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A study of wind effect on damping and frequency of
a long span cable-stayed bridge from rational
function approximation of self-excited forces
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Abstract. This paper presents an aeroelastic analysis procedure to highlight the influence of wind velocity
on the structural damping and frequency of a long span cable-stayed bridge. Frequency dependent self-
excited forces in terms of flutter derivatives are expressed as continuous functions using rational function
approximation technique. The aeroelastically modified structural equation of motion is expressed in terms of
frequency independent modal state-space parameters. The modal logarithmic dampings and frequencies
corresponding to a particular wind speed are then determined from the eigen solution of the state matrix. 
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1. Introduction

Long span cable-supported bridges are susceptible to wind induced oscillations and therefore, the

aerodynamic performance of such bridges has been a major concern to designers. The aerodynamic

behaviour of complex three dimensional cable-stayed bridges is vexed. These bridges are inherently

flexible and as a consequence they have low values of natural frequency and damping. The natural

frequencies are often contiguous and, the ratio of the fundamental torsional to the vertical mode

frequency is low which increases the prospect of coupling of modes resulting in flutter under strong

winds (Jain, et al. 1996a, b, Katsuchi, et al. 1998, Chen, et al. 2000b). Flutter is a phenomenon due to

self-excited forces in which aerodynamic forces, elasticity and inertia of the bridge motion interact with

each other. The self-excited forces depend on the flutter derivatives which are determined

experimentally. Some investigators, notably Scanlan, et al. (1974), Scanlan (1993), Chen and Kareem
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(2002) and Caracoglia and Jones (2003) have highlighted the use of indicial or impulse response

functions to express the aerodynamic forces in the explicit time domain. However, the techniques to

determine these functions from the wind tunnel tests are not well established. Also, the experimental set

up required is very complicated. The values of indicial functions obtained are even more questionable

for bluff bridge deck sections (Caracoglia and Jones 2003). On the contrary, the techniques to determine

the flutter derivatives are well established, and as a convention the self-excited forces are expressed in

terms of the flutter derivatives which are frequency dependent. Thus, the self-excited forces incorporate

the frequency dependent characteristics of unsteady aerodynamic forces. The flutter derivatives are

determined experimentally through a system identification technique in frequency or time domain, and

are available corresponding to discrete values of reduced velocity. The experiment is conducted on an

elastically supported and geometrically scaled representative section model of the bridge deck oscillating

under a two dimensional wind flow in a wind tunnel. The oscillations imparted to the section model in

the lift, drag and pitching directions may be free, forced or wind induced (Hjorth-Hansen 1992, Mishra,

et al. 2006). The self-excited forces modify the stiffness (hence frequency), damping and mode shape

characteristics of the bridge under increasing wind.

The flow around the bridge deck section in particular is quite unsteady. Therefore, proper

modeling of the aerodynamic forces incorporating all the unsteady aerodynamic characteristics is

essential for an accurate evaluation of the bridge response. The frequency dependent unsteady

aerodynamic forces have traditionally been utilized in the frequency domain aeroelastic analysis of

long span cable-stayed bridges (Jain, et al. 1996a, b, Katsuchi, et al. 1998, Scanlan 1978, Lin and

Yang 1983, Scanlan and Jones 1990, Jones and Scanlan 1991, Tanaka, et al. 1992, Jones and

Scanlan 2001). However, the frequency domain analysis is suited only to linear aerodynamics. On

the contrary, the time domain analysis approach can make it possible to incorporate all the structural

and aerodynamic nonlinearities of the system. 

