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Locating the damaged storey of a building using 
distance measures of low-order AR models
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Abstract. The key to detecting damage to civil engineering structures is to find an effective damage
indicator. The damage indicator should promptly reveal the location of the damage and accurately identify the
state of the structure. We propose to use the distance measures of low-order AR models as a novel damage
indicator. The AR model has been applied to parameterize dynamical responses, typically the acceleration
response. The premise of this approach is that the distance between the models, fitting the dynamical responses
from damaged and undamaged structures, may be correlated with the information about the damage, including
its location and severity. Distance measures have been widely used in speech recognition. However, they have
rarely been applied to civil engineering structures. This research attempts to improve on the distance measures
that have been studied so far. The effect of varying the data length, number of parameters, and other factors
was carefully studied.

Keywords: damage indicator; AR model; cepstral metric; pre-whitening filter; adaptive component weight-
ing (ACW).

1. Introduction

Most of the literature about damage detection is based on modal parameters. One method uses

frequency shifts to detect damage in composite materials (Cawley and Adams 1979), and an

improvement to this method was shown to be sensitive to modal frequency changes (Stubbs and

Osegueda 1990, Feng 2009). Mode shape information has also been used for localizing structural

damage without the use a prior finite element model (West 1986). The author used the modal

assurance criteria (MAC) to determine the level of correlation between modes from a test of an

undamaged Space Shuttle Orbiter body flap and the modes from the test of the flap after it has been

exposed to acoustic loading. A mode shape-based method for model error localization was revealed

in 1991 (Mayes 1991). Structural translational and rotational error checking (STRECH) were used

in this method. By taking ratios of relative modal displacements, STRECH assess the preciseness of

the structural stiffness between two different structural DOF. The changes in the frequencies and

mode shapes of a bridge were regarded as a function of damage (Doebling and Farrar 1997). This
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method estimates the statistics of the modal parameters by using Mote Carlo procedures to determine

if damage has produced a statistically significant change in the mode shapes. An alternative to using

mode shapes to obtain spatial information about sources of vibration changes is using mode shape

derivatives (Pandey et al. 1991, Quek and Tua 2008). By varying the number of measurable target

modes, sensitivity to changes in the mode shape can also be used to determine efficient locations to

put accelerometers (Kwon et al. 2008). A method based on element modal strain energy was

proposed to identify a structural damage (Zhang et al. 1998). This method uses measured mode

shapes and modal frequencies from both damaged and undamaged structures as well as a finite

element model to locate damage. An improved genetic algorithm based damage detection algorithm

using a set of combined modal features is proposed to detect the damage (Kim et al. 2007). In this

method, modal features such as natural frequency, mode shape, and modal strain energy are

experimentally measured before and after damage in the test beams. Shin and Oh chose the stiffness

and damping parameters to assess damage in a building (Shin and Oh 2007). All these methods get

good results in special cases. However, the modal parameters are global properties of a structure,

whereas damage is a local phenomenon. Modal parameters are insensitive to local damage, and this

is the major obstacle to applying modal-domain damage indicators in practice.

Distance measures have been widely used in speech recognition (Tohkura 1986, Itakura and

Umezaki 1987) but not in civil engineering. In this study, we used AR models to express the

vibration response of the structure. The AR models were obtained for the undamaged state and

unknown states. The sensitivity of the distance measure to the damage was strongly affected by the

order of the AR models. We suggest a low-order model to maximize the effectiveness of the

method. In addition, since the AR models are susceptible to noise, we use adaptive component

weighting (ACW) (Assaleh and Mammone 1994), which can significantly reduce noise. We calculate

the cepstral distance between the reference model and the new model by using the equation deduced

from the metric for the AR model, which was first proposed by Martin (Martin 2000). We judge the

damage according to the cepstral distance. A large distance means that the structure is damaged, and

a small distance means that the structure is undamaged. One thing to keep in mind is that this

cepstral distance is only effective when the input signals to drive the structure are mutually

independent. Unfortunately however, most response signals are mutually dependent and correlated

because of excitations acting on the structure, such as wind, traffic or earthquakes. This issue can be

resolved by introducing a pre-whitening filter (Zheng and Mita 2007). We used numerical and

experimental data to show the method’s feasibility. The effects of varying the data length, damage

severity, damage location and parameter uncertainty on recognition accuracy were carefully studied

in this paper.

