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Abstract. A technique for damage localization and assessment based on measurements of both eigenvectors
curvatures and eigenfrequencies is proposed. The procedure is based on two successive steps: a model
independent localization, based on changes of modal curvatures, and the solution of a one-dimensional
minimization problem to evaluate damage intensity. The observability properties of damage parameters is
discussed and, accordingly, a suitable change of coordinates is introduced. The proposed technique is
illustrated with reference to a cantilever Euler beam endowed with a set of piezoelectric transducers. To assess
the robustness of the algorithm, a parametric study of the identification errors with respect to the number of
transducers and to the number of considered modal quantities is carried out with both clean and noise-
corrupted data.
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1. Introduction

Among non-destructive evaluation techniques, vibration-based methods respond to the current

tendency which is to integrate identification and monitoring systems in the structure: in an

increasing number of projects, transducers and sensors are embedded into the mechanical system

and driven by suitably designed electronic controllers.

Over the past two decades, a significant amount of research has been conducted in order to

monitor effectively structural health via measurement of the modal response (see, for instance,

Doebling et al. 1998, Chang et al. 2003). Many literature contributions investigated the use of

changes in natural frequencies in order to detect damage occurrences (Montalvao et al. 2006, and

references therein); their feasibility is, however, limited since natural frequencies present a low

sensitivity with respect to local variations of the mechanical characteristics. This fact reflects a significant

error on the identified parameters as it implies a small curvature of any reasonable functional based

on eigenfrequencies (Friswell et al. 1994, Friswell and Penny 1997, Morassi and Vestroni 2008).

As a consequence, many researchers have focused their efforts on measuring and using the changes

on modal coordinates (Gladwell and Morassi 1999, Lanata and Del Grosso 2006, Mendrok and Uhl

2010). In such cases, the identification of the damage is obtained through the minimization of an

objective function dependent on both eigenfrequencies and eigenvectors (see, e.g., Casciati 2008,
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Unger et al. 2006, Kim et al. 2003, 2007 and references therein). However, it should be remarked

that, as soon as the number of unknowns increases, the problem becomes difficult to handle

numerically since multiple local minima can appear.

Other techniques proposed were based on measurements of the eigenvectors curvatures; this

concept was firstly applied to health monitoring in Pandey et al. (1991) and, later, used by many

other researchers (Abdel Wahab and De Roeck 1999, Dilena and Morassi 2002, Lestari et al. 2007).

From a theoretical point of view, it was found to be very promising since the changes of the

curvature mode shapes are localized in the region of the damage; however, the difficulties of

obtaining reliable measurements of the curvatures had to be faced. In this regard, piezoelectric

sensors/actuators glued to the structural surface are an effective and reliable means to measure the

structural impedance and thus the curvature of the mode shapes (Park et al. 2000, 2003, Park and

Inman 2007). Moreover, due to their relative low cost, they allow the use of a distributed network

over the entire structure under observation.

In this study, the difference of eigenvectors curvatures and eigenfrequencies between the damaged

and the healthy structure is used to localize the damage and assess the damage intensity. The modal

curvatures are extracted from the frequency response function (FRF) of the structure as sampled by

the piezoelectric patches; because of the properties of this FRF, the proposed method is able to

identify both stiffness and mass variation. In this sense, it is an extension of the method proposed in

Bernal (2002), which, instead, is based on variation of the flexibility matrix only.

The identification procedure is divided in two successive steps: 

1. the localization of damage assessed independently of the model and based on the comparison

between undamaged and damaged measured eigenvectors curvatures; 

2. the estimate of damage intensity through the minimization of a one-dimensional functional,

likely non-convex, based on the comparison between the analytical and measured eigenfrequencies. 

This identification technique is illustrated with reference to a cantilever Euler beam, whose model

equations are derived in order to evaluate the optimal experimental procedure to assess the frequency

response function. Accordingly, the observability properties of the damage descriptors are discussed,

suggesting a suitable change of coordinates.

