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Vibration analysis of a cracked beam with axial force
and crack identification
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Abstract. A composite element method (CEM) is presented to analyze the free and forced vibrations of a
cracked Euler-Bernoulli beam with axial force. The cracks are introduced by using Christides and Barr crack
model with an adjustment on one crack parameter. The effects of the cracks and axial force on the reduction of
natural frequencies and the dynamic responses of the beam are investigated. The time response sensitivities
with respect to the crack parameters (i.e., crack location, crack depth) and the axial force are calculated. The
natural frequencies obtained from the proposed method are compared with the analytical results in the
literature, and good agreement is found. This study shows that the cracks in the beam may have significant
effects on the dynamic responses of the beam. In the inverse problem, a response sensitivity-based model
updating method is proposed to identify both a single crack and multiple cracks from measured dynamic
responses. The cracks can be identified successfully even using simulated noisy acceleration responses. 
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1. Introduction

The presence of cracks in a structure may have a significant influence on the dynamic responses

of the structure; it can even lead to the catastrophic failure of the structure. To predict the failure,

vibration monitoring can be used to detect changes in the dynamic responses and/or dynamic

characteristics of the structure. To this end, the knowledge of the effects of cracks on the vibrations

of the structure is very important to engineers. To detect cracks as accurately as possible, it is

necessary to consider the key factors that can affect the vibration responses and characteristics. It is

known that the effect of axial force on dynamic responses and natural frequencies can be notable

for structural components subjected to axial loads, such as bridge piers and building columns.

Therefore, in order to predict the cracks accurately, it is very significant to develop efficient techniques

for the vibration analysis of cracked beams with axial force. 

Vibration analysis of cracked structures has been widely investigated in the last three decades.

Dimarogonas (1996) and Ostachowicz and Krawczuk (2001) gave comprehensive reviews of the

problems to the vibration of cracked structures and the crack models, respectively. Investigation

of dynamic behaviour of cracked structures has attracted the attention of many researchers

(Christides and Barr 1984, Kwon and Christy 1994, Ruotolo et al. 1996, Kisa and Brandon 2000,

Chaudhari and Maiti 2000, Zhu et al. 2009, He and Lu 2010, Ayatollahi et al. 2010, Oz 2010).
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Several methods (Narkis 1994, Gounaris et al. 1996, Shifrin and Ruotolo 1999, Kisa and

Brandon 2000) to determine the natural frequency changes due to a single crack and multiple

cracks have been proposed. 

The effects of axial forces on the dynamic response of the beam with or without cracks were not

considered in the literatures mentioned above. Krawczuk and Ostachowicz (1993) obtained the

natural frequencies of a cracked beam with constant axial force by finite element analysis; the effect

of axial force was taken into account by use of the geometric stiffness matrix. Bokaian (1988)

studied the effect of a constant axial compression load on the natural frequencies and mode shapes

of a uniform single-span beam with different combinations of end conditions. Farghaly (1992)

presented exact frequency and mode shape solutions for a uniform cantilever Euler-Bernoulli beam

under axial load. The same problem but for the Timoshenko beam has been studied by Farghaly and

Shebl (1995). Binici (2005) proposed an analytical method to obtain the eigen frequencies and mode

shapes of beams with multiple cracks subjected to axial force. Lee (1995) examined the dynamic

response of a rotating subject to an axial force and a moving load. The vibration analysis of axially

loaded stepped beams was investigated in Refs. (Rosa 1996, Naguleswaran 1994, Kukla and Zamojska

2007). Da Silva et al. (2004) studied the behaviour of flush end-plate beam-to-column joints under

bending and axial force. Yesilce and Catal (2009) investigated the free vibration analysis of Reddy-

Bickford beams on elastic soil with/without axial force effect using the Differential Transform

Method (DTM). Li et al. (2010) formulated the dynamic stiffness matrix for an axially loaded slender

double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of

the beams and the effects of the mass of springs and axial force are taken into account in the

formulation.

