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Abstract. Wind forces on structures are usually schematized by the sum of their mean static part and a nil
mean fluctuation generally treated as a stationary process randomly varying in space and time. The multi-
variate and multi-dimensional nature of such a process requires a considerable quantity of numerical
procedures to carry out the dynamic analysis of the structural response. With the aim of drastically reducing
the above computational burden, this paper introduces a method by means of which the cxtemnal fluctuating
wind forces on slender structures and structural elements are schematized by an equivalent process identically
coherent in space. This process is identified by a power spectral density function, called the Generalized
Equivalent Spectrum, whose expression is given in closed form.
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1. Introduction

Wind action is usually schematized by a suitable distribution of forces applied on the struc-
tural surface. These forces are represented by the sum of their mean static part and a nil mean
fluctuation generally treated as a stationary process randomly varying in space and time and
schematized, in the frequency domain, by its cross-power spectral density function (cpsdf).
This function represents the input quantity for analyzing the dynamic response of structures
both in the frequency and in the time domain.

Assuming that the structure is a linear elastic system, its dynamic analysis is carried out by
projecting the external forces over the dominant modes. Since the loading process is charac-
terized by a low frequency harmonic content, only the contribution of the fundamental mode
is usually retained. In other words, working in the frequency domain, the cpsdf of the loading
process is transformed into the power spectral density function (psdf) of the first modal force
which, from then on, collects all the information concerning the wind and its action (Solari
1994). This operation is often the most burdensome step of the whole calculation procedure.

On the other hand, solving the problem in the time domain, independently of the structural
properties, the cpsdf of the external forces is first of all utilized in order to obtain, through a
Monte Carlo procedure, a suitable set of cross-correlated artificial loading time histories (Di
Paola 1998). Whenever they are used in the following steps of the analysis, their generation
represents one of the most burdensome phases of the whole numeric development.
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In order to drastically reduce the above computational effort, the authors of this paper proposed
a method (Piccardo and Solari 1996b), namely the Equivalent Wind Loading Spectrum Technique
(EWLST), aimed at schematizing the fluctuating alongwind, crosswind and torsional gen-
eralized wind forces, on slender structures and structural elements by a fictitious equivalent
process identically coherent in space rather than by the actual cross-correlated process. This
process was identified by a psdf, the Equivalent Wind Loading Spectrum (EWLS), whose
expression was given in closed form. The EWLS gave rise to a first modal force whose psdf is
the same as that obtained applying the cpsdf of the actual wind loading over the structure.

The present paper recalls and generalizes the previous method by taking into account some
new features among which, primarily, the cross-correlation of the longitudinal and vertical tur-
bulence. The generalized psdf of the modified equivalent process is called the Generalized
Equivalent Spectrum (GES) and its application is referred to as the Generalized Equivalent Spectrum
Technique (GEST).

Due to the above prerogatives, the GEST represents the full extension, at present limited to
slender structures and structural elements, of the Equivalent Wind Spectrum Technique
(EWST) (Solari 1988) from the alongwind gust buffeting to the 3-D wind loading of structures.

2. Wind loading model

Consider a slender cylinder of finite length / representing a structure or a structural element
in the atmospheric boundary layer. Let x, y, z be a local Cartesian reference system with ori-
gin at o; z coincides with the axis of the cylinder, x is aligned with the mean wind direction,
o lies on the face of the cylinder with z=0, at height / over the ground.

Let X, Y, Z be a global Cartesian reference system with origin at O; X, Y axes are coplanar
with ground; Y, Z are coplanar with y, z; X is parallel to x; Z is directed upwards and passes
through O; z is rotated ¢ with respect to Z (Fig. 1). Let u be the mean wind velocity aligned
with X, x; u', v', w' are the longitudinal (X, x), lateral (Y) and vertical (Z) nil mean turbulent
fluctuations, treated here as stochastic stationary Gaussian processes, assuming that u '/u <<1,
v'/u<<1, w'/u<<1 (Davenport 1961). Coherently with ESDU (1990b) the u', w' turbulence
components are cross-correlated, while the correlation of the u', v’ and v', w' turbulence components
is considered as negligible.