The paper is organized as follows: in Section 2 the equations of motion for an Euler beam

coupled with a set of distributed piezoelectric patches are derived. In Section 3 the damage model

and the identification procedure are presented and discussed. In Section 4 two numerical examples

are presented and the main conclusions are outlined. Finally, the Appendix includes a proof of the

non-observability of the damage local shape for moderate damage intensities.

2. System description and model equations

A cantilever beam hosting a uniformly distributed array of piezoelectric transducers is considered

(Fig. 1). 

Fig. 1 Cantilever electromechanical beam of length L endowed with 5 piezoelectric patches
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In dell’Isola et al. (2004) the evolution equations of an electromechanical beam are derived.

Applying those results, the state of the system can be described by the scalar field, w(x, t),

representing the transverse deflection of the beam axis, and by the vector of nodal flux linkages at

the terminals of the N piezoelectric transducers; the flux linkage ψi is the time integral of the nodal

voltage Vi, e.g., Vi = i. When a mechanical excitation f(x, t) is applied, the discrete evolution equations

of the coupled system, obtained by means of a standard modal projection, are 

(1)

where t denotes the time variable and a superimposed dot indicates the time derivative; hereafter the

sum over repeated indices is omitted. Here j = 1,...N and α, β = 1,..., A, being A the dimension of the

chosen basis.

In Eq. (1) Wα is the projection of the displacement field and represents the mechanical degrees of

freedom, whilst ψj is the electrical counterpart. Correspondingly, K, C, M and Y, R, B can be

interpreted as the stiffness, damping and mass matrices for the two subsystems, whilst F and Q are

the external applied actions. The stiffness matrix K explicitly depends on the material and geometrical

constitutive quantities which are here assumed as monitored parameters and collected in the vector

π . The matrix Γ models the gyroscopic coupling between the structure and the electrical system.

By means of Laplace transform, solving (1.1) for the vector W and replacing in (1.2), one gets 

(2)

where s is the Laplace variable and a superimposed tilde means the Laplace transform of the

corresponding time function; The quantities  and  represent the electrical and mechanical initial

conditions while the matrix H(s, π):=[K(π) + sC + s2M]-1 is the frequency response of the mechanical

system. This algebraic manipulation establishes an explicit relationship between the flux linkages 

and the electrical currents .

By considering Eq. (2) with vanishing initial conditions and vanishing applied forces, the Frequency

Response Function (FRF) of the whole structure can be defined, viz. 

(3)

(4)

From an experimental point of view, the aquisition of the FRF Nij(s) requires an electronic

interface circuit able to impose a suitable current on each PZT patch while measuring the voltages

. This FRF is represented as the sum of the purely electric admittance, independent of the monitored

parameters π, plus the function

(5)

which can be physically interpreted as the additional admittance measured in the electric system, due to

its coupling with the structure. Moreover, it follows that the additional mechanical impedance Dij(s, π):

- is experimentally obtained as a difference between the frequency response Nij(s, π) and the purely

electric impedance N0(s) = Y+sR+s2B; 

- is independent of the electric parameters Y, R and B; 
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- contains information on mechanical eigenfrequencies and eigenvectors only. 

More precisely, using the spectral decomposition of the mechanical frequency response function, i.e.,

(6)

one obtains the following representation of the additional mechanical impedance in terms of

mechanical eigenvectors  and eigenfrequencies 

(7)

being δh the damping coefficient associated with the h-th eigenfrequency. The eigenvectors zi
(h) of the

matrix Dij are the mode shape curvatures as sampled by the PZT patches through the coupling matrix Γ.

The above-mentioned properties of the function D are used in the following for the proposed

identification technique.

3. Identification procedure

3.1 Damage model and observability

In order to assess the observability of damage parameters, a model for the stiffness variation has

to be introduced. To this end, the structural domain is decomposed as the union of H regions

(possibly according to the position of the PZT transducers).

