and transient so that the measurements will not be easy to obtain. In

the design of high buildings, the loads caused by earthquakes and winds are both significant and need

to be considered. Especially the strong wind causes severe vibration load to the building structure and

makes the residents uncomfortable. This is the reason that the control in dealing with the influence due

to the wind load on the buildings is worth researching. In the design of optimal control, the turbulence

needs to be assumed as zero or the Gaussian white noise to formulate the Riccati equation, which can

be solved to obtain the feedback gain matrix for the control effort. Because of the lack of
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consideration for the load inputs, which causes the loss of control effectiveness, this research explores

the method to inversely estimate the actual load inputs of the structure system.

The input estimation is a type of active analysis of the structure system and is widely adopted to

cope with the system with inputs that can not be measured directly. The input estimation of the

structure system is the basis of the invention of load transducer. Generally speaking, the load

estimation is based on that the active reaction of the structure system and its characteristics are

known under an actual operating condition. The method does not need to directly use the load

transducer to measure the active loads, but the result shows that the structure system has actually

become a load sensor (Stevens 1987). There are various researches with regard to the input estimation

of the structure system in recent years. For example, Bartlett and Flannelly (1979) and Giansante, et

al. (1982) adopted the pseudo-inverse technique to estimate the vibration force on the hub structure of

helicopters, by which the fatigue strength and the reliability of the helicopter structure can be assessed.

Hillary and Ewins (1984) utilized the least square technique to estimate the sinusoidal forces acting on

the both sides of the cantilever and used the experiment procedure to examine the estimation result.

Furthermore, they applied the method to the impact load estimation of the airplane turbine blades.

Okubo, et al. (1985) applied the least square method and the inverse technique to the input estimation

of various structure systems. In order to cope with the numerical problem of the inverse convolution

technique, Inoue, et al. (1995) used the least square method, which is based on the wiener filtering

theory, the mean square error, and the singular value decomposition (SVD), to improve the estimation

precision and to obtain the optimal estimates. Wang and Kreitinger (1994) used the weighted total

acceleration method to detect the vibration force acting on the concentrated-massed nonlinear beam.

Recently, Huang (2001) adopted the conjugate method (CGM) to estimate the force of the one-

dimensional mass-spring-damper structure with the time-varying system parameters. The above

researches used the batch form to process the measurement data. This method is time-consuming and

is not a real-time procedure of the unknown input estimation.

The input estimation method adopted in this paper is combining the Kalman filter without input

term and the adaptive recursive least square estimator to represent a real-time on-line estimation

method. Tuan, et al. (1997) and Tuan and Hou (1998) adopted this method to inversely solve the 1-

D and 2-D heat conduction problems. Liu, et al. (2000), Ma, et al. (2003), Ma and Ho. (2004), and

Deng and Heh (2006) as well used this method to estimate the input force acting on the structure

system. The input estimation method is using the recursive form to process the data. As opposed to

the batch process, using the recursive form is real-time and has higher effectiveness. There is no

need to store all the data to implement the process, and the quantity of memory used can be

reduced when dealing with more complex systems. 

In the present work, the input forces estimation method (Wang 2005) is applied in the nonlinear

heat conduction problems. We first used the adaptive input estimation method to determine the

unknown excitation loads. This research adopts this method to estimate the input wind loads of a

five-layered shearing stress structure. The forms of the inputs include the periodic sinusoidal wave,

the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent,

etc. The availability and precision of this method can be verified by using the numerical simulation

presented in this paper.

2. Mathematical model

This paper is for the input estimation research with respect to the shearing stress structure. The
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structure system model is shown as in Fig. 1, which is the floor-slab structure that will not have the

rotation phenomenon on the horizontal cross-section. Because the deformation caused by the

horizontal wind load acting on the building structure has many similarities to that caused by only

the shearing stress acting on the cantilever, there are several assumptions which make the

deformation of the building structure have the similar characteristics: (1) The Mass of the structure

is concentrated on the floor-slab layers. (2) The rigidity of the beams on the floor-slabs are assumed

infinite as opposed to that of the pillars. (3) The deformation of the structure has no relation to the

axial loads on the pillars.