There are also many studies that deal with the stability of cracked and uncracked structures. Chen

and Chen (1988) investigated the stability of a rotating shaft with a single crack. Li (2001) used a

transfer matrix approach to determine the buckling loads of multi-stepped beam-columns. Naguleswaran

(2003) investigated the stability and vibration of a beam-column up to three step changes. Zhou and

Huang (2006) studied the crack effect on the elastic buckling behavior of axially and eccentrically

loaded columns. 

The objective of this study is to introduce a new method for free and forced vibration analysis of

axially loaded beams containing crack(s) by means of a composite element method and to identify

the cracks using the measured structural dynamic responses. The finite beam element is

formulated using the composite element method. The crack is introduced by using Christides and

Barr (1984) crack model with an adjustment on the crack parameter. The natural frequency

results obtained from the proposed method are compared against the results predicted by the

analytical method and good agreement is found. The forced vibration analysis is conducted and

the response sensitivities with respect to the crack parameters (i.e., crack location and crack

depth) and with respect to the axial force are also calculated. Studies show that the natural

frequencies and forced vibration responses of the beam are affected significantly by the cracks

and the axial force. It is also found that the responses with respect to different parameters have

different sensitivities. The inverse problem, i.e., to identify the location and severity of cracks

from measured dynamic responses of the cracked beam is investigated using a response-based

model updating method. A response sensitivity-based approach of crack identification is then

presented in the identification of single and multiple crack damages. The parameters of the cracks

can be identified successfully and it is found that the presented method is not sensitive to

simulated measurement noise. 
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2. Forward analysis theory

Fig. 1 shows a simply supported cracked beam with a constant axial force. The cracks are assumed

to be always open, and they do not change the mass of the beam. The differential equation for free

vibration of the intact beam can be expressed as (Meirovitch 1975)

(1)

where E is the Young’s modulus, I the moment of inertia of the beam, P the axial force acting on the

beam, ρ the mass density, A area of the cross-section of the beam. 

2.1 Crack model

According to Christides and Barr (1984), the variation of bending stiffness EI along the beam

length takes up the form of 

(2)

where E is the Young’s modulus of the beam,  is the second moment of area of the intact

beam, ,  is the crack depth ratio and dc and d are the depth of crack and the

beam, respectively, xL is the location of the crack. α is a constant which governs the rate of decay and it

is estimated by Christides and Barr(1984) from experiments to be 0.667. However, according to the

study by Lu and Law (2009), this constant needs to be adjusted to be 1.426 in the CEM and it is adopted

in this paper.

2.2 Composite element incorporating a crack

2.2.1 The displacement field of the CEM

Composite element (Zeng 1998) is basically a combination of the conventional finite element

method (FEM) and the classical theory (CT) of vibration. In the composite element method, the

displacement field is written as the sum of the finite element displacement and the shape functions
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Fig. 1 A simply supported cracked beam with a constant axial force
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from the classical theory. The displacement field of the CEM can be expressed as

(3)

where  and  are the two parts of the CEM displacement field with the subscripts

defining those of the FEM and CT, respectively.

Taking a planar beam element as an example, the first part of the CEM displacement field is

expressed as the product of the shape function vector N(x) and the nodal displacement vector q

(4)

where  and ‘v’ and ‘θ’ represent the transverse and rotational displacements,

respectively, and

(5)

The second part uCT(x,t) is obtained by the multiplication of analytical eigen function with a

vector of coefficient c (also called the c degrees-of-freedom or c-coordinates) 

(6)

where  and  φr (r=1,2,…N) is the eigen function of

the beam. 

Like the FEM, the CEM can be refined using h-refinement technique by increasing the number of

finite elements. Moreover, it can also be refined through the c-refinement method, by increasing the

number of analytical functions in the shape functions. As we can make use of the advantage of the

c-refinement from the CEM, the beam only needs to be divided into a small number of finite

elements. This will reduce the total number of degree-of-freedom in the finite element model. 