The bending stiffness k(π, x) is expressed as follows 

(8)

 

u
h( )

{ }h=1

N
ϖ h{ }h=1

N

 

k π x,( ) k0 x( ) ∆k π x,( )– k0 x( ) dh

h=1

H

∑ fh Gh bh;x,( )–= =

Fig. 2 Damage parametrization through triangular shaped functions. The top figure represents the actual
damage scenario (continuous gray line) and its interpolation through a linear function (dashed black line);
the bottom figure depicts the interpolating triangular shaped functions
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where fh(Gh, bh; x) are piecewise linear functions having values 1 in the centroids Gh of the H regions

and vanishing outside the h-th interval Ih = [Gh − bh/2, Gh + bh/2] (see Fig. 2); namely, it results

being, for each h, dh < , to assure the positivity of the bending stiffness. This

parametrization is effective in representing the circumstance of concentrated damages.

The 2H scalar quantities {b1, b2,...,bH} and {d1, d2,...,dH} represent the damage widths and depths

in each of the H regions respectively; these quantities define the introduced function ∆k and are the

actual unknowns of the identification procedure. It should be noted that the parameters bh are

independent of the distance among the centroids Gh.

Through the change of coordinates 

(9)

each damage {bh, dh} can be expressed in terms of intensity Ah and local shape rh. Such a change of

coordinates turns out to be useful to investigate the observability of the damage parameters. Indeed, it is

proved in the Appendix that, for moderate damage intensities, the sensitivity of the FRF D with respect

to the damage shape parameters r vanishes, namely

(10)

being =suph|Ah| and = supi, j, k|Cijk|.

Eq. (10) states that in the case of small damage intensities ( ), the frequency response

function D is much more sensitive to variation of the damage parameters A than to variation of the

damage shapes r. Since the technical interest is focused on small damage intensities, the damage

local shapes can be excluded from the analysis. As a consequence, the identification procedure is

reduced to the choice of a suitable functional to be minimized on the space of unknowns π = A, i.e.,

(11)

where argminAF(A) is the vector where the minimum of the functional is attained.

A common choice for F(A) is based on differences of eigenfrequencies (Doebling et al. 1998,

Vestroni and Capecchi 2000), i.e.,

(12)

where  are the first M eigenfrequencies of the model (1) in the damaged

state A, while  are the corresponding measured quantities.
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The functional F(A) is generally non-convex, hence, in performing its minimization, several local

minima can be found: as the dimension of the damage vector A grows, the problem can easily become

untreatable. The non-convexity of F(A) is observed since the sign of the matrix ∆K = K(A)−K*,

meaning the difference between the current model stiffness associate to A and the actual damaged

stiffness, is generally not definite.

3.2 Damage localization and assessment

In order to avoid numerical difficulties in the minimization of a non-convex functional F(A), a

reduced version of the minimization problem (11) is introduced. Accordingly, the identification of

the unknown vector A is split into the estimate of the actual damage shape a (a = α-1A with

α = ||A||) and thereafter of the damage scale α.

It is interesting to introduce a procedure for the estimate of a, which can be obtained

independently of the model by using only the differences on the eigenvectors curvatures extracted

from the measurements of damaged Dij
* and undamaged Dij

0 FRFs. Actually, as far as beam

structures are concerned, this approach is related to the measurements of the nodal points (see, e.g.,

Gladwell and Morassi 1999, Dilena and Morassi 2002). However, only the method based on the

measurements of eigenvector curvature can be readily extended to two-dimensional structures.

The proposed approach strongly relies on the assumption that large eigenvectors differences are

essentially localized in the damaged regions. Moreover, it is assumed that the PZT patches are

uniformly distributed over the entire structural members under observation.

Eq. (7) highlights the dependence of the FRF D on the modal shape curvatures in the measured

frequency range. Hence, standard techniques can be used to estimate the undamaged eigenvectors curvatures

, derived from D0, and the damaged eigenvectors curvatures , derived

from D*.

Once the modal shapes curvatures are extracted, the following procedure allows the overall

damage shape a* to be identified robustly. 

(a) The average difference between eigenvector curvatures is defined as 

(13)

where ,  are the normalized eigenvectors and M is the number of measured eigenfrequencies.