2. Proposed approach using low-order AR model and ACW

Zheng and Mita’s paper (Zheng and Mita 2007) used distance measures for the purpose of

damage detection in civil engineering. As an improvement to this method, we propose a scheme to

calculate the cepstral distance between pole-zero models.

We find that low-order autoregressive models have advantages in terms of their computational

efficiency, emphasis of high-energy frequency range, and less sensitivity to spectral peaks caused by

noise (Wang et al. 1991). In addition, we introduce adaptive component weighting (ACW) to

transform an AR model into a pole-zero model. Thus, we deduce a new equation for cepstral
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distances between pole-zero models based on Eq. (10) (Oppenheim and Schafer 1975) and the

metric for AR model first proposed by Martin (Martin 2000). The flowchart of our damage detection

scheme is shown in Fig. 1.

2.1 Cepstral distance

The cepstrum of a signal is defined as the inverse Fourier transform of the log magnitude

spectrum, and it was originally used for detecting echoes (Bogert et al. 1963). In this study, the

cepstral distance between pole-zero models is referred to as the damage indicator. First, we introduce the

cepstral metric for the AR model, as proposed by Martin (Martin 2000)

(1)

where cn and cn' are the cepstral coefficients of AR models M
(1) and M(2) and D is cepstral distance

between the two AR models. We then combine Eq. (1) with Eq. (2) (Oppenheim and Schafer 1975)

(2)

where αi and βi mean the poles and zeros of the model, p and q are the numbers of the poles and zeros

of the model respectively, σ  is the variance of the white noise input, and by using the identity

(3)

we get the cepstral distance between pole-zero models as follows

(4)
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Fig. 1 Flowchart of damage detection
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where D means the cepstral distance between models M(1) and M(2), , ϕ(2)

, αi and βi are the poles and zeros of the models, and p
(1) and p(2) are the orders of the

models M(1) and M(2), respectively. 

2.2 Optimum order of AR models

The autoregressive (AR) model has been used to parameterize dynamical responses, typically the

acceleration response (Mita 2003). In this study, the acceleration responses of the structures are

modeled with the autoregressive (AR) model

(5)

where xn is the response of the structure at sample index n, ak is the AR coefficient to be estimated, p is

the order of the AR model, and en is the prediction error term or residual.

The previous study (Zheng and Mita 2007) in which high-order autoregressive (AR) models were

used to get the cepstral distance, however, we found that the sensitivity of the distance measure is

strongly affected by the order of the AR models and the order determined by Akaike information

criterion (Akaike 1974) is not the optimum AR order for the distance measure. Fig. 2 shows a

simplified structure model. The mass of every floor and the lateral stiffness is assumed to be 100 kg

and 1 MN/m, respectively. 3% is chosen as the damping ratio of all modes. Data sampling frequency

is 200 Hz. We use the Gaussian white noise to simulate the input such as earthquakes and ambient

vibration. The stiffness reduction is regarded as the damage to the structure. To get the optimum AR

order for the distance measure, we examined AR models with different orders (3-19) for different

multiple degrees of freedom (MDOF) systems (3-19-DOF) with different damage severities (8%,

16%, 24%, 32% and 40% lateral stiffness reduction) in different damage locations (1st, 2nd... nth

storey). Because the number of results is very huge, we only show those of AR model orders (3, 4,

5, 6, 9 and 13) for 3, 5, 7 and 13-DOF systems with 8% damage severity in the 2nd storey, as listed

in Table 1.
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where D means the cepstral distance of the mass.

The cepstral distance was chosen as the damage indicator because it increases as the difference

between two models increases. After damage occurs in the 2nd storey, the acceleration response of

the 1st and 2nd mass is affected more than the others and is shown as an increase in the cepstral

distance of the 1st and 2nd mass. Thus, the cepstral distance of the 1st and 2nd mass should be much

larger than the cepstral distances of the other masses when damage occurs in the 2nd storey. Table 1

lists the cepstral distances of masses for different AR orders. The double and single underlined

Table 1 Cepstral distance (8% stiffness reduction in the 2nd storey, double underlined values: largest cepstral
distance, single underlined values: second largest cepstral distance)

