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Abstract. System identification is a fundamental step towards the application of structural health monitoring
and damage detection techniques. On this respect, the development of evolved identification strategies is a
priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be
adopted as references for future structural health assessments. The paper presents the identification of the
modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace
identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which
proved to be successful in previous literature studies. This well-known approach is based on a clustering
technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied
to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem,
which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These
records are then subdivided into a convenient number of data sets and the variability of modal parameter
estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long
records are considered for this purpose. A comparison with finite element model predictions is finally carried
out, using the structural matrices provided within the benchmark, in order to check that all the structural modes
contained in the considered frequency interval are effectively identified via SSI-data.

Keywords: system identification; field measurements; stochastic subspace decomposition; environmen-
tal effects; finite element analysis.

1. Introduction

System identification is an open research field with considerable potentialities within the subjects

of structural health assessment (Frizzarin et al. 2008, Gentile and Gallino 2008, Hong et al. 2009)

and structural control (Casciati and Ubertini 2008, Ubertini 2008a, Faravelli et al. 2009a, Faravelli

et al. 2009b). In the former case, most of the efforts are currently being devoted to using data

recorded by permanent vibration monitoring systems for detecting and quantifying damage and for

estimating the residual service life of the structure. These strategies are particularly useful in the

case of strategic structures such as long-span bridges (Wong 2004, Ko and Ni 2005, Conte et al.
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2008) and tall buildings. The use of innovative sensors, such as Global Positioning Systems (GPS),

is also worth mentioning (Ni et al. 2009, Fuggini 2009). On this respect, recent literature works

(Chatzi and Smyth 2009) shown that displacement records might be effectively employed together

with acceleration measurements for identification purposes of strongly nonlinear systems (Faravelli

and Ubertini 2009) using appropriate algorithms.

According to many authors (Van Overschee and De Moor 1996, Peeters and De Roeck 2000,

Alicio lu and Lus 2008, Faravelli et al. 2010), data-driven stochastic subspace identification (SSI-

data) is the most advanced class of algorithms currently available for time domain operational

modal analysis of structures. One recognized merit of these techniques is indeed the fact that they

do not require well-separated and low damping modes, which on the contrary are necessary

assumptions in the case of methods like the Peak Peaking Method. Consequently, SSI techniques

are able to identify modes even with very close frequencies and with virtually any value of the

damping ratios (Peeters and Ventura 2003, Ren et al. 2005). Applications of SSI methods to damage

detection were already presented in the literature (Weng et al. 2009). The use of such methods

requires some data preconditioning tricks, the tuning of some fundamental parameters (Pridham and

Wilson 2005) and the implementation of appropriate rules for separating structural modes from

spurious noise ones (Alicio lu and Lus 2008). Unfortunately, these steps are far from being

straightforward and it is not unusual that different analysts come out with different modal parameter

estimates using the same raw data. For this reason, benchmark problems for system identification

represent quite profitable opportunities to test the effectiveness of different identification techniques.

Two main concerns in structural identification are: the analysis of the variability of the results and

the influence of environmental effects on the predicted modal properties. These two aspects are

directly related to the resolution of damage detection techniques. Indeed, the minimum level of

damage that can be identified is the one that determines the minimal variation of some damage

index which is not hidden by random variations nor by environmental effects. A method for

estimating the complete covariance matrix of the system parameters identified via SSI was recently

presented by Reynders et al. (2008), who proposed to remove the bias of the identified system

model and provided expressions of the covariances of modal parameters. Some open issues in

determining confidence intervals of estimated modal parameters using SSI methods were also

discussed by Carden and Mita (2009), who shown that for reasonable data lengths, the knowledge

of the covariance might not be sufficient to compute reliable confidence intervals. Indeed, if the

data lengths are not sufficiently large, which is usually the case of flexible structures (with natural

frequencies below 1 Hz), the modal parameter estimates might exhibit non-normal distributions. On

the other hand, the obtained confidence intervals are naturally affected by inherent statistical errors,

such as nonlinearities and non-stationarity, which might be enhanced in the case of long data

records. The influence of environmental effects, mainly temperature and wind velocity, on modal

parameter estimates was investigated by many authors, see for instance (Abe et al. 2000, Kang et

al. 2008, Macdonald et al. 2005, Li et al. 2009). Generally speaking, natural frequencies are usually

more affected by temperature variations, while damping ratios might depend upon the mean wind

velocity due to the onset of aerodynamic damping (Macdonald et al. 2005, Ubertini et al. 2010,

Ubertini 2010). Several techniques are also available in the literature for modeling the correlation

between modal frequencies and ambient temperatures thus allowing the elimination of environmental

effects in damage identification based on vibration measurements. Among those methods, the

support vector technique (Hua et al. 2007) and the neural network technique (Ni et al. 2009) are

especially worth mentioning, as they proved to be quite effective in practical case studies.

