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State-space formulation for simultaneous identification of 
both damage and input force from response sensitivity
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Abstract. A new method for both local damage(s) identification and input excitation force identification of
beam structures is presented using the dynamic response sensitivity-based finite element model updating
method. The state-space approach is used to calculate both the structural dynamic responses and the responses
sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect
to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to
structural physical parameters are calculated in time domain and compared to those by using Newmark method
in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are
identified from only several acceleration measurements. Local damages and the input excitation force are
identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation
simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method. 
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1. Introduction

Damage identification has been a hot research topic and has received increasing attention in

different disciplines such as, mechanical, aerospace and civil engineering in the past three decades.

It is important to identify damage(s) at the early stage of development in these structural systems.

Early damage identification allows maintenance and repair works to be properly programmed thus

minimizing the maintenance costs and also avoid the occurrence of calamity due to the structure

failure. Non-destructive techniques have been developed for practical and accurate damage detection,

and most of them are based on measured vibration responses. The basic idea of vibration-based

non-destructive damage detection is to measure the dynamic responses or dynamic characteristics of

a structure, e.g. the natural frequencies, mode shapes, transfer functions, etc. at certain stages over

its life span and use the measurements as database to assess the conditions of the structure.

There are a lot of non-destructive methods for damage detection in the literature. Housner et al.

(1997) presented an extensive summary on the state-of-the-art in control and health monitoring in

civil engineering structures. Salawu (1997) discussed and reviewed the use of natural frequency as a

diagnostic parameter in structural assessment procedures using vibration monitoring. Doebling et al.

(1998) provided a comprehensive review of the damage detection methods by examining changes in
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the dynamic properties of a structure. Zou et al. (2000) summarized the methods on vibration-based

damage detection and health monitoring for composite structures, especially in delamination modeling

techniques and delamination detection.

Damage detection usually requires a mathematical model on the structure in conjunction with

experimental modal parameters of the structure. The identification approaches are mainly based on

the change in the natural frequencies (Cawley and Adams 1979, Narkis 1994), mode shapes (Pandey

et al. 1991, Ratcliffe 1997, Rizos et al. 1990) or measured dynamic flexibility (Pandey and Biswas

1994, Doebling et al. 1996, Lim 1991, Wu and Law 2004). The natural frequencies are easy to

measure and with a high level of accuracy, and they are the most common dynamic parameters for

damage detection. However, problems may arise in some structures if only natural frequencies are

used, since the symmetry of the structures would lead to non-uniqueness in the solution in the inverse

analysis of damage detection. This problem can be overcome by incorporating the mode shape data

in the analysis. Finite element model (FEM) updating method is the most popular tool for damage

detection making use of these modal parameters. A large number of gradient-based finite element

model updating methods have been discussed by Friswell and Mottershead (1995). All of them have

been used for damage detection (Ricles and Kosmatka 1992, Frahat and Hemez 1993, Hemez and

Frahat 1995, Sinha and Friswell 2002, Jones and Turcotte 2002, Gordis 1999). The major difficulty

in using finite element model updating method lies in the differentiation between the local damages

and modeling errors in the structure (Wu and Law 2004). A two-stage method has been proposed to

overcome this problem (Friswell and Motershead 2001). The finite element model of the undamaged

structure is firstly updated to remove most of the model errors to have a more accurate model. Then

the differences in the modal parameters between the damaged and the intact structures are used to

estimate the changes in the system parameters. 

Some literatures on damage detection in time domain using structural dynamic response have

been published recently. Cattarius and Inman (1997) used the time histories of vibration response of

the structure to identify damage in smart structures. Majumder and Manohar (2003, 2004) proposed

a time domain approach for damage detection in beam structures using vibration data. The vibration

induced by a vehicle moving on the bridge was taken to be the excitation force. Chen and Li (2004)

presented a method to identify structural parameters and input time history simultaneously from

output-only measurements. The structural parameters and the input time history are obtained in an

iterative manner. Law and Zhu (2007) proposed an approach for damage detection in a concrete bridge

structure in time domain. Both the damage and moving vehicular loads are identified successfully.