In this paper, an example long span cable-stayed bridge has been taken for the study of the

influence of aeroelastic forces due to increasing wind on frequency and damping of the system. A

nonlinear static analysis of the bridge was carried out by considering the nonlinear stiffness

formulation of the bridge structure. This analysis is not presented here for brevity and, can be found

in Mishra (2005). The deformed state stiffness matrix is taken for the subsequent dynamic and

aeroelastic analyses. A nonlinear aeroelastic force model with time domain approach (Boonyapinyo,

et al. 1999, Chen, et al. 2000a, b, Chen and Kareem 2002) is used to study the influence of

increasing wind velocities on the frequency and damping characteristics of the bridge. Since flutter

derivatives are known only at discrete values of the reduced frequencies, they are expressed as

appropriate continuous functions of the reduced frequency. The approach uses rational function

approximation of experimentally determined flutter derivatives. This enables the unsteady self-

excited forces to be expressed in the Laplace frequency domain. The modal equation of motion,

when transformed back to time domain, yields frequency independent state-space form of equation.

The unsymmetric state matrix thus obtained yields complex eigenvalues from which the frequency

and logarithmic damping values are determined. The method avoids iterative calculation and is

computationally efficient. In the sections that follow, the methodology outlined is used to present

the results of the investigation.

2. Aeroelastic force model

The aeroelastic force vector fse which a bridge deck is subjected to in an air stream of velocity U
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and density ρ , is given as (Jain, et al. 1996a, b, Sarkar, et al. 1994, Singh, et al. 1995):

(1)

where Lse, Dse and Mse are aeroelastic (self-excited) lift, drag and pitching moment, respectively,

K = Bω/U is the reduced frequency, ω= circular frequency of oscillation;  and 
(i = 1, 2,…., 6) are the flutter derivatives determined experimentally from wind tunnel tests on an

aeroelastic model of the bridge deck.

2.1. Unsteady aerodynamic modeling 

Since the aeroelastic forces depend on reduced frequency, they are transformed into Laplace

domain to facilitate the application of time domain approach. For this purpose, the aeroelastic forces

are approximated as a common rational function. 

The main difficulty in modeling an aeroelastic system for design lies in the representation of the

unsteady aerodynamic loads. The unsteady aerodynamic forces, causing oscillatory motions of a

section model in an incompressible flow, were first derived by Theodorsen (1935). Later, Jones

(1941) presented the rational fraction approximation of the so called generalised Theodorsen

Function. An approach, known as classical approach to flutter analysis which was first put forth by

Bisplinghoff, et al. (1955), was based on aerodynamic influence coefficient matrices. These matrices

were computed for simple harmonic motion at discrete values of reduced frequencies. In the

evaluation of unsteady aerodynamic forces due to arbitrary motions, Edwards (1979) opened the

way for calculating the aerodynamic influence coefficients in the Laplace domain (s-plane).

The self-excited forces due to unsteady wind force fse can be represented by a ratio of polynomials

in Laplace variable s. Generally, the wind forces are determined only for pure oscillatory motion of

a structure, such as a lifting surface. For a casual, stable and linear system, analytic fse(s) can be

directly deduced from fse(iω) which is obtained from an oscillatory theory. This is realized by

approximating each term of the wind force matrix fse(iω) by a rational polynomial in (iω) and, then

solving for the coefficients of the polynomial preferably by nonlinear least-squares fit with

measured oscillatory wind forces at a given frequency. The transfer function matrix fse(s) is then

obtained by the replacement s= iω. In practice, it is more convenient to use the nondimensional

reduced frequency K=ωB/U because, the oscillatory dynamic data are generally available corresponding

to the reduced frequencies. Then, the Laplace variable also becomes nondimensionalised such that
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r = sB/U = iK; i = . There have been many approaches to this process. The basic method applied

here is that of Roger (1977) who formulated a rational function approximation for three dimensional

subsonic aerodynamics by using a series of poles to represent the aerodynamic lags attributable to

the wake. The poles are chosen to be the same for all elements of the transfer matrix. The success

of the fit is dependent on the choice of the poles which in turn is based on experience. The

parameters of the function are determined by the least-squares technique. Another approach similar

in many ways to the rational function approximation of Roger (1977) is that of Dowell (1980) who

used a series of decaying exponentials in the time domain which in Laplace domain is represented

as a series of simple poles. Peterson and Crawley (1988) applied Newton-Raphson gradient

optimization process to solve for the lag parameters of the Dowell’s exponential series in time

domain. They included the numerator and denominator coefficients of the transfer function as the

free parameters for optimization. Karpel (1982) developed a new minimum-state method for

efficient rational function approximation of unsteady aerodynamic forces. He demonstrated it to

result in a considerable lower order model relative to other methods of a comparable accuracy. But,

because of the iterative feature of the method, it requires complicated computer routines and

consumes more processor time. Tiffany and Adams (1987) used a nongradient nonlinear

optimization process to select the values of the lag parameters in the least-squares formulation. The

process resulted in a loss of accuracy and an erratic behaviour of the objective function with many

number of lag states.