ǧ

ǧ
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The identification of the modal parameters of the Guangzhou New Television Tower (GNTVT),

China, is here performed via a SSI-data approach. To this end, the acceleration measurements made

available within the task I of the ANCRiSST benchmark problem (Xia et al. 2009, Ni et al. 2009)

are analyzed, which cover 24 hours of continuous monitoring of the ambient structural response. A

particular attention is devoted to the appropriate selection of the main parameters that affect the

results of the system identification. Following the findings of previous works (Hong et al. 2011),

this task is here solved by adopting suitable stability rules and by considering the variability of

damping ratios estimates. Once suitable intervals for the variation of the considered parameters are

selected, poles pertaining to the same structural modes are grouped by means of an automatic

clustering technique, as it is quite usual in the field (e.g., Carden and Brownjohn 2008), and the

identified modal parameters are provided with confidence bounds. The overall variability of the

results and the effects of ambient conditions (ambient temperature and mean wind velocity) are

investigated by analyzing several data sets, obtained by subdividing the available acceleration

histories into sub-intervals of appropriate lengths. In particular, both 10 minutes and 1 hour long

records are considered. Finally, the capability of the considered identification strategy in correctly

identifying all the structural modes comprised within the specified frequency range is checked by

comparing modal parameter estimates with preliminary finite element predictions.

The techniques adopted in this paper, i.e., SSI and clustering analysis, are well-known and it is

not in the intentions of the authors to deal with substantial modifications of these methods. On the

contrary, the study is meant to present their application to an extraordinary case study, which is

quite relevant both in terms of structural audacity and in terms of the complexity of the structural

health monitoring (SHM) system (Ni et al. 2009). The results presented in this paper will thus

contribute to the definition of reliable baseline modal parameters of the structure to be employed for

future engineering purposes (e.g., finite element model (FEM) updating and damage detection) and

shall be helpful to test the performances of the considered techniques for system identification by

comparison with the results obtained by different researchers involved in the benchmark problem.

2. Governing relations

The necessary background on Stochastic Subspace Identification is briefly recalled here for the

sake of clarity. For more extensive details the reader is referred to the original work by Van

Overschee and De Moor (1996) and to the paper by Alicio lu and Lus (2008). 

Let us consider the linear dynamics of a time-invariant N-dof structural system. The equations of

motion can be expressed in first order form and discrete time t = k∆t, ∆t being the sampling time

and k being the generic time step, as

(1) 

where  is the state vector,  is the vector of output measurements,  is the

system matrix, containing the information on the second-order mass, damping and stiffness matrices,

and  is the output matrix. In Eq. (1) it is also assumed that the structure is subjected to a

white noise process vector  while the measurements are affected by a white noise process
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vector .

Stochastic system identification algorithms aim at determining the model’s order n and the system

matrices A and C using the measurements y(0), y(1),..., y(s-1) available in s time steps. Once these

quantities have been estimated, the h-th circular natural frequency ωh, the h-th modal damping ratio

ξh and the h-th complex mode shape Φh can be determined as

(2)

where λh and ψh denote the h-th complex eigenvalue and eigenvector of matrix A with Re[λh] > 0.

Data driven stochastic subspace decomposition methods require the construction of the block

Hankel matrix H, having 2i block rows and j columns, with l·i ≥ n and j≤s-2i+1, which is defined as

  (3) 

It can be observed that the calculation of matrix H as in Eq. (3) essentially corresponds to an implicit

calculation of output covariances (Peeters and De Roeck 2000). Matrices  and  in

Eq. (3) are referred to as “past” and “future” output block matrices. The orthogonal projection of the

row space of Yf onto the row space of Yp, which is denoted by Pi = Yf / Yp, can be directly calculated

yielding a matrix  which can be also expressed as

 (4) 

Γi being the observability matrix of the system and  being a matrix that contains Kalman filter

estimates, denoted by the over-hat , of the state vector at different time steps. Eq. (4) constitutes the

main theorem of stochastic subspace decomposition. Indeed, by virtue of Eq. (4), both Γi and  can be

calculated by means of the singular value decomposition (SVD) of the formerly calculated matrix Pi.

Then, the system matrices A and C are readily extracted from the observability matrix Γi.

The available SSI-data algorithms essentially differ for the weighting matrices applied to the projection

matrix before the SVD. On this respect, the well-known canonical variate based algorithm (CVA) is
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here adopted as it was shown to yield superior performances if compared to different approaches

(Alicio lu and Lus 2008). 