This model can be constructed by connecting each spring and damper to the lumped mass to form

a structure system with 5 degrees of freedom. By applying the free body diagram approach and the

Newton theorem, the movement equation of the structure system (Chopra 1995) can be shown in

the following equation:

(1)

M is the n× n mass matrix. C is the n× n damping coefficient matrix. K is the n× n stiffness

matrix. , , and Y(t) are the n× 1 acceleration, speed, and displacement vectors,

respectively. F(t) is the n× 1 wind load vector.

The input estimation algorithm is a calculation method using the state space. Therefore, the state

equation and the measurement equation have to be constructed before applying this method. In

order to satisfy this situation, the equality, , is used to transfer the movement

equation to the state space form. The continuous-time state equation and measurement equation of

the structure system can be presented as follows:

(2)

(3)
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Fig. 1 Structure System Model with 5 degrees of freedom
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A and B are the constant matrices composed of the mass, damping coefficient, and stiffness of the

structure system in all the dimensions. X(t) is the state vector. Z(t) is the observation vector. H is the

measurement matrix.

There always exists the noise turbulence in the practical environment. This is the reason that any

of the physical systems contains two portions: One is the deterministic portion, and the other is the

random portion, which is distributed around the deterministic portion. Eqs. (2) and (3) do not take

the noise turbulence into account. In order to construct the statistic model of the system state

characteristics, a noise disturbance term, which can reflect these characteristics of the state, will be

needed to add into these two equations. Up to now, one of the random noise disturbances that can

be completely resolved is the Gaussian white noise, which has been statistically illustrated in full by

using the probability distribution function and the probability density function. Practically, any

function corresponding to the functions mentioned above has the same effect. The characteristic

function of the random variable is one example. Two most important characteristic values are the

mean and the variance, which represent the statistic properties of the random process (Chan, et al.

(1979). Taking the above consideration into account, the continuous-time state equation is to be

sampled using the sampling interval, ∆t, to obtain the discrete-time statistic model of the state
equation (Bogler 1987) shown below:

(4)

were

X(k) is the state vector. Φ is the state transition matrix.  is the input matrix. ∆t is the sampling
interval. w(k) is the processing error vector, which is assumed as the Gaussian white noise. Note

that , and Q=QW× I2n×2n. Q is the discrete-time processing noise covariance

matrix. δkj is the Kronecker delta function. When describing the active characteristics of the

A
0n n×     In n×

M
1–
K −M

1–
C–

=

B
0n n×

M
1–

=

H I2n 2n×[ ]=

X t( ) X
1
t( ) X

2
t( ) … X

2n 1–
t( ) X

2n t( )[ ]T=

F t( ) F1 t( ) F2 t( ) … Fn 1– t( ) Fn t( )[ ]T=

X k 1+( ) ΦX t( ) Γ F k( ) w k( )+[ ]+=

X k( ) X1 k( ) X2 k( ) … X2n 1– k( ) X2n k( )[ ]T=

Φ A∆t( )exp=

Γ A k 1+( )∆t−τ[ ]{ }Bexp τd
 k∆ t

 k 1+( )∆t

∫=

F k( ) F1 k( ) F2 k( ) … Fn 1– k( ) Fn k( )[ ]T=

w k( ) w1 k( ) w2 k( ) … wn 1– k( ) wn k( )[ ]T=

Γ

E w k( )wT
k( ){ } Qδkj=



Inverse active wind load inputs estimation of the multilayer shearing stress structure 23

structure system, the additional term, w(k), can be used to present the uncertainty in a numerical

manner. The uncertainty could be the random disturbance, the uncertain parameters, or the error due

to the over-simplified numerical model.

Generally speaking, the system state can be determined by measuring the output of the system.

The measurement usually has a certain relationship with the output of the system. However, there is

also the noise issue with the measurement. As a result, the discrete-time statistic model of the

measurement vector can be presented below:

(5)

where

Z(k) is the observation vector. v(k) is the measurement noise, which is assumed as the Gaussian white

noise. Note that , and . R is the discrete-time measurement

noise covariance matrix. H is the measurement matrix.