The wind loading is schematized by a three-dimensional stochastic process, whose o-th
component (0=x, y, 8) is expressed by :
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Y L2, I

Fig. 1 Structural model and reference systems (X, x entering the page)
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Fo(z:t)=Fo(z)+F,(z;1) )

where ¢ is the time; F, , is the mean value of F,; F, is the nil mean fluctuation of F, around
F,; F., F,, F,are the alongwind force, the crosswind force and the torsional moment, respec
tively.

Using the model proposed by Piccardo and Solari (1996a), F,,, F,, are given by

Fu(2)= 5 pu*(2)b A o Yo (2) @

Fi(z;0)=F Fiu(z:1) @
Fou(z51)=Co fur(2) fau(z51) @)
fa(2)= 5 P (2)b A Y (2 )e(2) )

where p is the air density; b is a reference size of the cylinder section; 2, is the sum of four ord-
ered terms with indices e=u, v, w, s; F,,, F,,, F,,., F, are the components of F, associated
with the three turbulence components (i, v, w) and the vortex shedding (s); Ay, Co» Jo» foe are
the ¢, € components (@=x, y, 8; €=u, v, w, s) of the following vectors and matrices :

{Ay={ At X} ={1 1 b}’ (6)

¢, (cj—¢)cos¢p (c/—c )sing Cu

[c]=| ¢ (ci+c/)cosd (co+¢)sing ¢ (7)
Crm C COS @ Cm SIN @ C ms
{J(2)}={2L(2) L(z) L(z) 1}’ 8)
u(z;t) vi(z;t)y w(z;t) s’(z;t)

[f*(z;t)]: u(z;t) vi(z;t) wi(z;t) s(z;t) C)

u*(z;t) v(z;t) w(z;t) sz(z;t)

¢;, ¢, ¢, are the reference drag, lift and torsional moment coefficients of the cylinder;
¢, ¢/, cn are the prime angular derivatives of ¢,, ¢, ¢, C4, Ci, Gy are the reference root
mean square (rms) drag, lift and torsional moment wake coefficients; I,=0,/u, I=0,/u, 1=
o,/ u are the longitudinal, lateral and vertical turbulence intensities, o,, 0,, 0, being the rms
values of u', v, w'; u'=u'/ 6,, v'=v'/ 0,, w =w'/ 0, are the reduced turbulence components;
st is the o~th reduced component (with unit rms value) of the wake excitation, treated as a
stochastic stationary Gaussian process uncorrelated with u , v, w~ (Solari 1985); 7, is a non-
dimensional function of z, called shape function, which makes the model suitable for ap-
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plication both to elements with variable aerodynamic properties and to non-prismatic elements.
Since F, is a linear function of f}, (Egs. (1)-(9)), as is fp., also F, is a stochastic stationary
Gaussian process. By virtue of Eqs. (3) and (4) the cpsdf of FF,, is given by :

SFa(z,z’;n)zzsanFm(z,z’;n) (10)
Stoen (2,231 )=CoCap fag(z) fan(z’)S’;&n (z,2z';n) (11)
St (2.2 n)=Sgn (S5 NS, (2:1)S5 (z5n) Cohg(z,2550)  (12)

where n is the frequency; X, as well as X, is the sum of four ordered terms with indices 7=

U, V, W, S; Spaeq(z,2'5n) is the cpsdf of Foo (z251), Fon(2'58); Sem (2,25 n) Is the

cpsdf of foe (z58), fon(258); Sten (251 )=S0 (2,25 n)is the cpsdf of f, (z;1),

fen (z51); Sgnis the sign function; Coh,, is the coherence function of f7, (z;1t), fan (275 1)-
Using a definition widely applied in the technical literature :

Cohm,(z,z’;n)=exp{—l(m(z,z’;n)—l-z_liz|} (13)

K., being a non-dimensional function of z, z', n such as &, #0 for z=z". It is referred to as
the coherence factor.

3. Generalized equivalent spectrum

Consider the structure or structural element shown in Fig. 1. Assume that it possesses three un-
coupled components of motion, the alongwind and crosswind displacements respectively directed
towards x, y and @ torsional rotation around z. Each o=x, y, 6 component of motion is considered
to be only dependent on the contribution of the related fundamental mode shape ¥, (2).

