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Abstract. An early detection of structural damages is critical for the decision making of repair and
replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural
damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has
received considerable attention recently. The traditional time-domain analysis techniques, such as the least
square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external
excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two
approaches have been extended to cover the general case where some of the external excitations (inputs) are
not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with
unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear
least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive
quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking
of structures when some of the acceleration responses are not measured and the external excitations are not
available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy,
convergence and efficiency, for damage identification of structures based on experimental data obtained
through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The
capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural
damages will be demonstrated and compared. 

Keywords: structural health monitoring; structural identification; damage tracking of structures; unknown
excitations; experimental verification.

 
 1. Introduction

A rapid assessment of the state (or damage) of the structure is important after a major event, such

as a strong earthquake, for post-event emergency responses, rescues and management. In this

regard, appropriate data analysis techniques are needed to interpret the vibration data and to identify

the state of the structure and its damage on-line or almost on-line. Various time-domain analysis

approaches for system identification and damage detection have been proposed in the literature (e.g.,

Doebling et al. 1998, Alvin et al. 2003, Bernal and Beck 2004, Chang 2005). Recently, several adaptive
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time-domain damage identification methodologies have been developed (e.g., Huang 2006, Yang and

Lin 2005, Yang et al. 2006a, b, 2009).

The traditional time-domain analysis techniques, such as the least square estimation (LSE) method

(e.g., Goodwin and Sin 1984, Loh et al. 2000, Lin et al. 2001, Smyth et al. 2002, Yang and Lin

2004) and the extended Kalman filter (EKF) approach (e.g., Hoshiya and Saito 1984, Sato et al. 2001),

require that all the external excitations (inputs) be available from sensor measurements. Due to

practical limitations, it may not be possible to install enough sensors in the health monitoring

system to measure all the external excitations (inputs), or the external excitations may not be

measurable, such as wind or traffic loads. Consequently, it is highly desirable to develop damage

identification methodologies utilizing only incomplete measurements, including unmeasured inputs

and outputs, in order to reduce the number of sensors required in the health monitoring system.

When the external excitations are not measured or not available, numerical iterative procedures

based on the least square estimation (LSE) or the extended Kalman filter (EKF) have been proposed

to identify the constant structural parameters (e.g., Wang and Haldar 1994, 1997) without any analytical

solutions. Without the measurements of external excitations, adaptive damage tracking methodologies

with analytical recursive solutions have been proposed recently to identify the structural damage

based on: (i) the LSE approach (Yang et al. 2007a), (ii) the extended Kalman filter technique (Yang

et al. 2007b), (iii) the sequential non-linear least-square estimation (SNLSE) (Yang and Huang

2007), and (iv) the quadratic sum-squares error (QSSE) (Huang 2006, Huang et al. 2010). These

methodologies are applicable to both linear and nonlinear structures, and are capable of identifying

either constant or time-varying structural parameters.

In this paper, the capability of tracking the structural parameters and their variations due to

damages for various damage tracking techniques mentioned above are compared based on experimental

data. A series of experimental tests using a scaled 3-story building model was conducted in which

the white noise excitations were applied to the top floor (Zhou et al. 2008). In these experimental

tests, an innovative stiffness element device was proposed to simulate structural damages in some

stories during the test. Different damage scenarios had been simulated and tested. The experimental

data thus obtained (Zhou et al. 2008) will be used to verify the capability of the adaptive LSE-UI,

EKF-UI, SNLSE-UI-UO and QSSE-UI approaches for the tracking of structural damages. Finally,

the identification results for the stiffness of all stories, based on each approach, will be compared

with the referenced values predicted by the finite-element analysis. The advantages and drawbacks

of each damage tracking approach will be evaluated in terms of the accuracy, efficiency and

practicality.

 2. Time-domain analysis methodologies without external excitations

The equation of motion of a m-DOF nonlinear structure can be expressed as

(1)

in which M = (m×m) mass matrix; x(t) = [x1, x2,..., xm]T = m-displacement vector; Fc[ (t),θ] = m-damping

force vector; Fs[x(t),θ] = m-stiffness force vector; f(t) = -known (or measured) excitation vector; η =

 excitation influence matrix for f(t); f*(t) = r-unknown (or unmeasured) excitation vector; and

η* = (m×r) excitation influence matrix for f*(t). In Eq. (1), θ=[θ1, θ2,..., θn]
T is an n-unknown parametric
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vector with θi (i = 1, 2,..., n) being the ith unknown parameter of the structure, including damping,

stiffness, nonlinear and hysteretic parameters. For simplicity of derivation, we shall assume for the time

being that the unknown parametric vector θ is constant, i.e., θ = θ1 = θ2 =...= θk+1, where θi=θ (t = i∆t)

for i = 1, 2,..., k+1. In the formulation above, the mass matrix M is assumed to be known and constant

for simplicity of presentation. The masses can be considered as unknown, in which case the unknown

masses will be included in the parametric vector θ(t) above. Likewise, η* is a null matrix if all

excitations are measured, and η is a null matrix if all excitations are not measured. In what follows, the

bold face letter represents either a vector or a matrix. 