AR Order 3 4 5 6 9 13

3 DOF (1st natural frequency: 7.1 Hz)

1-mass 0.0663 0.1095 0.1508 0.1667 0.1042 0.2351

2-mass 0.0838 0.1125 0.1956 0.2399 0.5514 0.5131

3-mass 0.0350 0.0175 0.0069 0.0440 0.0519 0.1911

5 DOF (1st natural frequency: 4.5 Hz)

1-mass 0.0615 0.0910 0.1161 0.1210 0.1250 0.1223

2-mass 0.0946 0.1317 0.1370 0.1408 0.2525 0.2496

3-mass 0.0528 0.0137 0.0275 0.0133 0.0774 0.0809

4-mass 0.0242 0.0222 0.0569 0.0587 0.0821 0.0713

5-mass 0.0124 0.0056 0.8430 0.0164 0.0222 0.0600

7 DOF (1st natural frequency: 3.3 Hz)

1-mass 0.0416 0.0781 0.1192 0.1270 0.1290 0.1174

2-mass 0.1137 0.1295 0.1445 0.1203 0.2143 0.1895

3-mass 0.0469 0.0134 0.0269 0.0803 0.0259 0.1149

4-mass 0.0215 0.0196 0.0325 0.0318 0.0516 0.0829

5-mass 0.0080 0.0121 0.002 0.0162 0.0114 0.0164

6-mass 0.0116 0.0238 0.0249 0.0135 0.0223 0.0447

7-mass 0.0068 0.0072 0.0060 0.0013 0.0147 0.0191

13 DOF (1st natural frequency: 1.9 Hz)

1-mass 0.0542 0.0969 0.1206 0.1141 0.1333 0.1269

2-mass 0.1078 0.1326 0.1500 0.1363 0.2049 0.1775

3-mass 0.0368 0.0182 0.0253 0.0797 0.0608 0.1118

4-mass 0.0260 0.0182 0.0309 0.0315 0.0482 0.0691

5-mass 0.0072 0.0085 0.0067 0.0104 0.0217 0.0244

6-mass 0.0019 0.0043 0.0055 0.0087 0.0159 0.0351

7-mass 0.0033 0.0089 0.0037 0.0133 0.0158 0.0169

8-mass 0.0016 0.0059 0.0032 0.0087 0.0144 0.0109

9-mass 0.0046 0.0146 0.0060 0.0194 0.0194 0.0135

10-mass 0.0052 0.0095 0.0044 0.0139 0.0150 0.0206

11-mass 0.0032 0.0039 0.0037 0.0065 0.0107 0.0158

12-mass 0.0195 0.0359 0.0190 0.0288 0.0230 0.0274

13-mass 0.0024 0.0103 0.0038 0.0100 0.0266 0.0137
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values mean the largest and second largest cepstral distances, respectively. If the cepstral distances

of the 1st and 2nd masses are not much larger than the others, it indicates that the damage can’t be

shown clearly and the corresponding AR order is not the optimum one. If the cepstral distances of

the 1st and 2nd masses are smaller than the others, it means that the result gives the wrong damage

location, and thus the order of the AR model is wrong.

The acceleration of masses closer to the damage will be the most affected. In the current case,

damage to the 2nd storey, let us consider the ratios of the cepstral distance of the 3rd mass to the 1st

mass and the cepstral distance of the 3rd mass to the 2nd mass, Eqs. (6) and (7), as the index for

choosing the proper AR order:

The smaller R1 and R2 are, the better the recognition results mean. If R1 and R2 are larger than 1,

it means that the AR order is wrong. Fig. 3 shows that increasing the AR order doesn’t improve the

recognition results. AR orders of 4 and 5 are more stable than others. The results for cases in which

different storeys suffered damage of different severities (not listed here) also indicate that 4 and 5

are the most stable AR orders. We also tested taller structures and got similar results. So in this

study, low-order AR models of order 4 were used. 

2.3 Adaptive component weighting (ACW)

AR models are susceptible to noise. To reduce the effect of noise, we use adaptive component

weighting (ACW), as is done in speaker identification. ACW modified the linear prediction (LP)

spectrum so as to emphasize the formant structure.

(8)

where fk for 1 ≤ k ≤ p represent the poles of the AR model, and rk are the residues of the poles. It has

been shown that the sensitivity of a pole to noise in the LP coefficients is proportional to the residues rk

 

Fig. 3 Ratio of cepstral distances
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(Assaleh and Mammone 1994) and the variation caused by the residues rk can be removed by setting all

residues equal to a given constant such as unity. Hence, the ACW spectrum is given by

(9)

where (10)

As mentioned in the previous section, we chose AR models of order 4 to examine whether ACW

can reduce the effects of noise on the recognition results. We applied ACW to different MDOF

structure systems (3-19-DOF) with damage of different severities (8%, 16%, 24%, 32% and 40%

lateral stiffness reduction) and in different locations (1st, 2nd... nth storey). 