The psdf of the first a~th modal force is given by :

Sk, (n ):J.IU ,[l[) SFa(z , 25 ) W (2 ) Wau (z')dzdz' (14)
Replacing Eq. (10) into Eq. (14) it follows that :

sFa,(n)=zezncwc(m{j’(,fw(zwm(z)dz} [J;fan(z)wz)dz}fm(n) (15)

where :

jlojlo];af(z) Fan(2)Sten (2,25 1 )W (2) Wi (2) dzdz.
Loy (n)= (16)

[I’Ofw(zwm(z)dz} [J;fm,(z')ww')dz}

is the most burdensome quantity to be determined. Its complexity is due to the multi-dimensional
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nature of the cross-correlated processes fi. (z; 1), fin @'; 1), and to the related dependence of
Sten 0Nz 2"

Starting from this observation the present paper replaces the actual multi-dimensional processes
fioe @50, fin (5 1), with cpsdf Sy, (z z'; n), by a set of equivalent mono-dimensional
processes fieeq (O, fimeq (8 with cpsdf S5, (n). The cpsdf S5, is the reduced o & 77 com-
ponent of the GES and is determined by the condition :

Soemeq (1) =L (1) (17)

In particular, for £=7), Sie., (1) is the psdf of fi.., (1) and represents the reduced o, €
component of the EWLS (Piccardo and Solari 1996b). For e=n=u and o=x, Si.., (n) is the
psdf of f, ., (¢) and represents the reduced x, u component of the EWS (Solari 1988).

Let z,., be a constant value of z in the range 0 to L In the limit case in which w(z)=u(z,), J{2)=

Je@oen) YolD=YolZoun), 1€ fw(z)=fm(zm), and moreover Wyu(2)=Wu(Zom), Suen(@; 1)=S ten Zoens ),
Kk 25 W)=KoerZen » Zaen s 1), it follows that :

S;eneq(n)zs;n(zown;n)%asn(zafn;”) (18)
where :
1 i1 z—-z .
%"‘9”(2“‘“;n):l_iz.[ojoexp{_l(‘asn(zm,zafn;n)l_ll—}dZdZ (19)
Solving this integral in closed form (Vellozzi and Cohen 1968) :
x:m;(ztxsn;”):C{kaf.nl(‘asn(zam’zam;”)} (20)
1 1
C{ot=—-—=(1-e2) for w>0;C{0}=1 21
{@}=——S(1-e) for ©>0;C{0} e

where k,,,,=0.5.
Let us now consider a horizontal structure (¢=7/2). Whatever may be z,, in the range 0 to

L, u@)=t(Zoen)y T2 (Zaen)s Sen (25 W=S vy Caens 1)y KanfZo 2'5 M)=Koer(Zaen Zaems 7). Let us
assume %)=Vl Zoz)- Also in this case S}, may be formally expressed by Eq. (18), provided
that :

Jloji) ¢xp {_ Koen (Zoen s Zaens )lz;lzl} l//m(Z)l//m(Z')dzdz'

[J;wmu)dz}

The closed form integration of Eq. (22) obviously depends on y,,(2). It is possible to verify,
however, that in the class of the usual mode shapes a suitable k., value exists, depending on
W.a(z), making Eq. (20) an almost exact approximation of Eq. (22). Table 1 gives a list of

thsn(zas;n): (22)
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Table 1 Noticeable values of k., for horizontal structures (¢=7/2).

‘//(ll(z) kuss(gzu7 v, w, S) komw
1 0.50 0.50
sin (nz /) 0.39 0.38
sin (nz /2 1) 0.40 0.40
[1- cos(2nz/l)] 0.32 0.31
(/" 0.44 0.44
(z/ D"’ 0.38 0.38
z/h"” 0.33 0.33
/0 0.29 0.29
(z/ Iy’ 0.26 0.26