The displacement field of the CEM for a uniform Euler-Bernoulli beam element can be written

from Eqs. (3) to (6) as

(7)

where S(x) =  is the generalized shape function of the

CEM, Q(x) =  is the vector of generalized displacements,

and N is the number of eigen functions used. These functions are chosen according to different

boundary conditions of the beam. For instance, for simply-supported beam, they are selected as φi(x)

= sin , (i=1,2,…N). In the case of other boundary conditions, they can be chosen from the classical

theory for transversal vibration of beam. The number of terms N is determined by a frequency convergence

test (Lu and Law 2009). The frequency convergence criterion is defined as , where ωi
N

is the estimation of the ith frequency with N-terms in the CT.  is the difference of the

ith frequency obtained with the N-terms and (N-1)-terms. It is found that when more than 33 terms are

selected, the natural frequencies are converged (Lu and Law 2009). In this paper, 50 terms are chosen to
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ensure the requirement being satisfied. It should be pointed out that if more terms are used in the

calculation, the natural frequencies of the beam are then more accurate. 

2.2.2 The elemental stiffness, geometric and mass matrices

The elemental stiffness matrix of the cracked beam can be obtained from the following equation

(8)

where the submatrix [kqq] corresponds to the elemental stiffness matrix from the FEM for the cracked

beam; the submatrix [kqc] corresponds to the coupling terms of the q-dofs and the c-dofs; submatrix

[kcq] is a transpose matrix of [kqc], and the submatrix [kcc] corresponds to the c-dofs and is a diagonal

matrix, EI(x) is shown in Eq. (2). 

The elemental geometric stiffness matrix due to a constant axial force P is expressed as

(9)

where the submatrix [kGqq] corresponds to the elemental geometric stiffness matrix from the FEM for

the beam; the submatrix [kGqc] corresponds to the coupling terms of the q-dofs and the c-dofs;

submatrix [kGcq] is a transpose matrix of [kGqc], and the submatrix [kGcc] corresponds to the c-dofs and is

a diagonal matrix. 

The elemental mass matrix is expressed as

(10)

The submatrix [mqq] corresponds to the elemental mass matrix from the FEM for the cracked beam; the

submatrix [mqc] corresponds to the coupling terms of the q-dofs and the c-dofs; submatrix [mcq] is the

transpose matrix of [mqc], and the submatrix [mcc] corresponds to the c-dofs and is a diagonal matrix. 

2.3 Free vibration analysis

After introducing the boundary conditions, the governing equation for free vibration of the cracked

beam can be expressed as 

(11)
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where K and M are system stiffness and mass matrix, respectively, KG is the system geometric stiffness.

ω is the circular frequency, from which the natural frequencies are identified. The ith normalized mode

shapes of the stepped beam can be expressed as

(12)

2.4 Forced vibration analysis

The equation of motion of the forced vibration of a cracked beam with n cracks subjected to axial

force when expressed in terms of the composite element method is

(13)

where C is the damping matrix which represents a Rayleigh damping model in this work as 

(14)

where a1 and a2 are constants to be determined from two modal damping ratios. f(t) is the generalized

force vector. For an external force F(t) acting at the location xF from the left support, f(t) can be

expressed as

 (15)

The generalized acceleration , velocity  and displacement Q of the cracked beam can be

obtained from Eq. (13) using direct integration method. The physical displacement, velocity and

acceleration  can be obtained from 

(16a)

 (16b)

(16c)

2.5 Dynamic response sensitivities with respect to the axial force and crack parameters 

Taking partial derivative of Eq. (13) with respect to the axial force, we have
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(17a)

Since the dynamic response and the partial differential  has been obtained from Eqs. (13) and

(18), respectively, the right-hand-side of Eq. (17a) is known and can be treated as ‘input force’.