Lu and Law (2007) presented a dynamic response based model updating method for identifying

structural local damages in time domain. A time series analysis method was used to detect damage

in plates by Trendafilova and Manoach (2007). 

Several of methods are available to calculate the dynamic response of systems. Each of these

methods has different level of accuracy, stability and computation efficiency (Bathe and Wilson 1976,

Ralston and Wilf 1960, Goudreau and Taylor 1973). It is well known that Newmark method is most

popular in engineering for dynamic analysis of either linear or non-linear systems. The state-space

approach can also be used to calculate the dynamic response of structures. The advantage of state-

space method and the difference with Newmark method have been discussed by the authors (Law

and Lu 2004) and other researcher (Wang et al. 2001). The major difference between the two

methods lies in: Newmark method is based on the approximation of derivatives of the second order

differential equation; the state-space method is based on piecewise interpolation of the discrete force

functions so that convolution integral can be carried out. And the state-space method make no
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assumption on the response functions, the distortion of the dynamic characteristics of the structures

is smaller in comparison with the Newmark method. Generally speaking, the state-space method is

comparably effective in the context of numerical stability and accuracy. 

In the present study, the state-space method is used in the computation of dynamic response of a

prestressed Euler-Bernoulli beam. And then the sensitivities of dynamic responses with respect to

the elemental flexural rigidity and the input excitation force are calculated by state-space method. In

the inverse analysis, both the damage of the structure and the excitation force are identified

simultaneously. Only several dynamic response measurements of the structure are needed in the

inverse analysis. A prestressed single-span and a multi-span continuous beam are used as numerical

examples to illustrate the effectiveness and robustness of the proposed method. Computation simulation

shows the proposed method is not sensitive to measurement noise. The proposed method is further

verified by a laboratory work. 

2. State-space formulation for dynamic response and response sensitivity

2.1 State-space formulation for dynamic response

Fig. 1 shows a simply-supported, rectangular prestressed concrete beam with a straight concentric

tendon under study. Equation of motion of a prestressed beam by finite element representation can

be written as

(1)

where x is a vector the displacement of the model,  is the first derivative of x with respect to time t, 

is the second derivative of x with respect to time t, M is the consistant mass matrix, C is the Rayleigh

damping matrix, i.e., , α and β, are two associated damping constants,  is the global

stiffness matrix of the prestressed beam, K is the global stiffness matrix without prestress force,

, {F} is a vector of the input excitation forces and [B] maps these forces to the associated

degrees-of-freedom of the structure. The jth input force is assume to be the following form

( j= 1,2,..., Nf) (2)

Here, F j, ω j are parameters of the jth force, Nf is the total number of excitation force, if these

parameters are known, then the force is determined. So they are taken as the unknown parameters
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Fig. 1 A single-span prestressed beam
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to be identified in the inverse problem. Kg is the global geometrical stiffness matrix and can be

expressed as follows

(3)

where N is the total number of element, kg The additional geometrical stiffness matrix (Geradin and

Rixen 1994) of each element can be written as

(4)

Where T is the axially prestress force, it is applied at the anchoring edges of the beam, and the prestress

force is assumed to be uniform along the length of the beam and not varying with time. l is the length of

the element.

For an isotropic elastic material, the elemental stiffness matrix is proportional to the flexural rigidity

EI and the geometric coefficient, which are usually taken as the unknown parameters to be identified

in the inverse problem. The stiffness matrix of the structure is expressed as the summation of the

elemental stiffness matrices as

(5)

where N is the number of the elements. Damage in the ith element is modeled as a reduction in the

average flexural rigidity (EI)i. [k]i
e is the elemental stiffness matrix.