2.2. Rational function approximation of flutter derivatives

The rational function approximation presented by Roger (1977), and commonly used by Bucher

and Lin (1988), Boonyapinyo, et al. (1999), Chen, et al. (2000a, b), Chen and Kareem (2002), is

used in the present study. The form of rational function is given by:

(2)

where fse = unsteady aerodynamic matrix; = frequency independent coefficient

matrices to be obtained from the known values of flutter derivatives by curve fitting and applying

nonlinear least-squares method, and l = 1, 2,…, m1. The value of m1 may be taken from 2 to 6. It

also determines the number of lag terms and influences the convergence of the function. r is a

nondimensional Laplace variable. The first term of the right hand side expression represents the

noncirculatory static-aerodynamics. The second term represents the aerodynamic damping whereas,

the third term represents the aerodynamic mass. The rational term accounts well for the nonlinearity

and unsteadiness in the flow, and represents a lag from the velocity of oscillation. The poles which

denote lag terms in the time domain are common for all the elements of fse(s) thereby the number of

supplementary aerodynamic states (explained in Subsection 4.3) are considerably reduced. The

value of the lag parameter b approximates a time delay in the motion of the model. The accuracy of

the approximation crucially depends on b, the values of which must be positive for the stability of

the transfer function. When the inverse Laplace transform is applied on fse(s), the approximate

aerodynamic unit impulse response matrix is obtained. Upon taking the convolution integral of the

unit impulse response with the transient structural motion z(t), the approximate transient air force

becomes available in the time domain.
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Eq. (2) in terms of non-dimensional Laplace domain r is expressed as:

(3)

The rational function approximation of the self-excited forces in Laplace domain r is achieved by

expressing the second matrix on the right hand side of Eq. (3) as:

(4)

On equating the imaginary and real terms, Eq. (4) breaks into the following forms: 

(5a)

(5b) 

Eqs. (5) are equivalent to the expressions given in Eqs. (16) and (17) of Bucher and Lin (1988), and

Eqs. (47) and (48) of Scanlan, et al. (1974). Similar expressions can be written for all the other

flutter derivatives.
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* (i=1, …, m1 +3) of Eqs. (5) have been determined by the nonlinear least-

squares fit using Levenberg-Marquardt method (Marquardt 1963). The method is well elaborated in

many references on regression or data reduction techniques, such as in Bevington (1969, Chap. 11)
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its both ends.

As it is usually done in the scientific literature, and without loosing much accuracy, the

aerodynamic forces acting only on the bridge deck have been considered for flutter analysis of the

bridge deck and, aerodynamic forces on the pylons and cables have been ignored in this analysis. 

3.1. Member aeroelastic matrices

The vector of lumped self-excited forces, after incorporating Eq. (4), is given as (Chen, et al.

2000a, b, Boonyapinyo, et al. 1999):

 (6)

where the matrices  and , (l = 1, …, m1) are 3×3 coefficient matrices obtained for

each element of the deck. The elements of these matrices are as follows:

      

(7)

The deck members of the cable-stayed bridge were discretised into space frame elements each

having 12 degrees of freedom. The elements of the matrices  and , (l = 1, …, m1)

obtained from Eq. (7), constitute 12×12 matrices  and  for each structural element.