3. Adaptive input estimation method

The adaptive input estimation method can inversely estimate the wind load inputs by applying the

active reaction of the structure system. This method is composed of the Kalman filter without the

input term and the adaptive weighted recursive least square estimator (RLSE). The Kalman filter

can produce the residual innovation sequence, which contains the bias or systematic error caused by

the unknown time-varying inputs, and the variance or random error caused by the measurement

error. The further use of the least square theory can detect the system bias due to the unknown time-

varying inputs. Therefore, the estimator utilizes the innovation sequence to estimate the loads over

time by adopting the adaptive weighted recursive least square method. The Kalman filter without

input term is shown as follows:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

In the above equations, the superscript, “-”, represents the estimation value.  is the

state estimate. P(k/k−1) is the state estimation error covariance.  is the residual sequence. S(k)

is the innovation covariance. Ka(k) is the Kalman gain matrix.  is the state filtering. P(k/k)

is the state filtering error covariance. Before implementing the filtering procedure, the state

transition matrix Φ, the measurement matrix H, the processing noise covariance Q, and the
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measurement noise covariance R need to be determined. When further applying the initial values, X0

and P0, the output of the filter can be obtained in real-time as the observation vector is continuously

inputted. The output of the filter contains the state estimate, , and its relative estimation

error covariance, . The adaptive weighted recursive least square algorithm of the input

estimation method is shown as follows:

(13)

(14)

(15)

(16)

(17)

In the above equation,  is the innovation matrix, and Kb(k) is the correction gain. Bs(k) and

Ms(k) are the sensitivity matrices. γ is the weighting factor. Pb(k) is the load estimation error

covariance.  is the vector of the load estimate. The input estimation method is an on-line inverse

estimation algorithm. This method is composed of the Kalman filter without the input term and the

adaptive weighted recursive least square estimator (RLSE). The Kalman filter can produce the residual

innovation sequence, which contains the bias or systematic error caused by the unknown time-varying

inputs, and the variance or random error caused by the measurement error. According to the error

covariance matrix P(k/k) in Eq. (12), in the meantime when the Kalman filter produces the state

estimates, the error analysis is on going to determine if the error is a symmetric matrix greater or equal

to zero, so that the precision of the estimation can be obtained. The measurement noise covariance R

gets larger as the Kalman gain Ka(k) gets smaller to decrease the influence of measurement error

according to Eq. (9) and Eq. (10). Eq. (7) and Eq. (10) further show that the decrease of modeling

error variance Q will reduce the error covariance p(k/k), which will therefore reduce Ka(k). This means

that the new measurements produce lower influence of correction on state estimation. The further use

of the least square theory can detect the system bias due to the unknown time-varying inputs. The

estimated inputs can be converged rapidly to the exact value as the correction gain Kb(k) gets smaller

with the increased simulation time. Under the time-varying situation, this paper proposes an adaptive

weighting function to prevent Kb(k) from droping to zero and to matain the renewal capability of

estimator. Therefore, the estimator utilizes the innovation sequence to estimate the loads over time by

adopting the adaptive weighted recursive least square method.

The estimator is to apply the innovation quantity, , produced by the Kalman filter to the

adaptive weighted recursive least square algorithm to estimate the load vector, . Kb(k), S(k),

and  are produced by the Kalman filter without the input term. The weighting factor used in

this research is an adaptive weighted function, and the related formulation is in the Tuan and Hou

(1998) by Tuan in 1998 with regard to the adaptive robust weighting factor, γ, which is as the

following equation:

(18)
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By substitute Eq. (18) for the value of γ in Eq. (15) and (16), an adaptive weighted recursive least

square estimator can be constructed.

The procedure for the input load estimation is as follows:

Step 1: Establish the system process model, Eq. (4), and also determine the simulated experimental 

displacement and velocity measurement, Z(k), in Eq. (5), by adding an error term, v(k).

Step 2: Set up the initial condition of the adaptive input estimator.

Step 3: Solve the system process model, Eq. (4), and the measurement model, Eq. (5), to determine 

the displacement of the measurement sensors.

Step 4: Use known values of P(k−1/k−1), Φ, and Q to calculate P(k/k−1) in Eq. (7).
Step 5: Use known value of P(k/k−1) to calculate Ka(k) in Eq. (10).

Step 6: Use known values of Ka(k) and H to calculate P(k/k) in Eq. (12).

Step 7: Use the recursive least square algorithm with an adaptive weighting factor (i.e., Eq. (13) to 

Eq. (17)) to estimate the unknown value of the input load, .