2.1 Least square estimation with unknown inputs (LSE-UI)

In this approach, the acceleration, velocity and displacement response vectors, denoted as , 

and x, respectively, are available, and some external excitations are not measured. The observation

equation associated with the equation of motion in Eq. (1) can be expressed as

(2)

in which ε(t) is a m-model noise vector, taking into account the model uncertainty of the structure and

the measurement noises, ϕ[ ] is a (m×n) observation matrix composed of the system response vectors,

and y(t) = ηf(t)−M (t) is a m-measured vector. 

At the time instant t = (k+1)∆t with ∆t being the sampling interval, Eq. (2) can be written as

(3)

in which ϕk+1, yk+1, εk+1 and fk+1
* are ϕ[ (t), x(t); t], y(t), ε(t) and f *(t) at t = (k+1)∆t, respectively; and

θk+1 = [θ1(k+1), θ2(k+1),..., θn(k+1)]T is the unknown parametric vector with the jth element θj(k+1)

= θj[(k+1)∆t].

Define an extended unknown vector θe,k+1 and an extended observation matrix ϕe,k+1 at t = (k+1)∆t,

i.e.,

 (4)

in which θe,k+1 is a (n+r)-unknown vector. Then, Eq. (3) can expressed as

(5)

Let  and  be the estimates of θk+1 and fk+1
* at t = tk+1 = (k+1)∆t respectively. The recursive

solutions for  and  can be derived can be derived from as follows (Yang et al. 2007a)

(6)

(7)

in which

 (8)

(9)

x·· x·
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(10)

where Kθ,k+1 is the (n×m) LSE gain matrix for . In Eq. (10), Kθ,k and Sk are obtained, respectively,

from Eqs. (8) and (9) by replacing k+1 by k. It can be shown easily that the recursive solution in Eqs.

(6)-(10) reduces to the classical one when all the external excitations are known, i.e., η* = 0. The

analytical solution derived in Eqs. (6)-(10) is referred to as the recursive LSE with unknown inputs

(LSE-UI). For the numerical computation, Eq. (7) is used first to compute  and then Eq. (6) is

used to compute  (Yang et al. 2007a).

The recursive solution  in Eqs. (6)-(10) is derived based on the constant parametric vector

θk+1. To identify time-varying parameters of the structures for detecting the damages, the adaptive

tracking technique proposed by Yang and Lin (2004, 2005) can be used. Since the estimation error

is reflected in the adaptation gain matrix Pθ,k as shown by Eq. (10), Pθ,k in Eq. (10) was proposed to

be replaced by the following

(11)

In Eq. (11), Λk+1 is a diagonal matrix, referred to as the adaptive factor matrix, with diagonal elements

λ1(k+1), λ2(k+1),..., λn(k+1), where λj(k+1) is referred to as the adaptive factor for the estimated

parameter θj(k+1) at t = tk+1 = (k+1)∆t. The determination of the adaptive factor matrix was discussed in

(Yang and Lin 2005). The method presented in Eqs. (6)-(11) is referred to as the adaptive least-square

estimation with unknown input (ALSE-UI), and it will be verified by experimental data later. 

2.2 Extended Kalman filter with unknown inputs (EKF-UI)

In this approach, some acceleration responses and none or some of external excitations are measured,

whereas the unknown displacement and velocity responses, the unknown parametric vector as well

as the unmeasured excitations are to be estimated. Here, an extended state vector with a dimension

of 2 m+n is introduced

(12)

and Eq. (1) is transformed into a nonlinear extended state equation, i.e.,

(13)

in which w(t) = model noise (uncertainty) with zero mean and a covariance matrix Q(t). A nonlinear

discrete equation for an observation vector (measured output) can be expressed as follows

 (14)

in which yk+1 is a l-observation (measured) output vector at t = (k+1)∆t i.e., yk+1 = y(t = (k+1)∆t),

Zk+1 = Z(t = (k+1)∆t), fk+1 = f(t = (k+1)∆t), and fk+1
* = f*(t = (k+1)∆t). In Eq. (14), vk+1 is a measurement

noise vector assumed to be a Gaussian white noise vector with zero mean and a covariance matrix

 where δkj is the Kroneker delta.

Let  and  be the estimates of Zk+1 and fk+1
* predicted at t = (k+1)∆t. The goal is
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to determine the solutions for  and  (for k=1,2,…) by minimizing an objective

function Jk+1 that is the sum square error as follows

 (15)

Based on the extended Kalman filter with unknown inputs (EKF-UI) approach (Yang et al.