Substituting Eqs. (2) and (5) into Eq. (1), we have

(6)

Using the state-space formulation, Eq. (1) can be written as the first order differential equation

(7)

where, , , , X represents a vector of state

variables with a length 2n containing the displacements and velocities of the nodes, n is the total

degree-of-freedom of the finite element model. These differential equations can then be converted to

discrete equations using exponential matrix representation.

(8)
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where A is the exponential matrix, (k+1) denotes the value at the (k+1)th time step of computation, the

time step ∆t represents the time step in the computation. I is the unit matrix. The dynamic response of

the system can be obtained from Eq. (8). Once the vector X is obtained, substituting X into Eq. (7), then

the acceleration response can be obtained.

2.2 State-space formulation for response sensitivity

The sensitivity of the dynamic response with respect to the physical parameters and the force

parameters can be derived as follows. 

Performing differentiations on both sides of Eq. (7) with respect to flexural rigidity (EI)i of each

element, we have

  (i = 1, 2, …, N) (11)

Let,  Eq. (11) can be rewritten as 

(12)

Performing differentiations on both sides of Eq. (7) with respect to the force parameter F j and ω j,

we have

(13)

(14)

Let, 

Eqs. (13) and (14) can be rewritten as 

(15)

(16)

Note that Eqs. (12), (15) and (16) have the same form of Eq. (7), similarly, these sensitivities can

also be obtained. 

3. Inverse problem

In the forward problem, the dynamic responses and their sensitivities with respect to the average
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flexural rigidity of each element and parameters of each force can be obtained from for a given set

of parameters EI i, F j, ω j (i=1,2…N, j=1,2…Nf). In the inverse problem, these parameters are

required to be identified from the measured responses. In other words, these parameters are chosen

to best fit the measurement data. There are in general two ways to fit the data: one is simply using

the least-squares method which minimizes the square error sum; the other is the sensitivity-based

analysis method which has different formulation for different problems, and it is often obtained

approximately by neglecting the higher order of the formulation. The latter approach is adopted in

this study. The identification problem can be expressed as follows: to find the vector of the force

parameters {PF} = [F 1, ω 1, F 1, ω 1,..., F Nf, ωNf ]T and the vector of average flexural rigidity {PEI}

= [EI 1, EI 1,..., EI N]T such that the calculated acceleration or displacement best matches the measured

response, i.e.

 (17a)

or 

 (17b)

where the selection matrix [Q] is a constant matrix with elements of zeros or ones, matching the

degrees-of-freedom corresponding to the measured acceleration or displacement components. 

Let 

− (18a)

or 

− (18b)

The identification problem can be accomplished from the following two subsections.

3.1 Excitation force identification from measured dynamic response

In the penalty function method (Friswell and Mottershead 1995), we have

(19)

where {δz} is the error in the measured output, the flexural rigidity of intact structure is used for we do

not know the true flexural rigidity of the damage structure. And {δPF} is the perturbation in the force

parameters, [SF] is the two-dimensional sensitivity matrix, which is the acceleration (or displacement)

response with respect to the force parameters in time domain. When writing in full, the left hand side of

Eq. (18) can be written as

(20a)
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(20b)

where l is the number of identification equation, and l should be greater than the unknown force

parameters to make sure that the set of equation is over-determined. Eq. (19) can be solved by the

standard simple least-squares methods as follows

(21)

or

(22)

The subscript j indicates the iteration number at which the sensitivity matrix is computed.

Like many other inverse problems, Eq. (19) is an ill-conditioned problem. In order to provide

bounds to the solution, the damped least-squares method (DLS) (Tikhonov 1963) is used and singular-

value decomposition is used in the pseudo-inverse calculation. Eq. (19) can be written in the

following form in the DLS method

(23)

where λ is the non-negative damping coefficient governing the participation of least-squares error in the

solution. The solution of Eq. (23) is equivalent to minimizing the function

(24)

with the second term in Eq. (24) provides upper and lower bounds to the solution. When the parameter

λ approaches zero, the estimated vector {δPF} approaches to the solution obtained from the simple

least-squares method. In this study, the well-known L-curve method (Hansen 1998) is adopted to

determine the appropriate regularization parameters λ. The L-curve is a plot ||δPv|| of the norm of the

regularized solution versus the corresponding residual norm ||[Sv]δPv − δR|| for all valid regularization

parameters. The vertical part of the L-curve corresponds to perturbations of the regularized solution

resulting from contamination errors, and the horizontal part represents small changes of the regularized

solution caused by regularization errors (Hansen 1998). Therefore, the optimal regularization parameter is a

point on this curve that is at the “corner” of the vertical piece. 