Step 8: Repeat the above procedures (Steps 3-7) until the final time step.

4. Results and discussion

This research investigates the applications of the adaptive input estimation method in estimating

the wind load inputs of the 5-layered shearing stress structure system. Corresponding with Fig. 1,

the properties of the shearing stress structure of the building with 5 floors are as follows. The mass

of each floor, m = 345.6 kg. The stiffness, k, against the summation of the horizontal shear stresses

on all the pillars in each floor is 34040 N/m. The damping coefficient of each floor, c = 2937 N s/m.

The active reaction of the multilayer shearing stress structure system under various wind load inputs

has to be determined first. The forms of inputs include the periodic sinusoidal wave, the decaying

exponent, the random combination of the sinusoidal wave and the decaying exponent, etc.

Furthermore, by applying the active reaction in the input estimation algorithm, the inverse load

estimation of the structure system can be simulated numerically. This method is composed of the

Kalman filter without the input term and an adaptive weighted recursive least square estimator. The

initial conditions and other parameters of the simulation are shown as follows: p(0/0) = diag[104].

F(0)=0. pb(0)=10
6. M(0) is set to be a zero matrix. The sampling interval, ∆t=0.001 secs. The

weighting factor, γ, is an adaptive weighted function. In order to verify the reliability of the model

proposed in this research, the following algorithm is used to compute the percent RMS difference

(PRD) (Genaro and Rade (1998) of the input estimate.

(19)

n is the total number of the time steps. Fex(ti) and Fes(ti) are the actual value and the estimate at

time, ti, respectively.

Example 1: Periodic sinusoidal wind loads.

The periodic sinusoidal wind load with different amplitude is applied on each layer of the

shearing stress structure. These sinusoidal waves are shown as follows:
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F1(t) = 20× sin((pi/3)× (t−10)) / 5(N)
F2(t) = 20× sin((pi/3)× (t−10)) / 4(N)
F3(t) = 20× sin((pi/3)× (t−10)) / 3(N)
F4(t) = 20× sin((pi/3)× (t−10)) / 2(N)
F5(t) = 20× sin((pi/3)× (t−10)) (N)

The active reaction of the structure system is determined by using the numerical approach when

considering the influence due to the processing noise and the measurement noise of the system. The

processing noise covariance, Q=Q× I2n×2n. Set Q=10-7. The measurement noise covariance,

R=Rw× I2n×2n. Set R=σ
2=10-14. By applying the active reaction which contains noise to the input

estimation algorithm, the estimation result of the periodic load inputs can be obtained. According to

Table 1, when the estimation parameters are fixed (Q=10-7, and σ=10-7), the transient performance

of the estimator will be faster if the smaller value of the weighting factor, γ , is chosen. The tracking

Table 1 The values of error (%) when using different values of the weighting factor. (Set Q=10-7, and σ=10-7)

γ=0.95 γ=0.55 γ=0.15 γ=adaptive

F1(t) 31.76 13.65 12.58 12.41 

F2(t) 32.58 14.50 13.42 13.24 

F3(t) 32.74 14.65 13.57 13.39 

F4(t) 32.25 14.14 13.06 12.88 

F5(t) 31.28 13.14 12.06 11.88 

Fig. 2 Estimation result of the layers 1, 3, and 5 under the periodic sinusoidal load inputs. (Q=10-7, and
σ=10-7)
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capability is better, and the error of the estimation result is smaller. On the other hand, choosing a

larger value of the weighting factor will obtain a slower transient performance. That is to say, the

tracking capability is weaker, and the error of the estimation result is larger. If an adaptive weighting

factor is adopted, the performance of the estimator will be much better than using constant values.

This research adopted the adaptive weighting factor to implement all the simulation models.

Fig. 2 shows the comparison between the actual values of the inputs on layers 1, 3, and 5 with the

estimates. The estimation performance is fine so that the estimates can converge toward the actual

values rapidly. The reason is that larger values of the estimation error covariance, p(0/0) and pb(0), are

adopted to enlarge the initial error, and the estimator will neglect partial effects of the initial estimates.

According to the result of the estimation, the input estimation method proposed in this research is

capable of dealing with the multi-input and multi-output (MIMO) condition of the structure system.