The nonzero elements of a typical coefficient matrix,  (12×12), ( j = 1, …, m1 + 3) for an element,
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a1
e  a2

e  a3
e, , al 3+

e

aj
e

aj
11

* L

2
---

aj
12

* L

2
---

aj
13

* BL

2
-------



A study of wind effect on damping and frequency of a long span cable-stayed bridge... 221

aj(3,2) = aj (9,8) = (8d)

aj(3,3) = aj (9,9) = (8e)

aj(3,4) = aj (9,10) = (8f)

aj(4,2) = aj (10,8) = (8g)

aj(4,3) = aj (10,9) = (8h)

aj(4,4) = aj (10,10) = (8i)

The set of matrices (j = 1, …, m1 + 3) form together the coefficients of rational function appro-

ximation of the self-excited force vector for each element of the deck. 

3.2. Global self-excited force vector

Having obtained the coefficient matrices, , (j = 1, …, m1 + 3) for each element of the deck, the

assembly of the matrices is carried out to obtain the global matrices aj(n1×n1), where n1 = degrees of

freedom of the structure. The global self-excited force vector  in the Laplace domain is obtained

as:

 (9)

where z(s) = displacement vector (n1×1) in the Laplace domain. 

4. Modal state-space equation

4.1. Modal equation of motion

The governing equation of motion, for n1 degrees of freedom system having mass, damping and

stiffness matrices m, c and k respectively, and, the nodal physical response vector z(t), is:
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The response, z is transformed in terms of spatial, Φ (x, y, z) and temporal components, q(t) as:

(11)

where n=number of modes selected (n≤n1). Inserting Eq. (11) into Eq. (10) and premultiplying it by
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(12)

where the upright bold M =Φ
TmΦ= modal mass matrix; C =Φ

TcΦ= modal damping matrix

= 2ζjωjMj; ζj, ωj and Mj = j th mode damping ratio, frequency and mass respectively; K =Φ
TkΦ=

modal stiffness matrix =ωj
2Mj; Fse

=Φ
Tfse= modal self-excited force vector.

4.2. Modal equation of motion in the Laplace domain

Eq. (12) is written in the Laplace domain as:

(13)

The Laplace-transformed self-excited force vector,  is already available in Eq. (9). Eq. (13), in

conjunction with Eq. (9) and with substitution z(x, y, z, s) =Φ (x, y, z) q(s), is given as:

(14)

Now, following substitutions are made: r = sB/U and Φ TajΦ= Aj; where Aj (j = 1, …, m1 + 3) are

termed as modal aeroelastic matrices. Then, bringing the right hand side terms of Eq. (14) to the left 

and assigning new notations as:  where

 and  are called aeroelastically modified modal mass, modal damping and modal stiffness

matrices, respectively. The final form of modal equations of motion in the Laplace domain is

obtained as:

(15)

4.3. Modal state-space form of equation

The state–space model, for describing the response of a bridge, has several significant

mathematical advantages. The recasting of system equations in the state-space form enables the use

of tools based on linear system theory for response analysis. In addition, the structural and

aerodynamic coupling effects can be automatically included in the computation. To recast the

equation of motion in state-space form, the rational terms in Eq. (15) need to be modeled as

aerodynamic state coordinates. Thus, introducing new supplementary coordinates as: 
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where qse l (l=1, …, m1)=new supplementary aerodynamic state vectors. These vectors represent the

unsteady aerodynamic states. The inverse Laplace transform of Eq. (17) can be written as:

       l = 1, …, m1 (18)

Now taking the inverse Laplace transform of Eq. (15), we get the modal equation of motion in the

time domain as:

 (19)

In conjunction with Eq. (18), Eq. (19) can be expressed in state-space form as:

(20) 

Eq. (20) can be written symbolically as: 

(21)

Eq. (21) is linear and frequency independent which is used to analyse the structural response.

Matrix A is an aeroelastically modified modal state matrix. It is obvious that the technique of

rational function approximation of self-excited forces can be used for analyzing the system with

frequency dependent parameters in the time domain approach. In bridge aerodynamics, flutter and

buffeting responses can also be analysed in the time domain by the same numerical formulation

(Chen, et al. 2000a). It is evident from Eq. (20) that matrix A is a function of wind speed U, wind

mass density ρ, rational function coefficients a* as well as bridge deck element dimensions B

(width) and L (length). The main advantage of applying this approach is that all eigenvalues

corresponding to the natural modes of the structure at a given wind velocity can be computed

without iteration. 