2007b), the recursive solutions for the estimations  and  (for k=1,2,…) are given

in the following.

(16)

(17)

(18)

in which , and

(19)

(20)

(21)

(22)

where Qk+1 is the variance matrix of the model noise vector w(t) at t = (k+1)∆t, Φk+1,k is the state

transition matrix of the linearized system that is obtained from the linearization of Eq. (13).

In Eqs. (16)-(17), Hk+1|k and D*
k+1|k are given by 

(23)

The EKF-UI approach in Eqs. (16)-(23) (Yang et al. 2007b) can be used to identify the constant

parameter vector θ. Again, the adaptive tracking technique proposed by Yang and Lin (2004, 2005)

was implemented to identify time-varying parameters of the structures for detecting the damages.

Since the estimation error is reflected in the adaptation gain matrix PZ,k+1|k as shown by Eq. (21),

PZ,k+1|k in Eq. (21) was proposed to be replaced by the following (Yang et al. 2007b)

(24)

in which Λk+1 is a (2m+n)×(2m+n) diagonal matrix, referred to as the adaptive factor matrix. The first

2m diagonal elements of Λk+1 corresponding to x and  are set to be 1.0, whereas the last n diagonal

elements corresponding to unknown parameters are denoted by λ1(k+1), λ2(k+1),..., λn(k+1). The

determination of the adaptive factor matrix was discussed in (Yang et al. 2007b). The method presented

in Eqs. (16)-(24) is referred to as the adaptive extended Kalman filter with unknown inputs (AEKF-UI),

and it will be verified by experimental data later. 
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2.3 Sequential non-linear least-square estimation with unknown inputs and unknown outputs
(SNLSE-UI-UO)

The LSE approach requires that the information for the acceleration and state vector at all degrees

of freedom (DOFs) be available. Further, the dimension of the extended state vector Z in the EKF

approach is large, so that the computational efforts for the damage detection is quite involved, in

addition to possible convergence problem. To remove the drawbacks of LSE and EKF approaches

for the damage identification, a new approach was proposed, referred to as the sequential non-linear

least-square estimation with unknown inputs and unknown outputs (e.g., Yang and Huang 2007,

Huang 2006). In this approach, some acceleration responses and none or some of excitation forces

are measured. The acceleration vector  in Eq.(1) is divided into two

vectors, denoted by  and , in which

 (i=1,2,…,s) and  (i=1,2,…,m-s) are unknown (unmeasured) and known (measured)

acceleration responses, respectively. The unknown quantities to be identified are the unknown parametric

vector θ, the unmeasured excitation vector f*, the unmeasured acceleration response vector , and

the state vector X = [xT, ]T, including the displacement and velocity vectors.

By adding the model uncertainty, ε(t), Eq. (1), can be written in the following form

(25)

in which X is the state vector defined above; ϕ(X) is called the data matrix;  is known;
T is the unknown input-output vector consisting of unknown inputs f* and unknown

outputs ;  is a known matrix; and ε(t) is a m-model noise vector. 

Similar to the LSE-UI approach, one can define a (n+r+s)-extended unknown vector θe,k+1 at tk+1

involving both θk+1 and . Instead of solving Xk+1 and θe,k+1 simultaneously, one can solve Xk+1

and θe,k+1 in two steps. The first step is to determine θe,k+1 by assuming (or under the condition) that

Xk+1 is given, and the second step is to determine Xk+1 through a nonlinear LSE approach, referred

to as the sequential non-linear least-square estimation with unknown inputs and unknown outputs

(SNLSE-UI-UO), as follows (Yang and Huang 2007).

Step I: Suppose the state vector Xk+1 is known, the recursive solutions for  and ,

which are the estimates of θk+1 and  predicted at t = (k+1)∆t, have been derived based on the

LSE-UI approach as follows

 (26)

 (27)

(28)

 (29)

 (30)

in which ,  and Pθ,k are defined similarly in the LSE-UI approach, except

that the former two matrices are functions of the state vector Xk+1.
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Step II: As observed from Eqs. (26)-(30),  is a function of the unknown state vector Xk+1, i.e.,

= (Xk+1). The estimate  of Xk+1 was obtained by the following recursive solution

(Yang and Huang 2007).

(31)

where , and

(32)

In Eqs. (31) and (32), Φk+1,k is the transition matrix for the state vector from k to k+1, and B1, B2 and

 are appropriate matrices (see Yang and Huang 2007).

The recursive solution for  in Eqs. (26)-(30) was derived based on the constant parametric

vector θk+1. Similarly, the adaptive tracking technique proposed in (Yang and Lin 2005) can be

implemented to identify time-varying parameters of the structures for detecting the damages. Again,

the modification is reflected by the Pθ,k matrix in Eq. (30), i.e., Pθ,k→Λk+1Pθ,kΛk+1, where Λk+1 is the

(n×n) adaptive factor matrix (see Yang and Huang 2007). This approach is referred to as the

adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs

(ASNLSE-UI-UO), and it will be verified by experimental data later. 