Note that Eq. (17a) is similar to Eq. (13), and the dynamic response sensitivity (i.e., the generalized

acceleration response sensitivity, velocity response sensitivity and displacement response sensitivity)

with respect to the axial force can be obtained by direct integration again. The physical acceleration

response sensitivity with respect to axial force  is obtained from 

(19)

Similarly, the generalized dynamic response sensitivity with respect to the depth and the location

of the ith crack can be obtained from the following equations

 (20)

 (21)

The physical acceleration response sensitivity with respect to crack parameters , and

 can be obtained from Eqs. (22) and (23), respectively.
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3. Inverse problem

In the identification, the vector of parameter to be updated is , where 

and  are the vectors of locations and the crack depths of the n cracks, respectively.

The acceleration responses at several different locations of the beam can be used to identify the

crack parameters. The ‘measured’ response is simulated by adding different levels of artificial normally

distributed random noise into the one calculated from Eq. (16(c)). 
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=  (24)

where  is the vectors of polluted acceleration; Ep is the noise level; Noise is a standard normal

distribution vector with zero mean and unit standard deviation; var(•) is the variance of the time

history;  is the vector of calculated acceleration.

The sensitivity-based approach (Lu and Law 2007) is adopted for the updating of the vector of

parameters θ.

(25)

where δθ is the vector of perturbations in the updating parameters, = −  is the differences in the

vector of polluted generalized acceleration  and the vector of calculated acceleration . Matrix Z

consists of the response sensitivity, which is the first derivative of the dynamic response with respect to

the updating parameters. These derivatives are calculated from Eqs. (20) and (21). For example, if the

acceleration of ith degree-of-freedom is used, the detailed sensitivity matrix is shown as

(26)

where t1 is the beginning of the time history and tf is the end of the time history. Eq. (25) can be solved

from the damped least-squares method (DLS) (Lu and Law 2007)

 (27)

where λ is the non-negative damping coefficient governing the participation of least-squares error in the

solution. When the parameter λ approaches zero, the estimated vector δϑ approaches to the solution

obtained from the simple least-squares method from Eq. (25). L-curve method (Hansen 1994) is used in

this paper to obtain the optimal regularization parameter λ. 

The updated crack parameter is written as

(28)

where subscript “j” indicates the iteration number during the computation.

4. Applications

4.1 Validation of free vibration analysis for a beam with cracks from the proposed

method in comparison with existing result

A free-free steel beam studied by Sinha et al. (2002) is used to verify the correctness of the
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proposed method. Sinha et al. obtained the natural frequencies of beam using finite element method

with experimental verification. The material properties of the beam are: Young’s modulus 203.91

Gpa, mass density 7800 kg/m3, The width, height and length of the beam are 25.3 mm, 25.3 mm

and 1330 mm, respectively. The location of the crack is 430 mm from the left end and the depth of

the crack varies from 4 mm to 12 mm. In the establishment of composite element model of the

beam, the beam is treated as one Euler beam element and fifty shape functions are used for the free

vibration of the beam. It is accomplished using the MATLAB software (2002). The modal frequencies of

the beam obtained from the proposed method are compared with those in the existing literatures as

shown in Table 1. One can find that results from the proposed method are better than those from

Sinha et al. (2002) except in the last modal frequency for the first crack state and the fundamental

modal frequency for the third crack state. The natural frequencies predicted from the proposed

method agree satisfactorily with the experimental values. 

4.2 Validation of free vibration analysis for a cracked beam with axial force from the

proposed method in comparison with existing result

A simply supported beam with a single crack is studied to check the correctness of the proposed

method. The material properties and dimensions of the beam are: Young’s modulus E = 200 GPa,

mass density ρ = 7850 kg/m3, width w = 20 mm, depth d = 20 mm, total length L = 2000 mm. Again,

the whole beam is treated as one Euler beam element and fifty shape functions are used in the

composite element model of the beam. The crack depth in the beam varies in two stages of 2 mm

and 6 mm. The axial force has three different magnitude, natural f namely, -0.3Pcr, 0, 0.3Pcr, where

Pcr =  is the critical load for buckling. In Table 2, the requencies of the beam obtained from the

proposed model are compared with those by Binici (2005), in which the natural frequencies of the

cracked beam with axial force are obtained analytically in a close form. The results show that the CEM

approach is effective and accurate for free vibration analysis of a cracked beam with axial force. 