3. Adopted system identification technique 

Following relevant literature works, the classic CVA algorithm by Van Overschee and De Moor

(1996) is adopted in this paper alongside with a noise mode elimination procedure and a clustering

analysis. SSI and clustering analysis are indeed quite often used in the literature (e.g., Carden and

Brownjohn, 2008) due to their effectiveness in providing reliable modal parameter estimates. Moreover,

the approach adopted in this paper is essentially similar to that adopted in (Hong et al. 2011) which

already proved to be quite effective in the case of a complex structure represented by a long-span

suspension bridge.

As explained in Section 2, the CVA algorithm (Van Overschee and De Moor 1996) requires the

preliminary tuning of, at least, three fundamental parameters which may strongly affect the outcome

of the identification process. These parameters are: 

1. the number i of output block rows in Eq. (3)

2. the number j of output block columns of matrix H in Eq. (3)

3. the order n of the model (i.e. the dimension of the state vector which equals the number of

system eigenvalues).

The number j of output block columns has to be as large as possible and, as it has been discussed

in Section 2, its maximum value is directly related to the total number of time steps available in the

measurements. Here, only the maximum possible value of j = s-2i+1 is considered and variations of

such a parameter are not accounted for. It is also worth noting that, although model’s order is

obviously an inherent property of the system, which could be determined on the basis of SVD, it is

always unknown when working with ambient data and, so, some criterion to determine feasible

values of n must be sought. As it will be better explained in the following developments of this

work, stabilization diagrams (SDs) and damping variations are considered here for this purpose, as

suggested in other literature works (e.g., Hong et al. 2011).

Different values of the aforementioned main parameters are here considered. In particular, i is

varied in an interval [imin, imax] with step amplitude ∆i and n is varied in an interval [nmin, nmax] with

amplitude ∆n. Modal parameters are then extracted for each combination of i and n. By operating in

this way, a large number of modal parameter estimates become available. Unfortunately, only some of

these poles correspond to structural modes while the remaining ones are related to noise. Therefore,

a tool for discriminating structural from noise modes is required to make order. To this end, the

method described below is here adopted.

First of all, a mode whose mode shape is not similar to the mode shapes of at least 2 other modes

is regarded as a noise mode and eliminated. To this end, the modal assurance criterion (MAC) is

applied to all possible pairs of identified modes and two eigenvectors are regarded as similar if their

MAC value is greater than 1-εMAC,noise, εMAC,noise being a small tolerance here assumed as 0.01.

Therefore, a specific mode is eliminated if there are not at least 2 other modes which have a MAC

value, with respect to the considered mode, higher than 1-εMAC,noise=0.99. The choice εMAC,noise=0.01

is made under the assumption that two eigenvectors with a MAC value greater than 0.99 are almost

perfectly correlated (perfect correlation corresponds to a MAC value equal to 1). As a second step,

the percentage frequency difference is calculated for each possible pair of identified modes. Then,

ǧ
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all modes that have less than 3 other modes with relative frequency differences smaller than a given

tolerance εf,noise (assumed as 0.02) are regarded as noise modes. Thirdly, the remaining modes are

grouped by means of a clustering technique. To this end, modes pertaining to a single group (cluster) are

chosen in such a way to have relative frequency differences, relative damping differences and 1-

MAC values, calculated with respect to a reference mode of the cluster, that are smaller than given

tolerances εf (assumed as 0.01), εξ (assumed as 0.03) and εMAC (assumed as 0.01), respectively. The

reference mode is here chosen as the one corresponding to the smallest order and the smallest

number of output block rows inside each cluster. Obviously, the same mode cannot belong to more

than one cluster. Finally, clusters containing less than 3 modes or having average damping ratios

larger than 50% are further eliminated.

4. Field measurements

The GNTVT, recently constructed in Guangzhou, China, is a super-tall structure (Fig. 1(a)) with

the height of 610 m (Xia et al. 2008, Ni et al. 2009). It is a tube-in-tube structure which comprises

a reinforced concrete inner tube and a steel outer one constructed by adopting concrete-filled-tube

(CFT) columns style (Fig. 1(b)). The outer tube consists of 24 CFT columns, uniformly spaced in

an elliptical shape while inclined in the vertical direction. The elliptical outer section decreases with

the height from 50 m × 80 m at ground level to the minimum dimensions of 20.65 m × 27.5 m at

280 m height; then, it increases again to 41 m × 55 m at the top level of the tube (454 m height),

changing its horizontal orientation with the height (the top ellipse is rotated clockwise by 45°

relative to the bottom oval in the horizontal plane) as shown in Fig. 1(c). The columns are interconnected

transversely by steel ring beams and bracings. Thirty-six floors and connection girders allow linking

Fig. 1 GNTVT: (a) rendering view of the tower, (b) outer-tube, inner-tube with floors, connection girders and
mast, (c) geometrical representation of the outer-tube changing in dimension and orientation, (d) zoomed
view of the outer-tube top section at z = 450 m
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the outer tube with the inner tube which has an oval shape as well but with constant dimensions of

14 m × 17 m (Fig. 1(c), where the inner tube is the smallest oval section). 