5. Solution for eigenvalues and damping

At a given wind velocity, the solution of Eq. (21) can be given in the form: 
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where λ is scalar and V is vector. Introducing Eq. (22), Eq. (21) results in
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AV =λV (23)

Eq. (23) is a standard eigenvalue problem. For n structural generalised coordinates (or modes) the

eigenvalues of A are n complex conjugate pairs [λj, λj+1 (j = 1, 3, …, 2n−1)] given as:

(24)

where . However, some structural eigenvalues might be real, as well, which correspond to

overdamped modes. Such a case is excluded from the present investigation. The remaining

eigenvalues 2n + 1, 2n + 2, ..., 2n + nm1 are attributable to the fluid behavior and are generally real

valued (Boonyapinyo, et al. 1999). However, some of them may be complex depending on the

values of the constant bl, (l = 1, ..., m1) in the denominator of the rational term of Eq. (15). It is

noted that due to the introduction of the supplementary unsteady aerodynamic states, Eq. (19)

results into the supplementary solution and, only modes relating to structural motion are useful for

structural response analysis.

By analogy with the properties of a single degree of freedom system, the natural frequency and

modal damping ratio associated with an underdamped mode are defined as:

; (25)

(26)

where j = 1, 3, ....., 2n−1. The above value of ζ contains both the structural plus aerodynamic

damping. Thus the combined structural plus aerodynamic system’s logarithmic decrement δj is given

by:

(27)

6. Application to example bridge 

6.1. Constitution of state matrix A

In this study, a long span cable-stayed bridge of main-span 1020 m with two side-spans each of

375 m has been considered (Fig. 1). The cross-section of the bridge deck which is of steel is shown

in Fig. 2. Each tower 223.6 m high carries 25 pairs of cables both from side-span as well as from

main-span. The spacing of the cable-tower anchorage is 2 m while the spacing of cable-deck

anchorage on the side span is 15 m, and that on main-span is 20 m. The finite element discretisation

and free vibration analysis of the example bridge were performed by a computer programme

‘EIGEN’ written in MATLAB (1996). The system mass (m) and stiffness (k) matrices of the order

1626×1626 obtained originally were condensed to the order 588×588 using the Guyan (1965)

reduction technique. The active degrees of freedom corresponding to h, p and α were selected on

the deck nodes only. Numbers of active nodes selected were 196 (588 dof) out of which 48 nodes

were in each side span and 100 nodes in the central span. Active nodes selected were symmetrical

with respect to the mid-span of the bridge. The first six mode shapes of the cable-stayed bridge

obtained from the free vibration analysis are presented in Fig. 3. 
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The wind tunnel tests were performed in a large size (2.0 m wide×2.1 m high) boundary layer

wind tunnel of the Indian Institute of Technology, Roorkee, India. The full set of eighteen flutter

derivatives were extracted from the tests on the elastically suspended section model of the bridge

deck section in smooth wind. The details of the tests may be found in Mishra (2005) and Mishra, et

al. (2006). The rational function approximated flutter derivatives are given in Fig. 4. It is seen that

the rational function approximates the flutter derivatives well.

In order to constitute the matrices of modal mass M, damping C and stiffness K and, the vector

of modal self-excited force Fse for implementation in Eq. (12), first 100 eigenvalues and

eigenvectors were taken from the free vibration analysis of the bridge system. 100 numbers of

eigenvalues and eigenvectors are fairly a good number as most of the dynamic analyses of cable-

stayed bridges seldom incorporate modes above 30. A constant modal damping ratio ζ= 1.5% of

critical was selected which is the normally adopted value in case of cable-stayed bridges (the value

of for cable-stayed bridges reported in literature lies between 1% and 2%). The rational function

coefficients al
* (l = 1, ..., 7), which are used in the development of the modal aeroelastic matrices Aj

(j = 1, ..., 7), are based on the full set of 18 experimentally obtained flutter derivatives for the bridge

deck under study. The size of the modal state matrix A depends upon the number of free vibration

modes selected. 