The vector ν is equivalent to the Curvature Damage Factor (CDF) introduced by Abdel Wahab

and De Roeck (1999) (see also Lestari et al. 2007). 

(b) All the maxima exceeding a selected threshold s are considered. This step allows the

inessential local peaks to be filtered out by selecting the regions where a relevant stiffness variation

actually occurs.

(c) Each relevant peak is interpolated by means of triangular shape function which strictly

contains the vector ν. 

(d) The triangles obtained allow the vector a* to be estimated. Patches corresponding to nonzero

values (a*)i are assumed to correspond to damaged regions. 

As it will be shown in the next section through numerical examples, the aforementioned procedure

allows a set of localized stiffness variations to be robustly identified. While step (b) is used to filter out

the possible numerical noise on the signal, step (d) makes the sign of the difference between the

extrapolated and the actual stiffness variation, at least, locally definite. The triangular shape function
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used in step (c) could suggest a possible choice of the damage shape vector r.

The procedure relies on the assumption of localized stiffness variations, which is the case more

frequently dealt with, but could be extended to the case of distributed stiffness variations. Once the

unit vector a* has been estimated, the identification problem (11) is reduced to 

(14)

which is a one-dimensional minimization problem and, consequently, the non-convexity of F can be

easily accounted for. Furthermore, being the functional F based on eigenfrequencies only, a minimal

model of the structure is sufficient.

4. Numerical examples

To illustrate the effectiveness of the proposed identification algorithm a cantilever beam with 3, 5,

10 and 20 PZT patches is considered (see Fig. 1 for the case of 5 PZT).

The beam is clamped at x = 0 and the free end is located at x = L. The PZT sensors are equally

spaced along the beam length; while the number of the patches is increased, the covering ratio cR,

i.e., the ratio between the length covered by the transducers and total length L, is held constant

(cR = 0.5). The overall system is governed by Eq. (1).

The case of a beam with 2 damages is considered; in particular it is assumed that x1 = 0.16,

α* minarg α R∈ F α a*,( )=

Fig. 3 Normalized Eigenvectors Curvatures (NEC) of the FRF D0 (continuous) and D* (dashed) as sampled by
10 PZT transducers for the considered damage case
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b1 = 0.10 and d1 = 0.25 while x2 = 0.68, b2 = 0.15 and d2 = 0.15; these data correspond to damage

areas A1 = d1b1 = 2.50% and A2 = d2b2 = 2.25%. The actual stiffness reduction is represented as a

solid gray line in Fig. 5.

Fig. 3 represents the normalized eigenvectors curvatures of the first three eigenmodes in the case

of 10 PZT patches for the undamaged and damaged state. Since the PZT transducers naturally sense

the modal curvatures, the first eigenmode is much more sensitive to damage occurrences near the

clamp, while the sensitivities of higher order eigenvectors are localized in the regions where their

maximal curvatures occur.

The localization procedure introduced in the previous section furnishes the undamaged and

damaged shapes and allows the estimate of the unit vector a*, which represents the nondimensional

stiffness distribution along the beam. In particular, in Fig. 4, the vector ν and the corresponding

triangular shape functions computed through steps (a)-(e) in the case of 5 patches and 3 eigenmodes

are displayed. By means of the filtering procedure, the region where the differences between

elements of ν are minima is recovered and corresponds, in the present case, to the 2nd and 3rd PZT

patches. The vector a* is obtained by interpolating ν with two triangular shape functions; all the

minima below the threshold, represented as a grey region in the figure, are discarded.

By using the difference in the eigenfrequencies, the reduced minimization problem (14) is solved

and, therefore, the damage intensity α* is obtained.

The identification results are reported in Fig. 5 for an increasing number of PZT patches (3, 5, 10,

20) and for a different number of considered modes (1, 2, 3), while Table 1 lists the resulting

percentage errors in the estimate of damage positions and intensities. Here, the identified damage

position is assumed in the abscissa where the maximum of the vector a* is attained, which depend

on the PZT distribution. In particular, for the cases of 3 and 5 PZT patches, the first maximum in a*

was attained in correspondence of the first patch, which in both cases was centered at x/L = 0.13; as

a consequence, the relative error in the localization of the first damage was the same as reported in

Table 1.

