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Abstract. Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally
graded piezoelectric hollow cylinders with different piezoelectric parameter g31. Two kinds of piezoelectric
hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter g31 in different
layers; the other is a continuously graded cylinder with arbitrarily variable g31. By using the Airy stress
function method with plane strain assumptions, the exact solutions of the mechanic and electrical components
of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor),
simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and
useful conclusions are given.
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1. Introduction

Piezoelectric material is one of the most commonly used materials currently being investigated for

the applications of smart structures due to its direct and converse piezoelectric effects, which permit it

to be utilized as both sensors and actuators. Piezoelectric laminates, such as bimorphs or stacking

structures, are the most common types for the application (Ikeda 1990, Crawley 1994). However, for a

piezoelectric laminate with homogeneous material properties in layers, high stress concentrations

generally exist at the layer interfaces under mechanical or electric loading, which may lead to lifetime

limitations. To reduce the drawbacks, piezoelectric materials and structures with functionally graded

material (FGM) properties in the direction of layer thickness have been proposed and fabricated (Zhu

and Meng 1995, Wu et al. 1996, Taya et al. 2003, Ichinose et al. 2004). For optimal design and

fabrication of the functionally graded piezoelectric material (FGPM) with desired properties, predicting

and understanding the relationship between its compositional gradient and electro-mechanical response is

of primary importance, which has attracted researchers’ increasing attentions.

According to the literature, most of the previous studies are focused on modeling flat piezoelectric

actuators. Kruusing (2000) provided the solution of a cantilever with graded material properties; a brief

review of the design and simulation was also given based on the theory of primary elasticity. Using a

simple analytical model, Hauke et al. (2000) investigated a kind of multi-morph piezoelectric actuator
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and predicted the behavior of these functionally graded material (FGM) actuators. In Hauke’s

investigation, the bending actuator consists of N layers and the piezoelectric coefficient d31 in each

layer satisfies the stepwise linear relationship. But all the other material parameters are assumed to be

constants. The experimental results on BaTiO3 ceramics showed that the tip deflection of the actuator

was slightly smaller than the case when the piezoelectric coefficient d31 in each layer keeps constant;

however, the internal stresses were significantly reduced. For several kinds of functionally graded

piezoelectric cantilevers and different loading cases, some analytical methods were presented and a set

of exact solutions were obtained (Shi 2002, Liu and Shi 2004, Shi and Chen 2004, Shi 2005). The

investigation on the linearly graded flat actuator showed that there is no stress component in the

actuator when subjected to external voltage (Hauke et al. 2000). But some non-zero stress components

are found in a curved actuator under the same loading condition (Shi 2005).

Numerous achievements have been made in the investigations of functionally graded flat sensors and

actuators. During the last one to two decades, curved piezoelectric elements have attracted attentions in

engineering applications. For example, due to the complicated shape of the bonding layer between a

flat sensor/actuator and the curved surface of a host, it could be much more difficult to obtain the

precise information for a tested point. In these cases, curved sensors and actuators have advantages

over other flat piezoelectric devices. Now, curved sensors and actuators have found wide applications

in engineering such as speakers for active noise control (Jayachandran et al. 1999) or active reflectors

for space based satellite aperture antenna (Angelino and Washington 2002). Liu and Taciroglu (2007)

established a method to quantify Saint-Venant’s principle for laminated piezoelectric circular cylinders

by using this method, the end effects for the displacements and voltages, as well as the stressed and

electric displacements of the self-equilibrated states, are investigated. Yang (2007) presented a set of

one-dimensional equations for coupled extension, flexure and shear of a planar piezoelectric curved

bar, which are very useful in the analysis and design of one-dimensional piezoelectric curved devices.