 

2.4 Quadratic sum-squares error with unknown inputs (QSSE-UI)

A newly proposed approach (Huang 2006, Huang et al. 2010), referred to as the quadratic sum-

squares error with unknown inputs (QSSE-UI), can also be used for the on-line damage identification

with limited measurements of acceleration responses and external excitations. In this approach, the

state vector, X = {xT, }
T
, is considered as an implicit function of the unknown parametric vector

θ, i.e., X = X(θ).

The nonlinear discrete equation at t = (k+1)∆t for an observation vector (measured output) can be

expressed as

(33)

in which yk+1, fk+1 fk+1
* and vk+1 have the same definition as that given in Eq. (14) for the EKF-UI

approach, Xk+1(θk+1) is an implicit function of the unknown parametric vector θk+1. Given the measured

response data yk+1 and some (or none) measured external excitation fk+1, the goal is to estimate the

unknown parametric vector θk+1 and the unmeasured input fk+1
* directly. The approach herein is to

determine θk+1 and fk+1
* by minimizing the sum-squares error between the measured response data yk+1

and the theoretical expression of the measured quantities similar to that given by Eq. (15). Further, since

h[Xk+1(θk+1), θk+1, f
*
k+1, fk+1] is a nonlinear function of the unknown vectors θk+1 and fk+1

* , it will be

linearized as a linear function of θk+1 and fk+1
* through a Taylor’s series expansion. Then, the sum-square

error becomes a quadratic function of unknown vectors θk+1 and fk+1
* ,  and hence the solution can be

obtained.

Define an extended unknown vector θe,k+1 and an extended matrix He,k+1 at t = (k+1)∆t, i.e., 

 (34)

θ̂k 1+
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where Hk+1 and D*
k+1 are given by

(35)

The recursive solutions for the estimations  and  of θk+1 and fk+1
* , respectively, at

t = (k+1)∆t can be derived using a similar procedure as that used in the LSE-UI approach (see Huang

2006, Huang et al. 2010); with the results

(36)

 (37)

where

(38)

(39)

(40)

in which  is the (n×l) gain matrix for , and Rk+1 is the variance matrix of the measurement

noises at t = (k+1)∆t. In Eq. (40), Kθ,k and Sk are obtained, respectively, from Eqs. (38) and (39) by

replacing k+1 by k. 

For the numerical computation,  is first obtained, in which  is

the estimate of the state vector X(t) at t = (k+1)∆t based on  and , i.e., 

(41)

Consequently, Eq.(37) is used to compute , and then Eq. (36) is used to compute . In the

original papers for AQSSE and AQSSE-UI (Yang et al. 2009, Huang et al. 2010), the state vector

 is further up-dated using a Kalman filter. Based on our extensive numerical evaluations, this

procedure is usually not necessary. 

Similar to the ALSE-UI, AEKF-UI and ASNLSE-UI-UO approaches, the adaptive tracking technique

proposed by Yang and Lin (2004, 2005) can be used to identify the parametric variations due to

structural damages. Again, the modification of the recursive solution is reflected by the Pθ,k matrix,

i.e., Pθ,k→Λk+1Pθ,kΛk+1, in which Λk+1 is the (n×n) adaptive factor matrix (Huang 2006, Huang et al.

2010). This approach is referred to as the adaptive quadratic sum-squares error with unknown inputs

(AQSSE-UI), and it will be verified by experimental data later. 

3. Experimental verifications

Experimental tests for the damage tracking of structures have been conducted and experimental

data for different damage scenarios have been available (Zhou et al. 2008). These experimental data
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will be used to verify the capability and accuracy of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and

AQSSE-UI approaches for tracking the structural damage. The experiments conducted in Zhou et al.

(2008) are described briefly in the following. A 400 mm by 300 mm scaled 3-story building model, as

shown in Fig. 1(a), was used in the experiment. The height of the building model is 885 mm and

the total weight is 75.4 kg. The mass of each floor are m1 = m2 = 25.1 kg, m3 = 24.8 kg, and the first

three natural frequencies are: 3.38 Hz, 9.47 Hz and 23.68 Hz, respectively. Based on the discretized

3-DOF shear-beam model, the stiffness of each story is obtained as 55.5 kN/m using the finite-

element estimate, referred to as the referenced values. A white noise excitation force is applied to the

top floor in the 400 mm direction using an exciter equipped with a force sensor (PCB2008C03). Each

floor is installed with one acceleration sensor and one displacement sensor to measure the floor

responses. 