Fig. 3 shows the comparison between the actual values of the inputs with the estimates on layers 1,

3, and 5 over time. By adjusting the estimation parameters, Q and σ, so that Q=10-7 and σ=10-8,

and adopting the adaptive weighting factor, γ , to implement the simulation, the estimator can rapidly

enhance the tracking capability to maintain higher estimation precision when the measurement noise

covariance, R, is smaller. The error is apparently smaller in comparison with the result in Fig. 2.

Example 2: The combination of the sinusoidal and the decaying exponent wind loads.

The combination of the periodic sinusoidal load with different amplitude and the decaying exponent

wind load is applied on each layer of the shearing stress structure. These loads are shown as follows:

F1(t) = 20× exp(−t/2)× sin(0.2× t) (N)
F2(t) = 20× exp(−t/2)× sin(0.2× t) (N)

Fig. 3 Estimation result of the layers 1, 3, and 5 under the periodic sinusoidal load inputs. (Q=10-7, and
σ=10-8)
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F3(t) = 20× exp(−t/2)× sin(0.2× t) (N)
F4(t) = 20× exp(−t/2)× sin(0.2× t) (N)
F5(t) = 20× exp(−t/2)× sin(0.2× t) (N)

The active reaction of the structure system is determined by using the numerical approach when

considering the influence due to the processing noise and the measurement noise of the system. The

processing noise covariance, Q=Qw× I2n× 2n. Set Q=10-2. The measurement noise covariance,

R=Rw× I2n× 2n. Set R=σ
2=10-10. By applying the active reaction which contains noise to the input

estimation algorithm, the estimation result of the periodic load inputs combined with the decaying

exponent load inputs can be obtained as in Fig. 4. Fig. 4 shows the comparison between the actual

values of the inputs with the estimates on layers 1, 3, and 5 over time. In the course of verifying the

capability of the input estimation method numerically, this research takes the influence due to the

system modeling noise and the measurement noise into account, and applies suitable random

variables to the mathematical model of the structure system to simulate the practical situation. The

availability of the overall estimation performance has been verified.

Fig. 5 shows the comparison between the actual values of the inputs on layers 1, 3, and 5 with the

estimates. Note that Q=10-2, and R=σ2=10-14. When the measurement noise covariance, R, is

smaller, the estimator can rapidly enhance the tracking capability to maintain higher estimation

performance. The result of F1 simulation is close to the real value. However, with regard to the

wind force inputs of other floors, F1 is smaller and the PRD is larger. The error is apparently

Fig. 4 Estimation result of layers 1, 3, and 5 under the combined load inputs of the sinusoidal and decaying
exponent loads. (Q=10-2, and σ=10-5)
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smaller in comparison with that in Fig. 4.

Example 3: Decaying exponent wind loads

This simulation is adopting the decaying exponent load with different value of amplitude for each

layer. The numerical model of the wind load inputs are shown as follows:

F1(t) =400× exp(−t) (N)
F2(t) =450× exp(−t) (N)
F3(t) =500× exp(−t) (N)
F4(t) =550× exp(−t) (N)
F5(t) =600× exp(−t) (N)

The active reaction of the structure system is determined by using the numerical approach when

considering the influence due to the processing noise and the measurement noise of the system. The

processing noise covariance, Q=Qw×I2n×2n. Set Q=10-3. The measurement noise covariance, R=

Rw×I2n×2n. Set R=σ
2=10-10. By applying the active reaction which contains noise to the input

estimation algorithm, the estimation result of the decaying exponent load inputs can be determined as in

Fig. 6. Fig. 6 shows the estimation result on layers 1, 3, and 5. Under the initial condition, the estimate

can converge toward the actual value rapidly, which is similar to the phenomenon in Fig. 5. The errors

are larger at the turning point when the load inputs reach the maximum, which causes the tracking

capability of the estimator to degrade. The values of the errors are 25.73%, 28.61%, and 26.29%. The

overall estimation performance is just fine.