As expected, a prelocalization based only on the first eigenmode cannot detect a damage located

at x = 0.68, since it occurs in a small curvature region and is filtered out by the signal processing

procedure. From the results shown in Fig. 5 and in Table 1, the following observations can be made: 

1. as the number of PZT patches increases the percentage error on the damage position decreases; 

Fig. 4 Filtering procedure applied to the difference of eigenvectors curvature ν (dotted black line). The thick
gray line is the vector a* resulting from the procedure sketched in steps (a)-(d). The figure refers to the
case of 5 PZT patches and 3 eigenmodes; the abscissa of the center of each patch is highlighted in the
figure
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2. an accurate estimate of damage intensities can be achieved even with the smallest number of

PZT patches; however, with 10 or 20 patches the damage shapes are much more accurately

estimated; 

3. the damage intensity estimate is also improved by considering an increasing number of eigenmodes. 

 In the case of two damages considered, the ratio between the two areas A1 and A2 can be

computed from a*. 

Fig. 6 shows, in the plane A1A2, the refinement in the estimate of the actual damage parameters a
*

and A* produced by an increasing number of PZT transducers. The case of only 3 PZT gives a

direction in the plane A1A2 which leads to a solution of the minimization problem (AIII) significantly

far from the exact minimum. On the contrary, the solution with 20 PZT patches (AXX) is essentially

the same of the actual minimum. In addition, from the position of minima AIII, AV, AX and AXX in

Fig. 6, the convergence of the proposed procedure with respect to the increasing number of PZT

patches can be appreciated.

Fig. 5 Estimated stiffness reduction ∆K for an increasing number of PZT patches and of eigenvectors used in
the identification procedure (actual stiffness variation - continuous line, 1 eigenvector - dashed, 2 eigenvectors -
dotted, 3 eigenvectors - dot dashed)

Table 1 Results of the proposed identification procedure for an increasing number of PZT patches and eigenmodes

1 mode 2 modes 3 modes

PZT Num.
Actual param. Error (%) Error (%) Error (%)

Pos. Area (%) Pos. Area (%) Pos. Area (%) Pos. Area (%)

3 D1 0.16 2.50 -15.8 18.13 -15.8 -4.91 -15.8 17.9

D2 0.68 2.25 - - 28.1 -52.1 28.1 -28.0

5 D1 0.16 2.50 -15.8 8.3 -15.8 6.0 -15.8 4.3

D2 0.68 2.25 - - 0.0 -10.5 0.0 16.4

10 D1 0.16 2.50 -9.5 9.9 -9.5 9.3 -9.5 -7.3

D2 0.68 2.25 - - 0.0 -12.9 0.0 10.8

20 D1 0.16 2.50 5.3 -2.3 -1.3 3.0 5.3 2.9

D2 0.68 2.25 - - 0.0 -13.1 0.0 3.4
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The contour plot of the functional F(A) for the simplest case of 2 PZT transducers and H = 2

regions is drawn in Fig. 7. The result plotted underlines the advantages of the proposed procedure;

indeed, the difficulties related to the presence of two local minima are overcome by the introduction

of the localization process, i.e., by the estimate of the unit vector a*, which does not rely on any

model for the structure, but it is obtained only from the experimental measurements of the eigenvectors.

In any case it should be remarked that the value A*, as identified by the proposed procedure,

represents a good starting point to minimize the functional F(A) without constraints, being located

in the region of the actual minimum of F(A). 