Zoen =0.57 Zgen = 0.6¢
Az AZ

g,M=u,v,w 14 {
) Wo(z) 0 Wai(2)
Zoen =2 Zoen =084
A? &

0 War(z) | ¢ War(2)

Fig. 2 Estimation ctiterion for z,,

k., k., values fulfilling this property; k., , ka. values are clearly insignificant due to the
non-correlation of u’, v and v/, w'.
In order to generalize this formulation to vertical (¢=0) and inclined structures, an extensive
parametric numerical analysis was carried out taking into account a wide class of u(z), J{2), Wu(2),
San (5 M)y Kuen(z, z'; n) functions. Assuming that 7, is slightly dependent on z (however not
changing its 51gn) and that ¥,,(2)Wu(z')=>0 for any couple of z, z' values in the range 0 to [, the
results showed that, whatever the functions u(2), J.2), Win(2), Seen (Z; 1), Kuey (2, 25 n) may be, a
couple of z,,,, k- values exists, called the reference coordinate and the equrvalent oorrelation fac-
tor, making Eqs. (18) and (20) excellent approximations of Egs. (16) and (17). These values main-

Table 2 Noticeable values of k., for vertical structures (¢=0).

Yan(2) Koee (814, v, W) Koy
1 0.50 0.50
sin (/2 /1) 0.37 0.41
sin (7z/2 1) 0.40 0.38
[1-cos@m/D]/2 0.30 0.33
@/)” 0.40 0.38
/DY’ 0.35 0.33
/D" 0.30 0.28
/D 0.27 0.25

@/ 0.24 0.22
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Fig. 3 Diagram of k,,

ly depend on the modal shape ¥, (z), on the & 7 components of the excitation and on the ¢
angle. Fig. 2 provides an efficient criterion for estimating z,, Table 2 collects a series of
noticeable k,,, values referred to vertical structures; k,,,, values are not relevant since vertical tur-
bulence does not excite vertical structures (Eq. (7).

The joint analysis of Tables 1 and 2 reveals the possibility of expressing &, by the following
unitary formula :

Ko = 0.5 M 0 (23)

M=y (2) | de (24)

ol

where l/A/m =max {| Wu(z)|} for z in the range O to L Fig. 3 demonstrates the reliability of
Egs. (23) and (24) comparing their diagram with the k,,, values in Tables 1 and 2.

Egs. (23) and (24) indicate the strict dependence of k., on the fundamental mode and, espe-
cially, its physical meaning. Increasing the distance of ¥, (z) from the uniform shape reduces
the structural portion where the load is effectively applied. This is equivalent to increasing the
loading coherence as is clearly explained by the analysis of the following two limit cases.

When , (z)=1, the whole structure is uniformly excited by wind that fully develops its
coherence properties over all its length. In this case Eq. (22) is solved by Eq. (20) assigning
keey=0.5 (coherently with Eqgs. (23) and (24) where M,=1).

In the theoretical case in which , (2)=8(z-z), where &( - ) is the Dirac function and z belongs
to the range 0 to I, wind loading practically acts only in the point z=z becoming de facto ident-
ically coherent. The solution of Eq. (22) provides the result y,,=1 corresponding to Eq. (20) for
kom0 (as correctly obtained applying Egs. (23) and (24) when M ,=0).

The GEST has the same conceptual meaning of the EWST (Solari 1988). When applying
the actual wind loading process to the structure, the reduction effect due to the partial corre-
lation is implicit in the coherence function defined by Eq. (13). Assuming the wind loading
process as identically coherent in space, the same reduction effect is transferred into the spec-
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tral density functions through the harmonic filter defined by Eq. (20). As it is shown in the
next section, this filter reduces the high frequency range of the turbulence and the shedding
frequency components of the wake excitation.

4. Numerical examples

To illustrate the application and the effectiveness of the GEST, three slender line-like
prismatic structural models are examined.

All models are immersed in a wind field characterized by a mean velocity profile u(z)=2.5u.In(Z/z,)
with a roughness coefficient zy=0.7 m; the shear velocity u. varies in the range 0 to 3 m/s; Z=
h+zcosg. The turbulence is schematized by the model proposed by Solari and Piccardo (1998).

The reduced psdf of the ', v/, w' turbulence components is expressed by the relationship :

nSe(zin) _ d.nL (z) u(z)
0l(z) [1+1.5d nL . (z ) u(z)]”

nS,.(z;n)= (e=u,v,w) (25)

where S, is the psdf of ¢'; d,=6.868, d,=d,=9.434; 6?=f,u.” is the variance of &', ,=4.96,
B=2.79, B,=1.24; L. is the integral length scale of the & turbulence component in the x direc-
tion, L,(2)=300(z/200)"* (L, , z in m), L(2)=0.25 L,(2), L,(2)=0.10 L,(z).