4.3 Further validation of free vibration analysis for a beam with multiple cracks and with

axial force

The proposed method is further verified by a free vibration analysis of a beam with two cracks

and with axial force. A simply supported beam with multiple cracks and subjected to axial force is

studied for further validation of the proposed method (Binici 2005). The results from the proposed

method and those by Binici (2005) are listed in Table 3. From this table, one can see the natural

frequencies from the proposed method agree very well with those by Binici (2005). 

π
2EI
L2

-----------

Table 1 Comparison of natural frequencies (Hz) of the steel free-free beam with one crack

Mode

dc1 = 4 mm at x1 = 430 mm dc1 = 8 mm at x1 = 430 mm dc1 = 12 mm at x1 = 430 mm

Experi-
ment

Sinha et al.
(2002)

Proposed
Experi-
ment

Sinha et al.
(2002)

Proposed
Experi-
ment

Sinha et al.
(2002)

Proposed

1 74.688 74.406 74.735 74. 063 73. 628 74. 216 72. 813 72. 958 73. 302

2 205.625 204.183 205.619 202.500 201.283 203.233 197.188 198. 928 197.355

3 405.625 405.368 405.845 404.688 404.557 404.561 403.125 403.916 403.361

4 666.250 668.429 668.821 662.813 665.356 664.266 655.938 662.874 662.513
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4.4 Dynamic response and response sensitivity with respect axial force

The forced vibration analysis for the cracked beam with axial force is conducted in this section. The

effects of the presence of crack on the dynamic response of the beam is investigated and the axial force

as well. The parameters of the simply supported beam under study are taken as: E = 28 GPa, w = 200 mm,

d = 200 mm, L = 8.0 m, mass density ρ = 2500 kg/m3, Three cases are investigated in the following.

Table 2 Comparison of the first two non-dimension natural frequencies of a simply supported beam for
different crack locations with different relative crack depth and different magnitude of axial forces

P = -0.3Pcr P = 0 P= 0.3Pcr

0.1L 0.2L 0.3L 0.4L 0.5L 0.1L 0.2L 0.3L 0.4L 0.5L 0.1L 0.2L 0.3L 0.4L 0.5L

d
c
/d
=
0
.1

ω1/ω10

Present 1.1402 1.1396 1.1389 1.1383 1.1381 0.9998 0.9992 0.9984 0.99780.9976 0.8361 0.8355 0.8347 0.8340 0.8338

Binici 
(2005)

1.1394 1.1394 1.1394 1.1379 1.1364 1.0030 1.0015 0.9955 0.99550.9939 0.8364 0.8348 0.8318 0.8314 0.8302

Error 0.0008 0.0002 -0.0005 0.0004 0.0017 -0.0032 -0.0023 0.0029 0.00230.0037 -0.00030.0007 0.0029 0.0026 0.0036

ω2/ω20

Present 1.0334 1.0290 1.0290 1.0334 1.0369 0.9970 0.9935 0.9935 0.99701.0000 0.9593 0.9545 0.9545 0.9593 0.9617

Binici 
(2005)

1.0333 1.0288 1.0288 1.0330 1.0364 0.9970 0.9924 0.9924 0.99641.0000 0.9591 0.9545 0.9545 0.9591 0.9621

Error 0.0001 0.0002 0.0002 0.0004 0.0005 0.0 0.0011 0.0011 0.0006 0.0 0.0002 0.0 0.0 0.0003 -0.0004

d
c
/d
=
0
.3

ω1/ω10

Present 1.1381 1.1320 1.1010 1.1010 1.0800 0.9971 0.9796 0.9603 0.94980.9411 0.8293 0.8100 0.7698 0.7646 0.7602