Here, we only show the results for the 5-DOF and 7DOF structures with 24% stiffness reduction

in the 2nd storey (Figs. 4 and 5). R1 means the ratio of cepstral distance of the 3rd mass to the 1st

mass, and R2 means the cepstral distance of the 3rd mass to the 2nd mass. R1 and R2 are computed

from Eqs. (6) and (7), respectively, and smaller values mean better recognition results. Fig. 4 shows

the results for the 5-DOF system. The data length is 9000, and the signal-to-noise ratio (SNR) is 10.

Application of ACW reduces R1 from 0.54 to 0.34 (37% reduction) and R2 from 0.50 to 0.32 (36%

reduction). Fig. 7 shows the results for the 7-DOF system. The reductions in R1 and R2 are 41%

 

 

Fig. 4 5-DOF system with 24% stiffness reduction in the 2nd storey (data length = 9000, SNR = 10): (a) without
ACW and (b) with ACW

Fig. 5 7-DOF system with 24% stiffness reduction in the 2nd storey (data length = 9000, SNR = 10): (a) without
ACW and (b) with ACW
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and 46% in this case. Other results not listed here also show that ACW is feasible in reducing the

effect of noise.

3. Performance verification by simulation

A simulation of a five-storey shear building model was performed to show the feasibility of the

proposed scheme for damage detection. The building is simplified into a 5 DOF structural system.

The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 MN/m,

respectively. 3% was chosen as the damping ratio of all modes. The data sampling frequency was

200 Hz. The undamaged natural frequencies of the structure were 4.5 Hz, 13.2 Hz, 20.8 Hz, 28.6 Hz

and 30.5 Hz for the 1st mode, 2nd mode, 3rd mode, 4th mode and 5th mode, respectively. The 5-DOF

system was assumed to be excited by the Gaussian white noise, which was used to simulate the

input such as earthquakes and ambient vibration, and 10% noise was added to the acceleration

responses of the structure. The storey stiffness reduction was regarded to be damage to the structure.

Five damage cases (damage in the 1st storey, 2nd storey, 3rd storey, 4th storey or 5th storey) with five

different damage severities (8%, 16%, 24%, 32% and 40% lateral stiffness reduction) were studied.

Hence, there were 25 different damage scenarios in total.

To deal with the strong mutual correlation in the acceleration data, we applied a pre-whitening

filter (Zheng and Mita 2007) to whiten the 5-dimensional signals. Then we constructed the AR

models of order 4 to fit the acceleration responses of the structure in the 25 different scenarios. We

used Burg’s method to obtain the AR model because of its high frequency resolution and resulting

stable AR model. The AR models were arranged in pairs (reference model and new model), and

adaptive component weighting (ACW) was used to reduce the effect of noise by transforming the

all-pole models (AR model) to pole-zero models. Finally, Eq. (4) was used to get the cepstral

distance between every pair of models.

Figs. 6-8 show the recognition results for different data lengths. In order to show the damage

more clearly, we squared the cepstral distance on the x axis. We can see that the change in the

recognition results between these figures is related to the data length.

In Fig. 6 for which the data length is 6000, the recognition result when damage occurs in the 1st

storey is not as good as the results for other damage to other storeys. However, it can be improved

Fig. 6 Cepstral distance based on the pole-zero models (data length = 6000)
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by increasing the data length (Figs. 7, 8). This phenomenon is mainly caused by the standard

deviations of the AR coefficients, which are determined by the model covariance matrix (Ljung

1987), and thus, it is related to the data length. Another reason is that the damage indicators in this

case are much smaller than those of the other damage cases and not very big compared with the

standard deviations of the AR coefficients. Thus, the damage indicator for the 1st storey suffers

more from the standard deviations of the AR coefficients than those of the other cases. However,

the standard deviations of the AR coefficients can be decreased by increasing the data length, and

this in turn reduces the effect on the damage indicators and improves recognition results.