A structural health monitoring system consisting of 16 types of more than 700 sensors was

designed and implemented by the Consortium of Hong Kong Polytechnic University and Sun Yat-

Sen University on GNTVT for both in-construction and in-service real-time monitoring. For this

purpose a SHM benchmark problem was conceived (Xia et al. 2008, Ni et al. 2009) by considering

the GNTVT as the test structure and using real time measurement data, recorded by a variety of

different sensors including accelerometers, strain gauges and GPS systems that are currently

receiving much attention (Casciati and Fuggini 2009a, 2009b). A dense range of twenty uni-axial

accelerometers were placed at 8 sections at different heights of the tower inner tube as depicted in

Fig. 2(c). On each of the eight sections two accelerometers were installed, located at the edges of

the inner tube section, forming an angle of 30° with the horizontal short axis direction of the inner

tube. The two uni-axial accelerometers allow, for each level, measurements of the vibrations along

the long and the short axis of the inner tube, respectively (i.e., X and Y directions, respectively).

Only at sections 4 and 8, four uni-axial accelerometers were installed, located in two points of the

inner tube section, allowing to record two acceleration measurements for the long-axis of the inner

tube and two for the short-axis. It is worth noting that the long-axis and the short-axis of the inner

tube are rotated horizontally of an angle of 18° with respect to the North and to the East directions

(which also coincide with the long and short axis of the outer tube top section), respectively, as

depicted in Fig. 2. 

Twenty-four hours of ambient vibration records, subdivided in temporal windows of one hour

length (for a total of 24 data sets), were made available within the task I of the benchmark. The

measurements were performed from January 19th to January 20th 2010, starting from 5:00 pm. At

that time the entire structure was completed. An anemometer and a thermocouple were also

Fig. 2 Accelerometers sensors location on the GNTVT (a) position of the accelerometers on the 8 levels, (b)
plan position of the accelerometers with the measurements directions and the channel labels
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installed at the top of the main tower (z = 641.1 m) which recorded the wind speed, the wind

direction and the ambient temperature.

5. Modal identification of the GNTVT

The system identification of the GNTVT is carried out by using the field measurements described

in Section 4. As a first screening, it was decided to analyze 5 of the available 24-hours data, and

divide them into sub-intervals of 10-minutes length that were chosen to be spread along the entire

24 hours records. A total of 30 windows, 600-seconds long, were thus obtained (i.e., 30 data sets).

This analysis is characterized by a reasonable computational effort and allows to achieve preliminary

information for successive refinements. At a first stage of investigation, the available time histories

have been down-sampled from 100 Hz to 6.67 Hz. A typical ambient vibration record of acceleration

time-history measured on the structure is depicted in Fig. 3, together with its corresponding velocity

and displacement time-histories, computed through an integration process.

After determining the modal parameter estimates using 10 minutes long data, each of the 24 hours

has been analyzed separately as a single data set 3600-seconds long. The preliminary analysis revealed

that the first twelve structural modes are approximately contained in the frequency interval [0-1.25

Hz]. Considering this as a sufficiently large number of modes, only this interval has been retained

in the identification process and the information concerning larger natural frequencies has been

filtered out by using a lowpass Butterworth filter with cutoff frequency of 1.5 Hz. In the case of the

one-hour long records, data have been down-sampled from 100 Hz to 3 Hz so to have a Nyquist

frequency of 1.5 Hz, which is slightly greater than the largest frequency of interest (1.25 Hz), and a

frequency resolution of 2.78·10-4 Hz. As better explained in the following developments of this

work, this choice also permitted to emphasize the role played by the length of the records on the

repeatability of the modal parameter estimates.

In the case of the 10-minutes data, having a total of l=20 output measurements of length s=

600·6.67, being 6.67 Hz the sampling frequency, reflects on a maximum number of block rows of

the Hankel matrix, imax, which results from the condition 2i≤(s+1)/(l+1), thus being i ≤ 95. Choosing

∆i as about 1/10 of imax, imin is taken as imax-4·∆i, so to have 5 values of i. Here, imax is chosen as 90,

∆i as 10 and imin as 50. In order to comprise the computational effort within reasonable limits, the

same parameters are also considered in the case of the one-hour long records.

The range of variability of model’s order is chosen on the basis of SDs, i.e., plots of the identified

frequencies against n, and damping variations. SDs permit to highlight the modes whose properties

do not change significantly when varying the dimension of the state vector (stable modes). An

example of SD, calculated for a sample 10 minutes record, is shown in Fig. 4 (left). In this plot a

Fig. 3 Sample acceleration record (left) and corresponding velocity (middle) and displacement (right) time-
histories
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pole that is consistent (i.e., similar) with a two order larger model in terms of frequency, damping

ratio and mode shape, is denoted with a black star, while a pole that only satisfies frequency and

mode shape similarity checks is denoted with a gray triangle. In the similarity checks the tolerances

εf = 0.01 (for relative frequency differences), εξ = 0.03 (for relative damping differences) and εMAC =

0.01 (for 1-MAC values) are adopted. The right plot in Fig. 4 is, on the contrary, calculated by

considering a sample 1 hour long record. For a better visualization of the different modes, also the

power spectral density (PSD) functions of the 20 measurements are plotted in the figure (grey lines).