3.2 Damage Identification from measured dynamic response

Once the force has been obtained from the above, now we move to damage identification. Again

by using the penalty function method, we have

(25)

where {δz} is the error in the measured output, since we do not know the true elemental flexural rigidity

of the damage structure, the flexural rigidity of intact structure is used. And is the perturbation

in the elemental flexural rigidity, [SEI] is the two-dimensional sensitivity matrix, which is the acceleration

(or displacement) response with respect to the elemental flexural rigidity in time domain.
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Similarly, the elemental flexural rigidity can be obtained from

(26)

or

(27)

The subscript j indicates the iteration number.

3.3 Algorithm of iteration

As both the excitation force and the damaged structure are unknown, the following iterative

algorithm is used to solve the problem. 

(1) Iteration of the excitation force parameters

Starting with an initial guess {(PF)0} for the unknown force parameter vector {PF} and the intact

elemental flexural rigidity, the procedure of iteration is given as:

Step 1: Solve Eq. (8) at j=k+1 iteration step with known {(PF)k} for acceleration  or displacement

{d} and compute the value {δzk}

Step 2: Solve Eqs. (15) and (16) at j=k+1 iteration step with known {(PF)k} for  or 

to get the sensitivity matrix.

Step 3: Find {(PF)k+1} from Eq. (22) or Eq. (23)

Step 4: Repeat Steps 1 to 3 until ≤ tolerance 1. The tolerance equals 1.0×10-5

in this study.

(2) Iteration of the elemental flexural rigidity

Starting with the modified excitation force parameter vector {PF} and the intact elemental flexural

rigidity, the procedure of iteration is used for damage identification:

Step 1a: Solve Eq. (8) at j=k+1 iteration step with known {(PEI)k} for acceleration  or displacement

{d} and compute the value {δzk}

Step 2a: Solve Eqs. (11) at j=k+1 iteration step with known {(PEI)k} for  or 

to get the sensitivity matrix.

Step 3a: Find {(PEI)k+1} from Eq. (27).

Step 4a: Repeat Steps 1a to 3a until ≤ tolerance 2. The tolerance equals

1.0×10−8 in this study.

The identified excitation force obtained in (1) can be further improved using the updated physical

parameters obtained in (2) and repeating Steps 1 to 3. On the other hand, the vector of physical

parameters can also be further improved using the modified excitation force and repeating Steps 1a

to 3a. This will be illustrated in the numerical simulation. 

4. Computation simulation

4.1 Example 1: A single span prestressed beam

A single span Euler-Bernoulli beam with axial prestress force is studied as shown in Fig. 1. The

beam is assumed to be simply supported. The magnitude of prestress force is 1.0×106 N and it is
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assumed to be a constant along the beam. The physical parameters of the beam under study are: the

mass density ρ = 2.5×103 kg/m3, Young’s modulus E = 3.3×1010 N/m2, the length, L = 20 m, the

width b = 0.6 m and the height h = 1.0 m.

A finite element model of the prestressed beam is constructed using Euler-Bernoulli beam elements.

The FE model has 10 elements and 22 degrees of freedom. The first five natural frequencies of the

beam are: 4.07, 16.42, 37.03, 65.93and103.25Hz. The damping ratios for these five modes are all

equal to 0.02. The time step ∆t is taken to be 0.001 second in computation of the responses and

time duration is 2 seconds. 