Next, we examined the standard deviations of the AR coefficients when the structure had suffered

damage in different locations and with different severities (undamaged, 8%, 16%, 24%, 32% and

40% lateral stiffness reduction). Here we only list the standard deviations of the AR coefficients

when the 1st storey suffered no damage, and 8% and 40% lateral stiffness reductions. From Tables

2-4, it is clear that increasing the data length reduced the standard deviations, but changing the

damage severity had almost no effect on them. Moreover, varying the damage location hardly

affected the standard deviations. It is clear that the accuracy of the recognition result depends on the

standard deviations of AR coefficients, especially when the standard deviation is not small enough

compared with the damage indicator.

Fig. 7 Cepstral distance based on the pole-zero models (data length = 9000)

Fig. 8 Cepstral distance based on the pole-zero models (data length = 11000)
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In addition to the single damage cases shown as above, multiple damage cases are studied in the

paper. Similar to the single damage cases, we studied different multiple degrees of freedom (MDOF)

systems (3-19-DOF) with different damage severities (8%, 16%, 24%, 32% and 40% lateral

stiffness reduction) in different multiple damage locations. The data length is 9000 and the order of

AR model is 4. Results also show that this method is available to the multiple damage cases.

Because of the huge number of results, here we only list the result of a 5-DOF system when the

damage with different damage severities (8%, 16%, 24%, 32% and 40% lateral stiffness reduction)

Table 2 Standard deviations of AR coefficients (undamaged) 

1st floor 2nd floor 3rd floor 4th floor 5th floor

Data length 6000

a1 0.0128 0.0126 0.0128 0.0119 0.0129

a2 0.0125 0.0160 0.0150 0.0153 0.0162

a3 0.0125 0.0160 0.0150 0.0153 0.0162

a4 0.0128 0.0126 0.0128 0.0119 0.0129

Data length 9000

a1 0.0104 0.0103 0.0104 0.0097 0.0105

a2 0.0102 0.0129 0.0122 0.0126 0.0134

a3 0.0102 0.0129 0.0122 0.0126 0.0134

a4 0.0104 0.0103 0.0104 0.0097 0.0105

Data length 11000

a1 0.0094 0.0093 0.0095 0.0088 0.0095

a2 0.0093 0.0117 0.0112 0.0114 0.0120

a3 0.0093 0.0117 0.0112 0.0114 0.0120

a4 0.0094 0.0093 0.0095 0.0088 0.0095

Table 3 Standard deviations of AR coefficients (8% lateral stiffness reduction, damage in the 1st storey)

1st floor 2nd floor 3rd floor 4th floor 5th floor

Data length 6000

a1 0.0128 0.0126 0.0128 0.0120 0.0129

a2 0.0126 0.0157 0.0150 0.0154 0.0163

a3 0.0126 0.0157 0.0150 0.0154 0.0163

a4 0.0128 0.0126 0.0128 0.0120 0.0129

Data length 9000

a1 0.0104 0.0103 0.0104 0.0097 0.0105

a2 0.0102 0.0131 0.0123 0.0125 0.0133

a3 0.0103 0.0131 0.0123 0.0125 0.0133

a4 0.0104 0.0103 0.0104 0.0097 0.0105

Data length 11000

a1 0.0095 0.0093 0.0095 0.0088 0.0095

a2 0.0093 0.0119 0.0111 0.0114 0.0119

a3 0.0093 0.0119 0.0111 0.0114 0.0119

a4 0.0095 0.0093 0.0095 0.0088 0.0095
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in the 1st and 5th storey. In Fig. 9, the damage is localized correctly. The effect on the accuracy of

identification results in multiple damage cases, which caused by the data length, the damage

severities, damage locations and the standard deviations of AR coefficients, is similar to that in the

single damage cases.

4. Experimental verification

We evaluated our methodology using actual data from a shake table test (Yoshimoto et al. 2002).

A five-storey steel structure was tested (Fig. 10). The long side of every storey had removable

central columns and braces. The weight of every storey was 2.57 tons, and the storey height was 1

m. The lengths of the long and short sides were 3 m and 2 m, respectively. The excitation signal

was white noise with bandwidth of 0–200 Hz, in the long side’s direction. Accelerometers were

Table 4 Standard deviations of AR coefficients (40% lateral stiffness reduction, damage in the 1st storey)