The presented results show that structural modes which are consistent in terms of damping ratios

are more easily identified using longer data records rather then using shorter ones. This circumstance was

also confirmed by different authors (e.g., by Carden and Mita 2009). Moreover, most of the modes

fail to appear consistently for n<50. No clear indication is obtained from these plots on some

maximum value of the model’s order. Therefore, these results indicate that nmin should be chosen to

be larger than 50 and nmax might be freely chosen. It is important to note, however, that this last

conclusion is not general but it is strictly related to the considered case study.

In order to make a more appropriate decision on the adopted range of n, the variation of damping

ratios with such a parameter is also worth investigating (Hong et al. 2011). Fig. 5 shows similar

plots for the first two structural modes and for a sample one-hour long data set. These plots indicate

that damping ratios estimates appear to be sufficiently stable along model’s order in the order range

[100, 200]. Under the assumption that in the optimal range of variability of n the “true” damping

ratios should appear consistently with small variations, it is decided to limit the maximum value of

Fig. 4 Sample stabilization diagrams: 10 minutes record (left), 1 hour record (right)

Fig. 5 Estimated damping ratios of the first two modes as functions of model’s order
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n to 200 and the interval [nmin=140, nmax=200] is finally chosen with step amplitude ∆n=10.

As already mentioned, in the frequency range below 1.25 Hz a total of 12 structural modes are

identified. As an example, in the left plot of Fig. 6 identified damping ratios are plotted vs. identified

frequencies for a sample data set using one-hour long records. In this plot the crosses indicate the

mean values of each cluster, while the lines parallel to the vertical axis indicate the amplitudes of

the 95% confidence intervals of the damping ratios calculated for the different values of n and i.

The amplitudes of these confidence intervals are so small that they can be appreciated only in

detailed views, such as in two cases shown in Fig. 6. The 95% confidence intervals of the natural

frequencies are also reported in Fig. 6, as lines parallel to the horizontal axis, but they are not

visible even in the detailed views. These circumstances show that, for a single data set, the

variations of damping ratios estimates and natural frequencies with n and i are, in the considered

case, very small. The identified modal parameters (mean values) among all the considered one-hour

long data sets are shown in the right plot of Fig. 6. The identified mode shapes are presented in the

successive developments of this work.

It is important to mention that the confidence bounds shown in Fig. 6 reflect the uncertainties

associated with different choices of n and i, but do not necessarily reflect the statistical accuracy of

the modal parameter estimates with regard to the available data, as considered by other authors

(Reynders et al. 2008, Carden and Mita 2009), which would go beyond the purposes of the present

investigation. In order to quantify, to some extent, the uncertainties associated with the modal

parameter estimates, the variations of the results obtained in different data sets are here investigated.

To this end, the mean values and the coefficients of variation (CVs) of the identified modal

frequencies fi (i=1,2,…,12) and damping ratios ξ i (i=1,2,…,12) among the considered data sets are

provided in Table 1 and 2. The results show that the variability of identified frequencies is very low

(CVs of about 0.15% as an average and 0.36% as a maximum, in the case of one-hour records).

Fig. 6 Identified modal parameters for a sample data set (left), identified modal parameters for all the
considered data sets (right)

Fig. 7 Coefficients of variation of natural frequencies (left) and damping ratios (right) for different lengths of
data sets
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This means, for instance, that using the adopted SSI method a damage detection technique based on

frequency variations would be able to detect minimal levels of damages which produce frequency

changes of the order of 0.15%. On the contrary, the variability of damping ratios is much higher

than that of natural frequencies, with average CVs, among the different data sets, of about 35% in

the case of one-hour records. A similar result was somehow expected because, as it is well-known,

estimates of damping ratios are usually more scattered than estimates of natural frequencies

(Alicioglu and Lus 2008). Moreover, the CVs of damping ratios estimates are very close to those

obtained in similar studies in the literature (see for instance (Nayeri et al. 2008, Li et al. 2009)). On

this respect, it is very important to note that damping variability is much smaller in the case of one-

hour long records than in the case of ten-minutes records, where the average CV is about 60%.