The damage in a story unit is assumed to be reflected by the reduction of its stiffness. To simulate

the reduction of stiffness in a selected story, say ith story, an innovative stiffness element device

(SED) with an effective stiffness of Khi is installed in the ith story, so that the stiffness of the ith

story is increased by Khi. During the experimental test, the effective stiffness of the SED is reduced

to zero to simulate the reduction of the stiffness in the ith story. The SED consists of a hydraulic

cylinder-piston (HCP) with a valve on each side of the piston as shown in Fig. 1(b), which is

connected in series to a bracing system shown schematically in Fig. 1(c). With the valves closed,

the HCP is filled with air at an air pressure of P0 that is proportional to the stiffness of the HCP.

Fig. 1 Experimental set-up
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Hence, the stiffness of the HCP can be regulated by adjusting the air pressure P0. Since the stiffness

of the bracing is much bigger than that of the HCP and since both the HCP and the bracing are

connected in series, the effective stiffness of the SED is approximately equal to that of the HCP.

The effective stiffness of SED can be reduced to zero by opening both valves in HCP during the

experimental test. This innovative stiffness element device (SED) is motivated by the so-called

resetable semi-active stiffness dampers (Yang et al. 2000, 2007c). Detailed experimental tests were

described in Zhou et al. (2008).

The acceleration and displacement responses of all floors, (a1, a2, a3) and (d1, d2, d3), as well as

the white noise excitation, f(t), were measured in all tests. The sampling frequency of all measurements

is 200 Hz. Unknown quantities to be estimated are the stiffness parameters of all stories ki (i=1, 2, 3).

3.1 Damage Case 1: single damage in first story

In this test, a stiffness element device (SED), consisting of a hydraulic cylinder-piston (HCP) and

a bracing system, is installed in the first story as shown in Fig. 1(c). The HCP is filled with air at

an air pressure of 0.4 MPa. From the experimental test of the HCP, a gas pressure at P0= 0.4 MPa

results in an effective stiffness of 6.0 kN/m for the SED. Hence, the stiffness of the first story is k1

= 55.5 kN/m + 6.0 kN/m = 61.5 kN/m, whereas the stiffness of other two stories is k2 = k3 = 55.5

kN/m. During the test, both valves of the HCP were closed at the beginning and were open

simultaneously at t = 25 seconds, so that the stiffness in the first story reduces abruptly from 61.5 kN/m

to 55.5 kN/m at t = 25 seconds. 

3.2 Damage Case 2: single damage in second story

Now the stiffness element device (SED) is installed in the second story as shown in Fig. 1(d), and

the HCP is filled with air at an air pressure of 0.7 MPa that results in an effective stiffness of 10.5

kN/m for SED. Hence, the stiffness of the second story is k2 = 55.5 kN/m + 10.5 kN/m = 66 kN/m,

whereas the stiffness of other two stories is k1 = k3 = 55.5 kN/m. The total weight of the SED is

5.1 kg, which should be added to the first floor. Thus, the mass of the first floor is increased to 30.2

kg, whereas the mass of other floors are still m2 = 25.1 kg and m3 = 24.8 kg. During the test, both

valves of the HCP were open simultaneously at t = 18 seconds, so that the stiffness in the second

story reduces abruptly from 66 kN/m to 55.5 kN/m at t = 18 seconds. 

3.3 Damage Case 3: damages in first and second stories

In this case, one stiffness element device (SED) is installed in the first story and another SED is

installed in the second story. Both HCPs are filled with air at an air pressure of 0.7 MPa that results

in an effective stiffness of 10.5 kN/m for each SED. Hence, the stiffness of the first and second

stories are 66 kN/m, whereas the stiffness of the third story is 55.5 kN/m. Due to the added masses

of the SED devices, the mass of each floor are: m1 = 30.2 kg, m2 = 25.1 kg and m3 = 24.8 kg. During

the test, both valves of the SED in the second story were open at t = 27 seconds, so that the

stiffness of the second story reduces abruptly from 66 kN/m to 55.5 kN/m at t = 27 seconds. Then,

the valves of the SED in the first story were open at t = 35 seconds, so that the stiffness of the first

story reduces abruptly from 66 kN/m to 55.5 kN/m.



Comparison of various structural damage tracking techniques based on experimental data 1067

4. Results and discussion

In this study, the test model is considered as a 3-DOF shear-beam building structure, and the state

equation of motion can be written analytically. Different damage tracking techniques are compared

numerically for two different scenarios: (i) the external excitation is measured (known input), and

(ii) the external excitation is not measured (unknown input). 

4.1 Known inputs

Suppose the acceleration responses and the white noise excitations are measured, as shown in Fig.

2, for all the Damage Cases 1, 2 and 3 described above. In order to start the recursive solutions,

some initial values have been assumed for each approach, as listed in Table 1. Based on the

measured data in Fig. 2, the identified stiffness of all stories for Damage Cases 1-3 are presented in

Figs. 3-5 as solid curves for each damage tracking technique including: (a) ALSE, (b) AEKF, (c)

ASNLSE and (d) AQSSE. The dashed curves in Figs. 3-5 for comparison are the referenced values

based on the finite-element estimation. The identified results for the stiffness of all stories for all

cases are also summarized in Table 2 for comparison.