1st floor 2nd floor 3rd floor 4th floor 5th floor

Data length 6000

a1 0.0128 0.0124 0.0127 0.0117 0.0129

a2 0.0128 0.0163 0.0152 0.0157 0.0166

a3 0.0128 0.0163 0.0152 0.0157 0.0166

a4 0.0128 0.0124 0.0127 0.0117 0.0129

Data length 9000

a1 0.0105 0.0102 0.0104 0.0095 0.0105

a2 0.0105 0.0135 0.0126 0.0127 0.0136

a3 0.0105 0.0135 0.0126 0.0127 0.0136

a4 0.0105 0.0102 0.0104 0.0095 0.0105

Data length 11000

a1 0.0095 0.0092 0.0094 0.0087 0.0095

a2 0.0095 0.0122 0.0113 0.0115 0.0123

a3 0.0095 0.0122 0.0113 0.0115 0.0123

a4 0.0095 0.0092 0.0094 0.0087 0.0095

Fig. 9 Cepstral distance for the multiple damage case (data length = 9000)
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mounted on both long sides of every storey. The acceleration time histories were recorded with a

0.005 s sampling period. Damage to the building was simulated by removing the central columns

and braces; the central columns on the first, third and fifth storey were removed as shown in Fig.

11, and the braces on the first, third and fifth storey were removed as shown in Fig. 13.

Figs. 12 and 14 are the recognition results, and they clearly show the damage locations. The

length of data was 6000. Tables 5 and 6 list the standard deviations of the AR coefficients when

Fig. 10 Tested building model: (a) long-side and (b) short-side

Fig. 11 Damage case: removing central column on the (a) first, (b) third and (c) fifth floor

Fig. 12 Cepstral distances (the central columns were removed)
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the central columns and the braces on the first storey were removed (the standard deviations for

the other experimental conditions are similar). The damage indicators are very large compared

with the standard deviations, which means that they are not influenced by the standard deviations

very much. We thus obtained good recognition results, as shown in Figs. 12 and 14.

Fig. 13 Damage case: removing braces on the (a) first, (b) third and (c) fifth storey

Fig. 14 Cepstral distances (the braces were removed)

Table 5 Standard deviations of AR coefficients (the central columns on the first storey were removed)

Data length 6000 1st floor 2nd floor 3rd floor 4th floor 5th floor

a1 0.0089 0.0078 0.0072 0.0087 0.0079

a2 0.0212 0.0176 0.0162 0.0200 0.0196

a3 0.0212 0.0176 0.0162 0.0200 0.0196

a4 0.0089 0.0077 0.0072 0.0087 0.0079

Table 6 Standard deviations of AR coefficients (the braces on the first storey were removed)

Data length 6000 1st floor 2nd floor 3rd floor 4th floor 5th floor

a1 0.0092 0.0090 0.0091 0.0095 0.0095

a2 0.0185 0.0160 0.0167 0.0173 0.0202

a3 0.0185 0.0160 0.0167 0.0173 0.0202

a4 0.0092 0.0090 0.0091 0.0095 0.0095
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5. Conclusions

A new scheme based on distance measures of low-order AR models was proposed to identify

damage to structures. The optimum order of the AR model for the distance measure was carefully

studied. The standard deviations of the AR coefficients have a significant effect on the accuracy of

identification, especially when the standard deviations are not small enough relative to the damage

indicators; on the contrary, the severity and location of the damage have little effect on the standard

deviations of the AR coefficients. To overcome this problem, we reduce the standard deviations of

AR coefficients by increasing the data length. The results of simulations and an experiment show

that the scheme is feasible for identifying the damage location. In simulation and experiment,

buildings were assumed to be excited by Gaussian white noise. Gaussian white noise was used to

simulate input such as earthquakes and ambient vibration. To apply the method, any excitation

including earthquakes or ambient vibration can be used as long as the duration of excitation is long

enough. However, there are still some problems unsolved. In this study, results with different

damage severities show that larger cepstral distance is corresponding to a more serious damage

severity and this indicate that there is a relation between the cepstral distance and the damage

severity, but so far we can’t quantify the damage severity by cepstral distance, and further study is

needed. Pre-whitening is used to whiten the correlated signals which needs the vibration measurements

at all DOFs, but for economy, generally the vibration measurements at a limited number of DOF are

obtained, typically smaller than the number of DOF of structure. So far there has been no general

method to determine the optimal order of the AR model for the distance measure for multiple

degrees of freedom (MDOF) system. In this paper, we use simulation to decide the optimal order of

the AR model and then expand to the real structure, which is similar to the model in simulation, to

detect the damage. These unsolved problems will be studied in the following paper.
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