Similarly, the variability of natural frequencies is also improved in the former case. For instance,

Fig. 7 shows a comparison between the coefficients of variation of natural frequencies CVfi and

damping ratios CVξi for the different structural modes in both cases of ten-minutes long records and

one-hour records. Looking at these results, it is concluded that modal parameter estimates, and

particularly modal damping ratios, using ten-minutes long records exhibit a level of uncertainty

which is not acceptable and, so, only the results obtained using one-hour long records are considered

in the successive developments of this paper.

As already mentioned, the identified mode shapes are presented later on in this study. At this

stage, however, it is important to mention that the mode shapes identified in the different data sets

also exhibited some small variations which are a little more significant in the case of lower modes

than in the case of higher order ones. As an example, Fig. 8 presents the average MAC values of

the identified mode shapes with respect to those identified within a reference data set (the data set

recorded at noon on January 20th 2010) in the case of the one-hour long records. In such a Figure,

Table 1 Mean values and coefficients of variation of identified modal frequencies among the different data sets
(values in Hz)

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

10-minutes records, 30 data sets

Mean 0.0935 0.1383 0.3659 0.4257 0.4727 0.5052 0.5217 0.7950 0.9648 1.1505 1.1908 1.2496

CV 0.0053 0.0038 0.0021 0.0224 0.0208 0.0013 0.0060 0.0020 0.0016 0.0009 0.0006 0.0011

1-hour records, 24 data sets

Mean 0.0936 0.1384 0.3659 0.4238 0.4747 0.5054 0.5224 0.7951 0.9656 1.1505 1.1910 1.2506

CV 0.0036 0.0019 0.0016 0.0007 0.0006 0.0011 0.0008 0.0023 0.0033 0.0005 0.0004 0.0009

Table 2 Mean values and coefficients of variation of identified modal damping ratios among the different data
sets (values in percentage)

10-minutes records, 30 data sets

No. ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12

Mean 0.6965 0.5349 0.2502 0.2300 0.1779 0.1929 0.3077 0.2846 0.3076 0.1379 0.1668 0.2275

CV 0.8672 0.6552 0.8574 0.8360 0.7838 0.5321 1.8611 0.7983 1.3484 0.6492 1.0442 0.5393

1-hour records, 24 data sets

No. ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12

Mean 0.4271 0.3156 0.2631 0.1709 0.1076 0.1441 0.1700 0.2305 0.2552 0.1199 0.1065 0.1531

CV 0.3802 0.4537 0.2290 0.2817 0.3960 0.2791 0.3661 0.4050 0.5273 0.4863 0.2303 0.2372
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the average MAC values are always greater than 97.7%, showing modest variations of the mode

shapes among the different data sets, with the only exception of mode 2 for which the average

MAC is equal to 88.4%. This last value entails that the variation of this mode shape among the

different data sets is not insignificant. Possible reasons for this outcome are a small excitation level

of this mode, the finite length of the data records, or an insufficient number of sensors. However,

considering that most of the MAC values in Fig. 8 are very close to 1, it is concluded at this stage

that the observed variations of the identified mode shapes are fully acceptable. It is also important

to mention that a check performed aside has shown that the results presented in Fig. 8 would not be

substantially modified by changing the reference data set.

6. Environmental effects on modal parameter estimates

A key point in view of future damage detection and health assessment applications is to

investigate the influence of environmental factors on the estimated modal parameters. To this end,

the effect of ambient temperature on the estimated modal frequencies and the effect of the mean

wind velocity on the estimated damping ratios are here analyzed.

Figs. 9 and 10 show the percentage variations fi of the i-th modal frequencies fi with ambient

temperature T. In such plots, linear interpolating lines are also shown. Although slight temperature

variations were observed during the tests, the resulting frequency variations are not insignificant (of

the order, in some cases, of 0.5%) and some trends can be clearly recognized in the lower modes,

which generally confirm that, as usual, natural frequencies decrease with increasing temperature

(Abe et al. 2000, Kang et al. 2008). A larger scatter of lower frequencies with respect to higher

order ones is also evidenced in these plots.

The percentage variations ∆ξi of the i-th modal damping ratios ξi (i=1,2,…,12) with the X and Y

components of the mean wind velocity are shown in the plots of Figs. 11 and 12. In these cases, the

data scatter is much larger than that observed in natural frequencies which does not allow yielding

general conclusions. However, some modes exhibit increasing or decreasing trends of damping

ratios with the X and/or Y components of the mean wind velocity. Obviously it is not easy, at this

stage, to conclude whether these trends are effectively due to the onset of aerodynamic damping,

which usually plays a significant role in flexible structures (Cluni et al. 2007, Ubertini 2010) and

varies with the mean wind velocity (being it positive or negative), or if they are simply caused by

meaningless experimental scatter. Probably, in the presented case, both aspects are influencing the

results. 