The reduced cpsdf of u', w' is expressed by :

nSuw (z51) _ Puw(2) \/nS;m(z;n)\/nS;ww(z;n)
0c(2)0:(2)  Aw(Z) N[ L0a[nL, (2 )u(z)]

nS,,.(z;n)= (26)

where S, is the cpsdf of u', w'; p,,,=-1/VB. B =-0.40 is the cross-correlation coefficient of u",
w'; A, @ =[L, @)/L, (2)]""=0.68.

The coherence function of the u’, v', w' turbulence components is given by Eq. (13) as-
suming :

2nC, g1

m (£,n:u,v,w) (27)

Kan(Z,23n)=

where C,,, = \/Cyzsn sin” ¢+ Clzm cos’ ¢ is the exponential decay factor of the & 7 components
of the turbulence along z; Cy,,, C,,, are the exponential decay factors of the & 77 turbulence com-
ponents in the Y and Z directions; Cy,,=C,,,=10, Cy,,=8.25, Cy,=Cy,,=C2,=C1..=6.5, C;,..=3.

The reduced psdf of the wake excitation is given by the relationship (Vickery and Clark
1972) :

nS,(z;n)=

n/ny (z) | 1-n/n4(2) ’
7B (z) P l: B(z) :l (28)

where n,(z)=Sy,u(z)/b is the or component of the shedding frequency; S is the Strouhal number;
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Y=2, Y,=1; ¥, depends on the shape of the cylinder; B (z ) = NB?2 +212(z) is the bandwidth
spectral parameter, B,=0.08.

The wake coherence function is given by Eq. (13) assuming (ESDU 1990b) :

11
K'ws(zaz,n) L b (29)
where L is the correlation length (in b's) of the vortex shedding.

Model 1 represents an r.c. chimney (¢=0, h=0) /=180 m high; its diameter is b=5.6 m; the mass
per unit height is m=10686 kg/m. The x alongwind and y crosswind fundamental frequencies are
n,,=n,;=0.26 Hz. The related mode shapes are Y, (2)= Yu(2)=(z/ Iy, (=2.15. The damping factors
are &,=£,=0.005. The acrodynamic coefficients are : ¢=0.8, ¢=¢,=0; ¢; =¢/'= cn=0; =0, ¢=
0.2, ¢, =0; $=0.2, L=1. Using the criterion in Fig. 2, z,,=108 m (& 7=u, v, ), ;=144 m (o=x,
y). By means of Egs. (23) and (24), k.»=0.2660 (& 1=u, v, w, 5; 0=X, ).

Model 2 is an inclined (¢=774) square section steel element whose lower extreme lies =20 m
over the ground; it is /=30 m long; its side is b=0.4 m; the mass per unit length is m=444.6 kg/m;
the mass moment of inertia per unit length is /=62.87 kgm; n,=n,=1.5 Hz; Wa(2)=(2)=sin(7z /
I); &,=£,=0.005. The torsional fundamental frequency, mode shape and damping factor are n,=30
Hz, Wyu(2)=[1-cos(2mz/1)]/2, £4=0.01. The aerodynamic coefficients are : ¢;=1.2, c=¢,=0; ¢;=0,
¢/=3.2, cn=0.5; ¢,=0, ¢,=0.5, ¢,,=0.025; $=0.1, L=1, ¥,=0.9. Using Fig. 2 and Egs. (23) and
(24), Zo=15 m (0%, Y, 0), ky=h,;=0.3900, kg =0.3415 (g, 117U, v, W, 3).

Model 3 represents a horizontal bridge (¢=7/2) at height h=20 m; its length is /=100 m;
the width and the thickness are respectively 11.5 m and 2.6 m, this latter value being as-
sumed as the reference b size; the mass and the mass moment of inertia per unit length are m=
13000 kg/m and /=188000 kgm; n,=0.3 Hz, n,=0.5 Hz, ns=1 Hz V(@)= (2)=sin(rz/ ),
Wn(2)= [ 1-cos(2rz/1)]/2; Ea=&,=E4=0.005. The acrodynamic coefficients are : ¢;=1, ¢=-2.5,
¢,=0; ¢;=0, ¢;/=33, cn=20; ¢4=0, ¢,=0.35, ¢,=0.02; §=0.12, L=1, Y,=0.9. Using Fig. 2 and
Egs. (23) and (24), 24,;=50 m (0=x, y, 0), K=k, 5=0.3900, kg, =0.3415 (& n=u, v, w, s).