Fig. 2 Measured acceleration responses and white noise excitation force for 3 Damage Cases; ai in m/s2 and f in kN
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It is observed from Figs. 3-5 and Table 2 that the identified stiffness based on each approach is

quite reasonable in comparison with that of the referenced values, and that all the approaches under

investigation are capable of tracking both the stiffness parameters and their variations due to

damage. However, for the application of ALSE approach, all the responses, including acceleration,

velocity and displacement have to be available. In this study, both acceleration and displacement

responses are directly measured from the experiments, while the velocity responses are obtained by

Table 1 Initial values for each approach (known input)

ALSE AEKF ASNLSE AQSSE

State variables zero zero zero zero

ci,0 (kN⋅s/m) 0.1 0.1 0.1 0.1

ki,0 (kN/m) 100 40 100 10

P0, P0|0 P0 = 104I6 P0|0 = diag[I9 102 I3] P0 = 104I6, P0|0 = I6] P0 = diag[I3 103 I3]

Q0 NA Q0 = 10-9 I12 NA NA

Rk = R NA I3 NA I3

Xθ,0 NA NA NA zero

Fig. 3 Identified stiffness parameters (ki in kN/m) for Damage Case 1 using different approaches with known
input; (a) ALSE, (b) AEKF, (c) ASNLSE and (d) AQSSE
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differentiation of the displacements. In practice, only acceleration responses are usually measured,

whereas the velocity responses can be obtained through a single numerical integration. For the

displacement response, however, a double numerical integration from the acceleration response

results in a significant numerical drift that is also magnified seriously when damages occur (Yang

and Lin 2005). Nevertheless, such a numerical drift can be removed using special approaches (see

Yang and Lin 2005).

With only the measurements of acceleration responses, the AEKF, ASNLSE and AQSSE approaches

can be used for the online system identification and damage identification, where both the constant

n-parametric vector θ and the 2 m-state vector X are treated as unknown quantities to be estimated.

However, in the AEKF approach, an unknown (n+2m) extended state vector Z, consisting of θ

and X, is introduced, and the resulting state equation for Z is highly nonlinear. The nonlinear

equation is then linearized and the Kalman filter approach is applied. Unfortunately, some poles

corresponding to the unknown θ of the linearized state equation lie on the imaginary axis, such

that the solutions (estimates) may easily become unstable. Further, due to the linearization, the

solutions may not converge if the initial guesses of the parametric values are outside the region

of convergence. Likewise, the dimension (n+2 m) of the extended state vector Z is quite large,

especially for large and complex structures, and hence the computational efforts required for

estimating Z is quite involved. 

Fig. 4 Identified stiffness parameters (ki in kN/m) for Damage Case 2 using different approaches with known
input; (a) ALSE, (b) AEKF, (c) ASNLSE and (d) AQSSE
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Table 2.1 Identified stiffness parameters before damage for all Damage Cases (known input)

 ALSE   AEKF ASNLSE  AQSSE

 Case 1
 Ref. 

values
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  61.5  61.87  0.59  54.84  10.83  58.61  4.70  59.14  3.84 

 k2  55.5  53.91  2.87  53.85  2.97  55.14  0.65  52.21  5.92 

 k3  55.5  55.27  0.41  59.73  7.62  62.09  11.87  58.46  5.34 

 Case 2
 Ref. 

values
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  55.5  57.45  3.51  56.82  2.38  59.85  7.84  55.05  0.80 

 k2  66  66.67  1.02  63.95  3.10  69.10  4.70  62.83  4.81 

 k3  55.5  59.66  7.50  59.67  7.50  59.06  6.42  61.14  10.15 

Case 3
 Ref. 

values
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  66  68.65  4.02  67.60  2.42  67.32  2.00  67.88  2.85 

 k2  66  63.23  4.20  64.56  2.18  63.51  3.77  66.12  0.18 

 k3  55.5  58.76  5.87  60.43  8.88  53.52  3.56  60.08  8.24 

Fig. 5 Identified stiffness parameters (ki in kN/m) for Damage Case 3 using different approaches with known
input; (a) ALSE, (b) AEKF, (c) ASNLSE and (d) AQSSE



Comparison of various structural damage tracking techniques based on experimental data 1071

As for the ASNLSE and AQSSE approaches, the unknown parametric vector θ and the unknown

state vector X are estimated sequentially in two steps. In the ASNLSE approach, the parametric

vector θ is obtained first by minimizing an objective function, and then the state vector X is

estimated, while in the AQSSE approach, the state equation of motion is considered as a constraint,

and the unknown parametric vector θ is estimated directly. Therefore, the advantage of these two

approaches is that it avoids inversion of large matrices as required in the AEKF approach and

significantly reduces the computational efforts.