Although a definitive conclusion about wind velocity effects cannot be derived from the results

presented in Figs. 11 and 12, it is worth noting that some modal damping ratios are almost stable

Fig. 8 Average MAC values of identified mode shapes with respect to the mode shapes identified in a
reference data set
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Fig. 9 Variation of natural frequencies with ambient temperature (modes 1-8)

Fig. 10 Variation of natural frequencies with ambient temperature (modes 9-12)
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with both components of the mean wind velocity. This result seems to confirm the expected

circumstance that the aerodynamic damping is likely negligible in the present case, considering that

the observed values of the mean wind velocity are very small. In the meanwhile, the damping ratios

of some modes exhibit clear trends with one component of the mean wind direction while being

almost constant with the orthogonal wind component (see for instance mode 2). This seems to be a

stronger indication of the aeroelastic nature of these trends: for instance, in the case of mode 2, as it

will be clearer in the following developments of the work, the leading vibration component is in the

X direction which would be consistent with the trend observed in Fig. 11. However, modes could be

found in Figs. 11 and 12 which do not confirm this result.

Looking at the presented results, damping ratios seem to provide average trends with mean wind

velocity which are somewhat consistent with what expected in theory. Nevertheless, a much larger

number of data sets would be necessary to confirm such conclusion under the assumption that

increasing the number of data sets allows compensating the random errors in damping estimations.

Fig. 11 Variation of damping ratios with X component of mean wind velocity
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7. Comparison with preliminary FEM results

Preliminary finite element (FE) structural matrices of the GNTVT have also been made available

within the benchmark problem (Xia et al. 2008, Ni et al. 2009). It is therefore of interest to

compare the FE predictions with the modal parameter estimates obtained from ambient vibration

measurements. Since the FE model has not been updated using field measurements it is implicit that

identified and calculated modal parameter estimates will unavoidably exhibit some differences.

However, the comparison between the two is essential for checking that all the structural modes

comprised within the considered frequency interval are effectively identified via SSI-data, in the

correct order, and that the identified modal parameters are similar to those expected in the design

stage.

Table 3 presents the types of the identified mode shapes (BX denotes a bending mode with a

prevailing X component, BY denotes a bending mode with a prevailing Y component, and T denotes

Fig. 12 Variation of damping ratios with Y component of mean wind velocity
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a torsional mode) and the comparison between identified (ID) and calculated modal frequencies.

Particularly, the identified values correspond to the mean values presented in Table 1 (one-hour long

records). Percentage differences between identified and calculated natural frequencies, in Table 3,

are denoted by ∆. Overall, these differences are significant (the average percentage frequency

difference is about equal to 11%), which is a consequence of the circumstance that the FE model

has not been updated. However, considering that there is no clear trend in the values of ∆ when

varying the order of the modes, that is, the values referred to different modes are almost of the same

order of magnitude, it seems that no structural mode is lost in the identification process in the

considered frequency range. This conclusion seems to be also corroborated, in most of the cases, by

analyzing the MAC values between calculated and identified mode shapes which are also

summarized in Table 3. Although it is obvious that the degree of correlation between mode shapes

is, in some cases, unavoidably low, which is again a consequence of the circumstance that the FE

model has not been updated, it is important to note that MAC values are larger than 90% in the

case of modes 1, 2 and 6, are between 80% and 90% in the case of modes 3, 4, 5 and 7 and always

larger than 58% with one only exception represented by the 10th mode. It must be mentioned that

these results have been obtained by separately scaling the X and Y components of the mode shapes.

Particularly, the two components obtained from the FE analysis have been rescaled, here, with

respect to their absolute maxima obtained from system identification results. This procedure,

although not rigorous because it considers different scaling factors for different components of the

same structural modes, allows a better comparison between identified and calculated mode shapes,

even without a model updating which is not the subject of this work. In particular, by operating in

this way, the calculated MAC values indicate an average between the degree of modal correlation in

the X direction and the degree of modal correlation in the Y direction, taken as separate but keeping

the information on the phase shift between the X and Y modal components. On the contrary,

differences in the levels of modal coupling between these two components are not taken into

account, as they are likely to be strongly influenced by modeling uncertainties with the consequence

that, dealing with a FE model that has not been updated, might result in a more confused scenario

with lower MAC values even when calculated and identified mode shapes correspond to the same

structural mode.

The comparison between identified and calculated mode shapes is also shown in Fig. 13. These

results clearly show that identified and calculated modes resemble the classic bending eigenfunctions of

a cantilever beam, where the peculiar shape of the tower obviously determines a coupling between

the vibrations in the X and Y directions. Moreover, the similarity between identified and calculated

mode shapes clearly points out for most of the modes from Fig. 13. As shown in Fig. 14, the first

two torsional modes of the structure correspond to the 6th and 12th modes. 