Matrices [c] (Eq. (7)) define the role of the different excitatory components (& n=u, v, w, s)
with reference to the structural components of the response (o=x, y, 8) (Piccardo and Solari
1996a).
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Fig. 4 nl,,, diagrams for model 1
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Due to its polar symmetry and vertical axis, model 1 is excited by the u ' longitudinal tur-
bulence in the x alongwind direction and by the v’ lateral turbulence and s’ vortex shedding
in the y crosswind direction. No loading mechanism excites the 8 torsional motion.

Since model 2 is inclined and xz is a symmetry plane, it is excited by u' in the x
alongwind direction and by v', w', s’ in the y crosswind and @ torsional generalized
directions.

Model 3 is horizontal with the yz as a symmetry plane; it is excited by u’, w' in the x
alongwind direction, by u', w', s’ in the y crosswind direction and by w', s’ in the 6 tor-
sional direction; 6 is not excited by u' due to the assumption c,=0.

Figs. 4, 5, 6, referred to models 1, 2, 3, respectively, show all the meaningful diagrams of
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nl e (=X, y, 05 & 1=u, v, w, s) for u.=1 m/s.

The dot-dashed lines correspond to the ideal case Coh,,,(z, z'; m)=1, I()=S ten Zaens 1)
(A). The solid lines represent the actual situation (Eq. (16)) (B). The dashed lines denote the
use of the GEST (Egs. (17), (18), (20)) (C). The almost perfect superposition between (B)
and (C) diagrams highlights the precision of this method. The comparison between (A) and
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(C) diagrams points out the role of the harmonic filter x,,, (Eq. (20)) that multiplied by S},

gives rise to Sy, (Eq. (18)). ,,
As a further example of the role of the filter y,,,, Fig. 7a shows two pieces of sample time-

histories, u*(zxuu; 1) and ug, (f), derived from Squ (z..; ¢) and I, (n)=S.. eq (n). Fig. 7b shows

two pieces of sample time-histories, s, (z,,; f) and S, o, (0, derived from Sy (z,; n) and [ (n)=

Syiseq (n). Thin lines correspond to the actual reduced processes; thick lines correspond to the
reduced equivalent ones. All functions are referred to the model 1 and are derived by the random
phase method (Shinozuka and Jan 1972) using a time step Ar=0.1 s and a duration 7=600 s.

With reference to Fig. 7a one sees that the filtering effect of y,, mainly reduces the high fre
quency harmonic content of the longitudinal turbulence (Fig. 4a). This explains the better re-
gularity of the thick line in comparison with that of the thin line.

With reference to Fig. 7b, on the other hand, one sees that the filtering effect of Kyss

reduces the shedding frequency content of the wake excitation (Fig. 4c). It follows that the
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Fig. 10 Dynamic response of model 3

thick line retains the shape of the thin line with lower amplitudes.

The dynamic alongwind, crosswind and torsional response of models 1, 2 and 3 is calculated
using the method proposed by Piccardo and Solari (1998).

Fig. 8 shows the rms values of the x alongwind and y crosswind displacements at the top
of model 1. Figs. 9 and 10 show the rms values of the x alongwind and y crosswind dis-
placements and of the 8 torsional rotation of models 2 and 3 in the middle of their spans. The
solid lines correspond to the rigorous solutions based on Eq. (16); the dashed lines are the
results obtained applying the GEST (Eqgs. (17), (18), (20)). The superposition of the solid and
dashed diagrams enhances the precision of the method.

5. Conclusions and perspectives

Using the Generalized Equivalent Spectrum Technique proposed in this paper, the external fluc-
tuating forces are schematized by equivalent identically coherent processes, rather than by the
actual multi-dimensional processes. The set of these processes is identified by a cross-power spectral
density function, the Generalized Equivalent Spectrum, whose expression is given in closed form. It is
demonstrated that the use of this method leads to almost exact solutions of the 3-D wind-
excited response of slender structures and structural elements with negligible computational burdens.

The authors of this paper are at present working to generalize the above method to three-di-
mensional structures.
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