Hence, among the four approaches investigated in this study, the ASNLSE and AQSSE approaches are

more suitable for damage identification of structures, in terms of accuracy, convergence and efficiency.

Further, it is observed from Figs. 3-5 that the rate of convergence for identified results using the

ASNLSE approach is slightly slower in comparison with other three approaches. This is be due to

the sensitivity of the method with respect to the sampling frequency, since the estimation of state

vectors using Newmark-β method produces more accurate results with a higher sampling frequency.

Hence, the convergence of the solutions is expected to be faster for the ASNLSE approach as the

sampling frequency increases.

4.2 Unknown inputs

Suppose only the acceleration responses are measured for Damage Cases 1-3, i.e., the measured

excitation is not used in the prediction of unknown parameters. The initial values used to start the

recursive solutions for each approach are listed in Table 3. Based only on the measured

acceleration responses and different damage tracking techniques, the identified stiffness of all

stories for Damage Cases 1-3 are presented in Figs. 6-8 as solid curves, whereas the dashed

curves shown in these figures for comparison are the referenced values based on the finite-

element estimation. The identified results for the stiffness of all stories for all cases are also

summarized in Table 4 for comparison.

 Table 2.2 Identified stiffness parameters after damage for all Damage Cases (known input)

 ALSE AEKF ASNLSE  AQSSE

Case 1
 Ref. 

values 
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  55.5  53.36  3.86  51.55  7.11  53.90  2.89  53.10  4.33 

 k2  55.5  53.91  2.87  53.94  2.81  55.14  0.65  52.21  5.92 

 k3  55.5  55.27  0.41  59.73  7.62  62.09  11.87  58.46  5.34 

Case 2
 Ref. 

values 
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  55.5  57.45  3.51  56.77  2.29  59.85  7.84  55.05  0.80 

 k2  55.5  51.69  6.86  53.71  3.22  51.23  7.69  54.28  2.19 

 k3  55.5  59.66  7.50  59.67  7.51  59.06  6.42  61.14  10.15 

Case 3
 Ref. 

values 
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)
 Predicted

 Difference 
(%)

 Predicted
 Difference 

(%)

 k1  55.5  56.66  2.10  52.71  5.02  53.72  3.21  53.90  2.88 

 k2  55.5  55.86  0.65  53.29  3.98  54.54  1.74  54.89  1.10 

 k3  55.5  58.76  5.87  60.44  8.90  53.52  3.56  59.49  7.19 
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Similar observations are obtained from Figs. 6-8 and Table 4 as that for the known input scenario:

(i) the identified stiffness based on each approach agree with that of the referenced values, and (ii)

with the unknown input, all the approaches investigated are still capable of tracking both the

stiffness parameters and their variations due to damage. However, for the application of the ALSE-

Table 3 Initial values for each approach (unknown input)

ALSE-UI AEKF-UI ASNLSE-UI-UO AQSSE-UI

State variables zero zero zero zero

ci,0 (kN⋅s/m) 0.1 0.1 0.1 0.1

ki,0 (kN/m) 100 40 80 40

P0, P0|0 P0 = 104I6 P0|0 = diag[I9 104 I3] P0 = 103I6, P0|0 = I6 P0 = diag[10I3 103 I3]

Q0 NA Q0 = 10-9 I12 NA NA

Rk = R NA I3 NA I3

Xθ,0 NA NA NA zero

Fig. 6 Identified stiffness parameters (ki in kN/m) for Damage Case 1 using different approaches with unknown
input; (a) ALSE-UI, (b) AEKF-UI, (c) ASNLSE-UI-UO and (d) AQSSE-UI
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UI technique, all the responses, including acceleration, velocity and displacement have to be available.

With only the measurements of acceleration responses, the AEKF-UI, ASNLSE-UI-UO and AQSSE-UI

approaches can be used for the damage identification. However, similar to the case with EKF

approach, the AEKF-UI approach requires that the estimates of the initial values of the unknown

parameters should not be far away from their theoretical values in order to obtain convergent

solutions, and also because of the large size of extended state vector Z, it involves considerable

computational efforts. In this connection, the ASNLSE-UI-UO and AQSSE-UI approaches will

overcome the drawbacks of the AEKF-UI approach by estimating the parametric vector and the

state vector separately, such that much smaller size of vectors and matrices are involved in the

computation, which make these two approaches more efficient than the AEKF-UI approach. 