Table 3 Comparison between FE calculated and identified modal parameters; mode type: B (bending), T
(torsional) 

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

Mode type BY BX BX BY BY T BX BX BY BX BX T

ID 0.0936 0.1384 0.3659 0.4238 0.4747 0.5054 0.5224 0.7951 0.9656 1.1505 1.1910 1.2506

FE 0.1104 0.1587 0.3463 0.3688 0.3994 0.4605 0.4850 0.7381 0.9026 0.9972 1.0373 1.1218

∆ (%) 17.95 14.67 5.36 12.98 15.86 8.88 7.16 7.17 6.52 13.32 12.91 10.30

MAC 0.9793 0.9769 0.7248 0.8927 0.8143 0.9334 0.8716 0.6923 0.7214 0.1010 0.5806 0.6547
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8. Conclusions

The identification of the modal parameters of a super high-rise building has been presented via a

data driven stochastic subspace approach combined with a noise mode elimination procedure and a

mode clustering technique. The results show that by repeating the system identification using records

with similar ambient conditions, the obtained frequency estimates have coefficients of variation of

about 0.15%, while damping ratios estimates have coefficients of variation of about 35%. In this

last case, considering sufficiently long data records was found to be crucial in order to reduce the

variability of damping ratios estimates.

The analysis of the role played by ambient conditions has shown that frequency variations due to

temperature changes of about 3oC can be clearly appreciated by the considered identification

strategy which constitutes an important result in view of future applications of the method. The

presented results have also evidenced some trends of some modal damping ratios with mean wind

velocity. However, considering the larger scatter affecting estimated modal damping ratios, it is

Fig. 13 Identified (continuous lines) vs. FE calculated (black circles) mode shapes

Fig. 14 First two torsional modes (from FE analysis)
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difficult to discern at this stage whether these trends are effectively caused by aeroelastic effects

(i.e., aerodynamic damping) or not. In any case, it is worthwhile to note that, for most of the modes,

damping ratios estimates are practically constant, in an average sense, with mean wind velocity.

This result confirms the initial guess that aerodynamic damping was likely negligible in the

presented case, considering that the measured wind velocities were always very small and comprised

between 0 and 4 m/s, and gives some preliminary indication that the errors on modal damping

estimates compensate as the number of data sets is increased. 

The comparison between preliminary FE predictions and identification results, considering both

natural frequencies and mode shapes correlations, seems to confirm that the considered identification

strategy allows detecting all the twelve structural modes contained within the considered frequency

interval in the correct order.

In summary, the results presented in this paper constitute the essential groundwork for future

damage detection applications: the coefficients of variation of natural frequencies and the influence

of ambient temperature dictate the minimum level of damage that can be detected using frequency

variations; the coefficients of variation of damping ratios estimates are directly related, for instance,

to the possibility of separating structural from aerodynamic damping via extrapolation of the

observational data for a nil mean wind velocity which, however, would require the availability of

field measurements at larger wind velocities.

 

Acknowledgements

The authors wish to gratefully acknowledge Professor Y.Q. Ni, Hong Kong Polytechnic University,

Hong Kong, China, for kindly sharing the information concerning the ANCRiSST monitoring

benchmark. Comments and suggestions by Professor R. Betti and Dr. A.L. Hong, Columbia University,

New York, and by Professor C. Gentile, Politecnico di Milano, Milano, Italy, are also acknowledged

with gratitude.

References

Abe, M. Fujino, Y., Yanagihara, M. and Sato, M. (2000), “Monitoring of Hakucho suspension bridge by
ambient vibration measurement”, Proceedings of SPIE, 399, 237-244.

Alicio lu, B. and Lus, H. (2008), “Ambient vibration analysis with subspace methods and automated mode
selection: case studies”, J. Struc. Engin-ASCE, 134(6), 1016-1029.

Carden, E.P. Brownjohn, J.M.W. (2008), “Fuzzy clustering of stability diagrams for vibration-based structural
health monitoring”, Comput-Aided Civ. Inf., 23(5), 360-372.

Carden, E.P. and Mita, A. (2009), “Challenges in developing confidence intervals on modal parameters
estimated for large civil infrastructure with stochastic subspace identification”, Struct. Health Monit.,
DOI:10.1002/stc.358.

Casciati, F. and Ubertini, F. (2008), “Nonlinear vibration of shallow cables with semi-active tuned mass damper”,
Nonlinear Dynam., 53(1-2), 89-106.

Casciati, F. and Fuggini, C. (2009a), “Towards global positioning system-based structural health monitoring”,
Trend. Civil Struct. Eng. Comp., (Eds. Topping, B.H.V., Costa Neves, L.F. and Barros, R.C), 15, 319-352.

Casciati, F. and Fuggini, C. (2009b), “Engineering vibration monitoring by GPS: long duration records”, Earthq.
Eng. Eng. Vib., 8(3), 459-467.

Chatzi, E.N. and Smyth, A.W. (2009), “The unscented Kalman filter and particle filter methods for nonlinear

ǧ
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