4.1.1 Identification of one local damage and one impulsive force

A local damage is simulated by assuming a 5% reduction in average flexural rigidity at the 3rd

element. The impulsive force is assumed to act at the beam at time 0.05 second and last for 0.05

second, and it is assumed to be a constant in such a small time interval. It can be expressed

mathematically

(28)

It is applied at 6 metres from the left support. White noise is added to the calculated responses of the

beam to simulate the noisy measurement data with

accmeasured = acccalculated + Ep*Nnoise*σ (acccalculated) (29)

where Ep is the noise level, Nnoise is a standard normal distribution vector with zero mean value and unit

standard deviation, σ (acccalculated) is the standard deviation of the original acceleration response. 1%,

5% and 10% noise are added to the calculated responses to study the effect of noise level on the

identified results. 

Three acceleration measurements at the 3rd node, 5th node, and 7th node of the beam are used in

the identification and responses of the first 2 seconds are used. Table 1 shows the iteration number

and optimal regularization parameter λopt corresponding to different noise level. Fig. 2 shows the identified

results of the impulsive force and the damage. From this figure, the following observations can be

obtained:

(1) The identified impulsive force and the local damage are both close to the true values. This shows

that the proposed method is correct and effective to identify both excitation force and damage in the

beam from noisy dynamic response measurement. 

(2) The identified results are similar for different noise level under study, especially, all the curves

of the impulsive force are almost coincided, indicting that the present method is insensitive to the

artificial measurement noise.

F t( )
8000N       0.05 t 0.1≤ ≤

0                0 t 0.05 or t 0.1>≤ ≤⎩
⎨
⎧

=

Table 1 Iteration number and regularization parameters corresponding to different noise level

1% noise 5% noise 10% noise

Iteration number
Force 15 16 18

Damage 10 11 11

λopt

Force 7.4×10-4 7.4×10-4 7.3×10-4

Damage 6.5×10-7 1.18×10-6 1.22×10-6
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4.2 Example 2: two-span continuous beam

A two-span continuous Euler-Bernoulli beam with axial prestress force is 1.2×106N is studied as

shown in Fig. 3. The beam is assumed to be simply supported at both ends. The physical parameters

of the beam under study are: the mass density ρ = 2.5×103 kg/m3, Young’s modulus E = 3.3×1010 N/

m2, the length L = 30 m, the width b = 0.6 m and the height h = 1.0 m.

4.2.1 Identification of four local damages and one combined sinusoidal excitation force

A finite element model of the prestressed beam is constructed using Euler-Bernoulli beam elements.

The FE model has 16 elements and 34 degrees of freedom. The first five natural frequencies of the

intact beam are: 7.26, 11.39, 29.23, 37.00 and 65.90 Hz. The damping ratios for these five modes

are all equal to 0.02. The external excitation force is assumed to be F(t) = 16000×(1+0.1sin12πt

+ 0.05sin50πt) N, and it is applied at the 3rd nodes of the finite element model. The time step ∆t is

taken to be 0.001 second in computation of the responses and time duration is 2 seconds. The local

damages are simulated by assuming a 10%, 5%, 10% and 15% reduction in average flexural rigidity

at elements 2, 3, 12 and 13, respectively. Three acceleration measurements at 5th, 11th and 14th node

Fig. 2 Identification of an impulsive force and a local damage under different noise levels 

Fig. 3 A continuous prestressed beam
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are used and 2000 time steps are used. 10% noise is added to the calculated acceleration to simulate

the measured response. Figs. 4 and 5 show the identified results of the excitation force and the

damage in the first round and in the second round, respectively. The iteration number and optimal

regularization parameter for force and damage identification in the first round are 20, 4.6×10-4 and

17, 1.5×10-6, respectively. The iteration number and optimal regularization parameter for force and

damage identification in the second round are 22, 1.5×10-6 and 18, 1.3×10-6, respectively. This shows

that the proposed method is effective for both multiple damages identification and excitation force

identification. 