The matrices  and  are obtained from the definitions preceding Eq. (15). The values of

bl, (l = 1, ..., m1) for m1 = 4 were taken positive and kept fixed at 0.5, 2.0, 5.0 and 7.0. These arbitrary

values of b do not affect appreciably the aerodynamic forces and process provided they are limited

M  C, K

Fig. 1 Schematic view of long span cable-stayed bridge

Fig. 2 Cross-section of the bridge deck under study
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Fig. 3 First six mode shapes of the cable-stayed bridge

Fig. 4 Flutter derivatives for the bridge deck model
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within the maximum free vibration frequency obtained from model testing (Xie and Xiang 1985,

Boonyapinyo 1999). For the bridge deck under investigation, the maximum free vibration torsional

frequency is 7.00 Hz. The mass density of air, is taken as 1.225 kg/m3. For the first 100 natural

modes selected the modal state matrix A obtained is of order 600×600. 

6.2. Computation of eigenvalues

The MATLAB programme EIGEN was extended to generate the aeroelastically modified modal

state matrix A. The programme uses the ‘eigs’ command in conjunction with ‘si’ command

available in MATLAB for the determination of the complex eigen values. The ‘eigs’ command uses

the ARPACK library programme based on Arnoldi’s (1951) method for solving the eigenproblem.

To check the accuracy of the modes and frequencies, programme EIGEN was applied to compute

Table 1 Natural and wind induced frequencies at different wind velocities for the cable-stayed bridge

Mode no.  Natural frequency Frequency at U = 0 Frequency at U = 10 m/s Frequency at U = 20 m/s

1 0.1572 0.1572 0.1569 0.1643

2 0.1673 0.1673 0.1678 0.1675

3 0.1917 0.1917 0.1923 0.1915

4 0.2799 0.2799 0.2806 0.2788

5 0.2961 0.2961 0.2971 0.2966

6 0.3345 0.3345 0.3351 0.3343

7 0.3376 0.3376 0.3385 0.3386

8 0.3613 0.3613 0.3622 0.3626

9 0.3788 0.3788 0.3797 0.3803

10 0.4045 0.4045 0.4051 0.4052

11 0.4128 0.4128 0.4136 0.4154

12 0.4330 0.4330 0.4339 0.4331

13 0.4376 0.4376 0.4384 0.4337

14 0.4402 0.4402 0.4417 0.4403

15 0.4478 0.4478 0.4486 0.4497

16 0.4576 0.4576 0.4588 0.4581

17 0.4781 0.4781 0.4788 0.4801

18 0.4839 0.4839 0.4847 0.4859

19 0.5048 0.5048 0.5053 0.5061

20 0.5061 0.5061 0.5068 0.5081

21 0.5569 0.5569 0.5577 0.5590

22 0.5581 0.5581 0.5586 0.5595

23 0.5702 0.5702 0.5708 0.5717

24 0.5705 0.5705 0.5710 0.5719

25 0.5892 0.5892 0.5899 0.5913
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their values corresponding to wind velocities of 0, 10 and 20 m/s. The wind induced frequencies

vis-a-vis natural frequencies up to first 25 modes are presented in Table 1. 

It was considered appropriate to obtain frequencies and damping corresponding to the first 30

modes for the example bridge. From this point of view, the first 100 mode frequencies were

computed from the programme but only first 30 modes were retained for presentation. The values

of logarithmic decrement and undamped frequencies were calculated for a range of wind velocities

starting from 0 m/s to 45 m/s at an increment of 5 m/s. From this computation, the range of wind

velocity in which instability would occur was determined. Then, in the identified range the

computation was carried out at a refined increment of U of 0.1 m/s. 