Binici 
(2005)

1.1385 1.1308 1.100 1.0923 1.0846 0.9923 0.9769 0.9615 0.94620.9385 0.8231 0.8077 0.7769 0.7615 0.7608

Error -0.0004 0.0012 0.001 0.0077 -0.0046 0.0048 0.0027 -0.0012 0.00360.0026 0.0062 0.0023 -0.0067 0.0031 -0.0006

ω2/ω20

Present 1.0104 0.9721 0.9800 1.0110 1.0305 0.9713 0.9323 0.9404 0.97171.0000 0.9306 0.900 0.9009 0.9302 0.9617

Binici 
(2005)

1.0045 0.9712 0.9773 1.0076 1.0258 0.9688 0.9348 0.9397 0.97120.9924 0.9318 0.8979 0.8985 0.9348 0.9591

Error 0.0059 0.0009 0.0027 0.0024 0.0047 0.0025 -0.0025 0.0017 0.00050.0076 -0.00080.0021 0.0024 -0.0046 0.0026

Table 3 Comparisons of results with Binici (2005) for the simply supported beam with two cracks

Parameters Results from the proposed method Results from Binici (2005)

xL1/L xL2/L dc1
/L dc2

/L P/Pcr ω1/ω10 ω2/ω20 ω1/ω10 ω2/ω20

0.1 0.4 0.3 0.5 0.1 0.7939 0.9210 0.7917 0.9223

0.1 0.4 0.3 0.5 0.2 0.7252 0.9071 0.7244 0.9085

0.1 0.4 0.3 0.5 0.3 0.6475 0.8926 0.6501 0.8944

0.1 0.4 0.2 0.4 0.1 0.8327 0.9436 0.8331 0.9420

0.1 0.4 0.2 0.4 0.2 0.7716 0.9302 0.7700 0.9285

0.1 0.4 0.2 0.4 0.3 0.7002 0.9162 0.7012 0.9148

0.2 0.3 0.3 0.5 0.1 0.8131 0.8394 0.8105 0.8371

0.2 0.3 0.3 0.5 0.2 0.7469 0.8236 0.7442 0.8217

0.2 0.3 0.3 0.5 0.3 0.6738 0.8079 0.6713 0.8060

0.2 0.3 0.2 0.4 0.1 0.8552 0.8791 0.8528 0.8773

0.2 0.3 0.2 0.4 0.2 0.7928 0.8645 0.7910 0.8627

0.2 0.3 0.2 0.4 0.3 0.7250 0.8488 0.7239 0.8479

Note: Pcr =π 2EI/L2, ω10= , ω20=
π

L
---
⎝ ⎠
⎛ ⎞

2
EI

ρA
-------

2π

L
------
⎝ ⎠
⎛ ⎞

2
EI

ρA
-------
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4.4.1 Effect of crack on the dynamic response

An impulsive force is assumed to act at mid-span of the beam with a magnitude of 100N, the

force starts to act on the beam from the beginning and lasts for 0.1 second. The time step is 0.002 s

in calculating the dynamic response, the time duration in the calculation of dynamic response is 8

seconds. Rayleigh damping model is used to obtain the system damping matrix and the two damping

constant are taken as 0.01 and 0.02, respectively. 

The acceleration responses at the 1/4 span of the beam for different crack depths are shown in

Figs. 2(a) and (b). The crack is assumed to be fixed at the mid-span of the beam. From these figures, one

Fig. 2 (a) Comparison on the dynamic responses for different crack depths and (b) a close view
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can see that when the crack depth increases, the natural frequencies of the beam decrease, so there

is a shift in the acceleration response for different crack depths. 

The acceleration response at the 1/4 span of the beam for different crack locations with a fixed

crack depth dc/d = 0.3 are shown in Fig. 3(a) and (b). The crack is assumed to be at the 0.1 L, 0.3L

and 0.5L of the beam, respectively. From these figures, one also can see that there is a shift on the

acceleration response. This reveals that the difference of crack location may have different effect on

the natural frequencies.