5. Laboratory work

The proposed method is further demonstrated with laboratory results from a simply supported

Fig. 4 Identified force time history after the second round of iteration (10% noise level)
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steel beam as shown in Fig. 6. The parameters of the beam are: length 2.0 m, width 25 mm and

height 19 mm, the elastic modulus and mass density of the material are 206.5 Gpa and

7.832×103 kg/m3, respectively. It is discretized into sixteen Euler beam elements with two

degrees-of-freedom at each node. A mass of 2.61 kg is hanged by a fine nylon rope at node 11 of

the beam, and the excitation generated by cutting the rope will serve as the input force. The true

value of the force is 25.58 N and is an “impact” acting at the initial time t=0. Mathematically, it

is expressed as

Fig. 5 Identification of multiple damages (10% noise level)

Fig. 6 Experimental set-up
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(30)

The flexural rigidities of all the elements and the assumed impulsive force are taken as the unknowns in

the inverse analysis. The initial values of the damage parameters for all the finite elements are all zero.

The initial vector of the force parameters is .

The sampling frequency is 2000 Hz. Acceleration responses are collected by B&K 4370 accelerometers

at nodes 7 and 9, and 2000 data of these accelerometers from 0.0 to 1.5 second were used for the

identification. A commercial data logging system INV303 and the associated signal analysis package

DASP2003 are used in the data acquisition. Damage is introduced by removing equal thickness of

0.5mm material from both sides of the beam over a length of 9 mm in element 13, with one edge

of the damage zone starting at node 13. The equivalent reduction in the second moment of inertia of

element 13 is found to be 11.3% after condensing the middle degrees-of-freedom to the two end

nodes 13 and 14 by Guyan reduction. The first five natural frequencies of the undamaged and the

damaged beam are shown in Table 2 along with those from the finite element model. The calculated

frequencies are found very close to the measured values indicating a model which is accurate

enough for the subsequent damage identification. 

f t( )
Mg  t 0=

0     t 0>⎩
⎨
⎧

=

PF( )
0

{ } 0 0 0 0 0 0 2π 4π 6π 8π 10π, , , , , , , , , ,[ ]T
=

Table 2 Calculated and measured natural frequencies of the test beam (Hz)

Modal frequency 1st 2nd 3rd 4th 5th

Intact
Measured 10.523 41.316 92.615 165.353 254.625

Calculated 10.459 41.423 93.116 165.274 256.242

Damaged
Measured 10.282 40.508 91.264 164.695 250.583

Calculated 10.271 40.744 92.258 164.703 253.328

Fig. 7 Damage detection after the second round of iteration
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The iteration stops after two cycles. All the force parameters are identified simultaneously. The

required number of iteration for convergence in the second cycle of iteration is 14 and 35 for the

force and the damages, and the corresponding optimal regularization parameters are 0.53 and 0.87

respectively. Fig. 7 shows the identified damage, and the identified damage in element 13 is 13.5%

which is close to the true value. But there is a large false identification in element 12. This observation

can be explained since element 12 is in immediate adjacent to the damage and the vibration energy

in the element would be much more disturbed than those in other elements as discussed by Shi and

Law (2000). Fig. 8 shows the identified time history of the force with a peak of 25.6 N at t = 0

which is very close to the true value. The natural frequencies of the beam calculated with the

identified parameters are shown in Table 2 and they are found matching the experimental values

very well indicating the success of the identification.

6. Conclusions

This paper presented a method for both identifying input excitation force and local damage. The

state-space approach is used to calculate the structural dynamic response and sensitivities in time

domain. Comparison is made on the state-space method and Newmark method, which shows that

the two methods have the same accuracy while the state-space method is more efficient than

Newmark method. Local damages and the input excitation force are identified in a gradient-based

model updating method based on dynamic response sensitivity. The advantage of the proposed

method is only several dynamic response measurements are need in the inverse analysis. Both

Numerical simulations and the laboratory work illustrated the effectiveness and robustness of the

proposed method.

Fig. 8 The identified force time history after the second round of iteration
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