Consequently, in the case of unknown inputs, the ASNLSE-UI-UO and AQSSE-UI techniques are

again shown to be more suitable for the damage identification of structures among the four

approaches investigated in this study, in terms of accuracy, convergence and efficiency. Further, for

the ASNLSE-UI-UO technique, the convergence of the solutions is expected to be faster as the

Fig. 7 Identified stiffness parameters (ki in kN/m) for Damage Case 2 using different approaches with unknown
input; (a) ALSE-UI, (b) AEKF-UI, (c) ASNLSE-UI-UO and (d) AQSSE-UI
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Fig. 8 Identified stiffness parameters (ki in kN/m) for Damage Case 3 using different approaches with unknown
input; (a) ALSE-UI, (b) AEKF-UI, (c) ASNLSE-UI-UO and (d) AQSSE-UI

Table 4.1 Identified stiffness parameters before damage for all Damage Cases (unknown input)

ALSE-UI AEKF-UI ASNLSE-UI-UO AQSSE-UI

Case 1
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 61.5 62.02 0.85 64.92 5.56 64.84 5.42 60.94 0.90

k2 55.5 55.16 0.62 51.78 6.71 60.52 9.04 54.33 2.11

k3 55.5 57.36 3.35 51.11 7.91 58.72 5.81 54.55 1.72

Case 2
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 55.5 57.52 3.64 56.98 2.67 55.28 0.39 56.06 1.00

k2 66 67.73 2.62 62.24 5.69 70.41 6.68 67.62 2.46

k3 55.5 53.33 3.91 59.96 8.03 50.38 9.23 54.68 1.47

Case 3
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 66 68.85 4.32 64.54 2.22 63.57 3.67 63.76 3.40

k2 66 64.97 1.57 64.19 2.74 69.60 5.45 65.34 1.00

k3 55.5 56.23 1.31 57.78 4.11 58.80 5.94 57.20 3.06
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sampling frequency increases. The advantages and disadvantages of each approach are summarized

in Table 5.

5. Conclusions

In this paper, comparisons of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches

Table 4.2 Identified stiffness parameters after damage for all Damage Cases (unknown input)

ALSE-UI AEKF-UI ASNLSE-UI-UO AQSSE-UI

Case 1
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 55.5 53.45 3.70 52.14 6.05 56.64 2.05 53.52 3.56

k2 55.5 55.16 0.62 51.77 6.71 60.52 9.04 54.33 2.11

k3 55.5 57.36 3.35 51.11 7.90 58.72 5.81 54.55 1.72

Case 2
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 55.5 57.52 3.64 56.97 2.65 55.28 0.39 56.06 1.00

k2 55.5 55.50 0.01 58.74 5.84 57.88 4.29 58.28 5.02

k3 55.5 53.33 3.91 59.97 8.05 50.38 9.23 54.68 1.47

Case 3
Ref. 

values 
Predicted

Difference 
(%)

Predicted
Difference 

(%)
Predicted

Difference 
(%)

Predicted
Difference 

(%)

k1 55.5 57.72 4.00 52.34 5.70 55.17 0.60 55.27 0.42

k2 55.5 53.36 3.86 52.51 5.39 56.17 1.20 55.14 0.64

k3 55.5 56.23 1.31 57.78 4.11 58.80 5.94 57.20 3.07

Table 5 Comparison of damage identification approaches

ALSE/ALSE-UI AEKF/AEKF-UI ASNLSE/ASNLSE-UI-UO AQSSE/AQSSE-UI

Characteristics Time domain techniques for on-line or almost on-line damage identification

Requirements
Measurement of 
acceleration and state 
vector X

Measurement of 
acceleration

Measurement of 
acceleration

Measurement of 
acceleration

Advantages

(i) Computational 
effort is less involved, 
and (ii) Solution is sta-
ble and convergent 

Do not require 
measurement of X

(i) Do not require mea-
surement of X, (ii) θ and 
X are obtained sequen-
tially, the computational 
effort is reduced, and (iii) 
Solution is stable and 
convergent

(i) Do not require 
measurement of X, (ii) 
θ and X are obtained 
sequentially, the com-
putational effort is 
reduced, and (iii) Solu-
tion is stable and con-
vergent

Disadvan-
tages

State vector X should 
be given or measured

(i) Dimension of Z is 
large so that computa-
tional effort is quite 
involved, and (ii) The 
convergence of the 
solution depends on 
the initial value of Z

Estimation of state vec-
tors using Newmark-β 
method depends on the 
sampling frequency
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for their capability in tracking the variations of structural parameters have been carried out, based

on experimental test data. The experimental results were obtained using a scaled 3-story building

model with a white noise excitation applied to the top floor (Zhou et al. 2008). Different damage

scenarios and three damage cases had been tested, and the test data have been used to show the

capability of each approach for structural damage tracking. The identification results for the stiffness

of all stories, based on each approach for both known input and unknown input scenarios have been

compared with the referenced values predicted by the finite-element model. This preliminary study

demonstrates that the ASNLSE-UI-UO and AQSSE-UI approaches have advantages over the ALSE-UI

and AEKF-UI approaches in terms of the accuracy, efficiency and practicality. Further studies will

be conducted based on more experimental data.
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