4.4.2 Effect of axial force on the dynamic response

The effect of axial force on the dynamic response of the beam is investigated in this section. The

Fig. 3 (a) Comparison on the dynamic responses for different crack locations and (b) a close view
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same impulsive force as the Case above is used. Figs. 4(a) and (b) show the comparison on the

acceleration response at the 1/4 span of the beam for different axial force levels with P = 0.1Pcr N,

P = 0.3 Pcr N, P = 0.5Pcr N, respectively. From these figures, one can find with the increase in the

magnitude of the axial force, the effect of axial force on the dynamic response of the beam becomes

significant.

4.4.3 Dynamic response sensitivities with respect to different parameters

For a given excitation force F(t) acting at the location xF from the left support of the beam, the

generalized force vector f(t) can be obtained from Eq. (15), and the generalized acceleration ,

velocity  and displacement Q of the cracked beam can be obtained from Eq. (13) by direct

Q
··

Q
·

Fig. 4 (a) Comparison on the dynamic responses for different axial forces and (b) a close view
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integration method. The physical acceleration  is obtained from Eq. (16). As the dynamic

responses ,  and Q have been obtained from Eq. (13), the response sensitivities with respect to

crack depth, crack location and axial force can be calculated, respectively, according to Eqs. (17),

(22) and (23). Figs. 5(a), (b) and (c) show the sensitivities of acceleration at the mid-span with

respect to the crack location of and the crack depth and axial force, respectively. It is noted that the

magnitude of the response sensitivity of the crack depth is almost 100 times of that of the crack

location and is almost 1000 times of that of the axial force. 

4.5 Crack identification from response sensitivity-based updating method

The simply supported beam in the first example is used for identifying the cracks in the beam. In

the inverse problem, the measured acceleration time histories from an impulsive external force at

three different locations, namely, L/4, L/2 and 3L/4 of the beam are used to identify the crack

parameters. Five and ten percent artificial random noises are added to the calculated acceleration

separately to simulate the ‘measured’ response. Convergence of computation is considered achieved

when the norm of relative difference between two sets of successively identified parameters equals

1.0×10-5. Two cases are studied. The first case deals with a single crack identification. The crack is

assumed to locate at 700 mm from the left support of the beam with a depth of 3 mm. The second

case deals with identification of multiple cracks. Besides the first crack, another crack is assumed to

locate at 1200 mm from the left support of the beam with a depth of 5 mm. 

u·· x t,( )
Q
··

Q
·

Fig. 5 Dynamic response sensitivity with respect to different parameters ((a) with respect to crack location, (b)
with respect to crack depth, and (c) with respect to axial force)
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4.5.1 Identification of single crack 

The identified results shown in Table 4 indicate that the parameters of the crack can be identified

with very good accuracy under different noise levels. This indicates the identified results are not

sensitive to the artificial noise. 

4.5.2 Identification of two cracks

Table 4 also shows the identified results for the two cracks. Although the results are not as good

as those for the single crack, the identified parameters of the two cracks are still satisfactory under

different noise levels with a maximum relative error or around1.1% in the crack location and 2.3%

in the crack depth. 

5. Conclusions

In the present study, a composite element method is proposed to determine the natural frequencies

of axially loaded beams and to calculate forced vibration responses. The time response sensitivities

with respect to the crack parameters, i.e., crack location, crack depth and the axial force, are conducted.

The results obtained from the proposed method are in great agreement with those in the literature.

The results from forced vibration analysis show that different crack parameters may have different

effects on the dynamic responses of the beam. With the increase in the magnitude of the axial force,

the effect of the axial force on the dynamic response of the beam becomes significant. It is found

that the magnitude of the response sensitivity varies differently for different parameters, such as the

crack location, crack depth and axial force. A response sensitivity-based crack identification method

is presented and verified by two numerical simulations. Very good identified results can be obtained

even using noisy acceleration measurements. 
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