Finally, random noise with Gaussian distribution and 1%, 5% and 10% Noise-to-Signal Ratio

(NSR) is added to each component of the matrix Dij. The main objective of this numerical setup is

to assess the robusteness of the proposed procedure with respect to measurement errors; the

corresponding results are shown in Table 2. For increasing NSR, there is a slight change in the

estimate of resonant frequencies, which suggests change in the stiffness of the structure and leads to

errors on the area estimate. On the opposite, the location of damage is clearly identified, even with

Fig. 6 Refinement in the estimate of the actual damage
parameters A* (gray disk in the plot) produced
by an increasing number of PZT considered
(AIII - 3 PZT, AV- 5 PZT, AX - 10 PZT, AXX - 20
PZT). All the results refer to the case of M=3
eigenvectors used in the identification procedure

Fig. 7 Contour plot of the functional F(A) in the case
of H = 2 regions. The estimated unit vector a*,
the estimated damage vector A* =α*a* and the
actual global minimum  are shownA

Table 2 Sensitivity of the proposed identification procedure with respect to measurement errors for different
error level and in the case of 2 eigenmodes and 10 PZT patches considered

Noise-to-signal-ratio
1% 5% 10%

D1 D2 D1 D2 D1 D2

Error (%)
Pos. -9.5 0.0 -9.5 0.0 -9.5 0.0

Area 9.3 -12.9 9.7 -9.9 11.0 -11.5
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noisy data. This is essentially due to the filtering procedure introduced which allows the random

noise with zero mean level to be filtered out.

5. Conclusions

A procedure for the identification of multiple lumped damages in beam-like structures is

presented. It is divided into two successive steps, i.e., the estimate of the overall damage shape a*

and the correct scale of the overall damage intensity α*. The localization step is model independent,

whilst the damage assessment step uses minimal information from the structural model, being based

only on a small number of its eigenfrequencies.

The computational effort of solving a global minimization problem of a non-convex functional of

several variables is, hence, reduced to a simple one-dimensional problem. To verify the robustness

of the procedure with respect to experimental errors, an analysis using noisy data is carried out.

The results of the numerical simulations have shown a good agreement between the estimated and

the actual damage scenario. However, the estimate of the position is much sensitive to the

distribution of PZT patches and, in particular, to the position of the patches relatively to the position

of damage. In this regard, the quality of the identification drastically improves as the number of

sensors increases and their size decreases. This, actually, allows a more accurate sampling of the

eigenvectors curvature to be achieved.

From a technological point of view, since the procedure relies on a sampling of the modal shapes

curvatures by means of piezoelectric transducers, it can be easily extended to more complex multi-

dimensional structures.
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Appendix A

A-1. Independence of the FRF on the damage shape 

Here we prove that for moderate damage intensities ( ) the sensitivity of the FRF D (Eq.

5) with respect to damage local shape r is vanishing, i.e., 

(15)

In this context, it is useful to recall the expression of the additional admittance (5) 

(16)

where 

(17)

By applying the change of coordinates (9) and using the chain rules, the derivatives of the FRF with

respect to the h-th damage components are 

(18)

where .

Since the stiffness variation between the undamaged and damaged system is ∆Kγδ (A, r) =Kγδ (A, r) −Kγδ

(A0, r0), it can be expressed with a standard modal projection through the modal shape functions , e.g., 

(19)

From the previous equation, the following bounds for ∆Kγδ are obtained 

(20)

being  and 

Eq. (20) allows the introduction of an upper and a lower bound for Eq. (18), i.e., 

(21)
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which is valid for every indices i, j and h. In addition, still from Eq. (9), one obtains 

(22)

where δk
h is the Kronecker delta. Previous expressions allow Eq. (21) to be expressed in terms of

damage shape rh and intensity Ah, e.g., 

(23)

The function  tends to a finite non-zero value as Ah→0; as a consequence, the following

observations can be made: 

(a) the sensitivity of Dij with respect to damage local shape rh vanishes linearly as Ah; 

(b) the sensitivity of Dij with respect to damage intensity Ah is strictly positive and bounded by a

finite positive value. Indeed, Eq. (19) assures that the stiffness variation ∆Kγδ is strictly positive

for γ = δ, thus the norm infinity  is greater than zero. 

By passing to the limit in Eq. (23), the ratio between the sensitivities of D can be evaluated

(24)
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