Fig. 5 Estimation result of layers 1, 3, and 5 under the combined load inputs of the sinusoidal and decaying
exponent loads. (Q=10-2, and σ=10-7)
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By adjusting the estimation parameters, Q and σ, so that Q=10-3, and R=σ2=10-14, the com-

parison between the actual load inputs and the estimates is shown in Fig. 7. According to the figure,

Fig. 6 Estimation result of layers 1, 3, and 5 under the decaying exponent load inputs. (Q=10-3, and σ=10-5)

Fig. 7 Estimation result of layers 1, 3, and 5 under the decaying exponent load inputs. (Q=10-3, and σ=10-7)
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if the processing noise covariance is fixed, a better estimation result will be obtained when the

measurements are more precise. The errors are reduced down to 10.71%, 10.70%, and 10.71%. The

overall estimation performance is good.

Example 4: Random wind loads.

In the practical processing environment, the loads, such as water, wind, and the earthquake loads,

to the structure system are mostly irregular or random. Therefore, to explore the random load

estimation is absolutely necessary. The mathematical formula of the random wind load inputs

applied to all the layers of the shearing stress structure is shown below:

Fi(t)= random (N),  i=1~5

The active reaction of the structure system is determined by using the numerical approach when

considering the influence due to the processing noise and the measurement noise of the system. The

related estimation parameters of the simulation are as follows: All the initial conditions are set to be

zero. The sampling interval, ∆t=0.01sec. The processing noise covariance, Q=Qw×I2n×2n. Set

Q=10-3. The measurement noise covariance, R=Rw×I2n×2n. Set R=10
-14. By applying the active

reaction which contains noise to the input estimation algorithm, the estimation result of the random

load inputs can be determined as in Fig. 8. The figure shows the comparison between the actual

load values and the estimates on layers 2 and 4. The overall estimation performance is just fine. In

the course of estimating the random load inputs, the tracking capability of the estimator is getting

weak due to the severe variation of the load inputs, and the time delay is caused.

In order to effectively compute the errors of the load estimates, the shifting process of the time

delay needs to be implemented. The cross correlation function is a kind of mechanism (Herlufsen

Fig. 8 Estimation results on layers 2 and 4 under the random load inputs. (Q=10-3, and σ=10-7)
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1984) that measures the similarity between two signals with the time delay. The cross correlation

function between the actual load values and the estimates shows that these two signals have 2 time

steps in between. Therefore, a better estimation result can be obtained by implementing the time

shifting process for 2 time steps. Fig. 9 shows the comparison between the actual load inputs and

the estimates on layers 3 and 5. The estimation performance is just fine. Although the adaptive

input estimation used in this paper is relatively less capable of dealing with the estimation of the

random load inputs in the 1-D structure system with multiple degrees of freedom, the overall

estimation capability of the estimation is sufficient. The estimation capability in dealing with the

random load inputs will provide the applications in the practical processing environments.

Generally speaking, in the course of numerically verifying the capability of the input estimation

method proposed in this research, the larger noise will certainly cause the larger vibration in the

estimation of the load inputs. This situation has been realized by adding random variables in the

mathematical model of the structure system to simulate the practical conditions. According to Fig.

2, 4, and 6, if the parameter, R, is larger, the estimation performance will be less effective. On the

other hand, if R is smaller, the estimation performance will be better according to Fig. 3, 5, and 7.

5. Conclusions

This paper proposes the Kalman filter without the input term combined with the adaptive

weighted recursive least square algorithm to develop the input estimation method, which can

estimate the active loads of the structure system over time by applying the active reaction of the

system to the algorithm. This method is effective in the use of estimating the transient or time-

varying wind load inputs. Since this method adopts the recursive mode, which reduces the

computational time and the memory storage as opposed to the batch mode, the on-line real-time

Fig. 9 Estimation results on layers 3 and 5 under the random load inputs. (Q=10-4, and σ=10-7)
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estimation process can be implemented. According to the results of the simulation and the

computation, the weighting factor, γ , is used in the input estimation method to offer a compromise

between the requirement of tracking capability and the sensitivity tolerance of the noise input to

maintain higher estimation effectiveness. Therefore, the suitable values of the measurement noise

covariance and the adaptive weighting factor, γ , can be chosen to cope with the uncertain restricted

conditions, such as the precision of actual measuring equipments, and the simplified or imprecise

mathematical model, and to enhance the estimation performance. The future research can be

focused on the 2-D or 3-D structure system to extend the applications of this combined method.
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