7. Effect of aeroelastic forces on damping of the bridge

For a given mode, the logarithmic decrement is proportional to damping ratio of the mode. It is

observed that for few lower modes up to 6, damping is almost constant at lower wind velocities up

to 10 m/s (Fig. 5a). The curves depict that the prospective coupling modes have highly fluctuating

damping and the curves change their slopes with increasing wind velocities. The change in slopes of

these unstable modes is tremendous about their zero damping values. In general, the values of

damping in the prospective coupling modes tend to decline with increasing wind velocity before

their zero crossing. It is also observed that, by a flutter prone mode negative damping is attained at

the point of frequency coupling. However, all modes except the coupled modes seem to have more

or less same damping, the value of which increases with almost constant rate with increasing wind

velocity. At a given wind velocity (before the onset of flutter), the values of damping go on

decreasing with increasing mode numbers. However, after the onset of flutter (at zero damping), all

the modes begin to lose their damping with varying rates. This aspect of the modes is revealed by

the downward trends of the curves in Fig. 5a. It may be possible that all the modes would attain

negative damping at higher wind velocities.

It is observed that between the two prospective coupling modes, the higher mode’s damping

becomes zero or negative. Further, the lower mode tends to catch the frequency of the higher mode.

In other words, the higher mode extracts energy from the lower mode. This may be true for the few

lower coupling modes in which one of the modes is losing damping.

8. Effect of aeroelastic forces on frequency of the bridge

As is seen from the curves of frequency vs. wind velocity (Fig. 5b), it can be said that the

frequencies may increase or decrease with increase in the wind velocity. A closer look indicates that

the frequencies of the modes, which do not have a proclivity to coupling, do not differ appreciably

from their natural frequencies. The curves show a very minor increase in frequencies with

increasing wind velocities, especially before the flutter speed is attained. This may be attributed to

the stiffening of the stay cables due to structural nonlinear effects as oscillation proceeds under the

drag of wind, since the structural nonlinear effects have already been included in the formation of

the aeroelastically modified modal state matrix A. Thereafter, the frequencies begin to decrease with

increasing wind velocity, especially for the stable and higher modes.

A very interesting situation is shown by modes 1, 2 and 3. The paths of the companion modes are

being interchanged after their coupling. This may be due to the exchange of energies between the

companion modes. However, this fact needs to be verified by more such studies. 
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Fig. 5 Plots of (a) δ-U and (b) f-U curves for the first 30 modes
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It is also observed that modes 1 and 2 unite to the same frequency at about 24 m/s wind velocity,

and at the same wind velocity the damping of mode 1 also becomes negative. At this point of wind

speed, flutter is bound to take place, since both the causes of instability exist.

9. Concluding remarks

This paper presents an application of the theory of modal state-space time domain stability

analysis through rational function approximation of unsteady self-excited forces, and highlights the

influence of wind on the structural damping and frequency of a long span cable-stayed bridge.

Conclusions of this study which are revealed by this theory (though should not be generalised) are

summarized below.

It is difficult to generalize a definite trend of frequency with wind. However, for this example, a

closer look suggests that the frequencies of the modes do not differ appreciably from their natural

frequencies at least for modes not showing tendency to coalesce in the flutter mode. For the stable

and higher modes, especially before the critical flutter speed, a very minor increase in frequencies

with wind speeds is observed. Thereafter, the frequencies begin to decrease with wind velocity. For

the prospective coupling modes, the frequencies of these modes unite together giving a case of

coupled flutter. In this process, lower mode strides to catch the frequency of higher modes.

The values of damping for a few lower modes are almost constant within a short range of wind

velocity. In the vicinity of flutter critical wind speeds, these modes have highly fluctuating damping

values. The higher modes have almost same value of damping which goes on increasing steadily

even immediately after the onset of flutter and thereafter begins to crash. It may be possible that all

the modes will attain negative damping at higher wind velocities with varying rates.

The necessary and sufficient condition for onset of flutter can be established at a wind velocity

when, frequency coupling as well as negative damping of at least one of the modes occur.
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