Larson and Vinson (1993) investigated the overall behaviors of shell composite laminas, each of which

was composed of a piezoelectric laminate. Tzou and Gadre (1989) gave a detailed theoretical analysis

of the vibration control of a multi-layered thin shell coupled with piezoelectric actuators. Based on the

elastic theory, Zhang and Shi (2006) and Shi and Zhang (2008) discussed the bending behavior of

functionally graded piezoelectric curved beams with different graded properties and gave their exact

solutions, which is helpful for design and optimization of the piezoelectric transducers. Using Love’s

theory for thin shells, Chaudhry et al. (1994) and Sonti and Jones (1996) derived the static equivalent

forces exerted by the collocated actuators on a cylinder. Rossi et al. (1993) investigated the actuation

authority of collocated curved piezoelectric patches on a ring based on the impedance method (1996),

which was experimentally verified by Lalande et al. (1995).

This paper aims to obtain the exact solutions of functionally graded piezoelectric hollow cylinder

with different piezoelectric parameter g31 and validate the exact solutions by comparing to the

numerical results. The rest of the paper is organized as follows. In Section 2, the basic equations

which will be utilized for the derivation are given; in section 3 and section 4, two different kinds

of piezoelectric hollow cylinders are considered, respectively. One is a multi-layered cylinder

with different parameter g31 in different layer; another is a continuously graded cylinder with

arbitrarily variable g31. By using the Airy stress function method based on the theory of piezo-

elasticity, the exact solutions of both mechanic and electrical components of the above two kinds

of cylinders are obtained when simultaneously subjected to external voltage (actuator) and

pressure (sensor), which is helpful for the research of the contact problems of piezoelectric

devices. This is the major difference from the authors’ previous work Zhang and Shi (2006) and
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Shi and Zhang (2008). Furthermore, in Section 5, good agreement is achieved between the theoretical

and numerical results and useful conclusions are given.

2. Basic equations

For the analysis of the piezoelectric curved actuator, the polar coordinate system (r, θ) will be used.

Symbols Sij, Tij, Di and Ei (i, j = r or θ) denote the strain tensor, stress tensor, electric displacement and

electric field, respectively. Without consideration of the body force and body charge, the elastic

equilibrium and electrostatic equations are given by

(1)

The constitutive equations of piezoelectric material under the plane strain condition can be written as

(2)

where sij
D
,  gij and ζij are the effective elastic compliance, piezoelectric and dielectric impermeability,

respectively. The relationships of the strain and electric field with the displacement components (ur and

uθ) and electrical potential (φ), respectively, are as follows

(3)

Moreover, in order to ensure that displacement can be found by integrating the strain field, strains must

satisfy the following compatibility equation

(4)

Solutions of the above equations for different kinds of piezoelectric curved actuators will be

provided in the following sections. Note that the dielectric and elastic coefficients are related to

the degree of polling as demonstrated by some experimental investigations; however, their

dependence on polling is much less pronounced than that of the piezoelectric coefficients g31 in

Type-g or d31 in Type-d constitutive equations (Hauke et al. 2000, Marcus 1984, Kouvatov et al.

1999). Therefore in this paper, the dielectric and elastic coefficients are assumed to be constants

except the piezoelectric coefficient g31.
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3. Bending behavior of the multi-layered piezoelectric hollow cylinder

Fig. 1 shows the piezoelectric multi-layered hollow cylinder with inner surface being fixed. It is

assumed that all layers are polarized in radial direction. Between the outer and inner surfaces of the

actuator, an electrical voltage V0 and external force q are applied. Considering that the piezoelectric

parameter g31 plays an important part in the evaluation of the behavior of piezoelectric materials and

the performances of piezoelectric products, many investigations have been made on the properties of

the piezoelectric materials with different values of g31. In the present analysis, different g31 in different

layers will be considered. For convenience, the piezoelectric coefficient g31 of the i-th layer is denoted

as g31i (i=1~N). Without loss of generality, other piezoelectric, dielectric and elastic coefficients are

assumed to be constants for all the layers. 

3.1 Solutions of the basic equations

To obtain the solutions of the above basic equations, Airy stress function Ψ(r) is introduced and one

has

(5)

Furthermore, the electrical potential is assumed to be a function of the radius r only, i.e., φ =φ(r).

Keeping the third expression in Eq. (5) in mind, the following electrical field can be obtained from Eqs.

(1)-(3)

(6)

where C5 is a constant to be determined. Using Eqs. (2) and (4)-(6), Airy stress function Ψ(r) can be

obtained as follows

Tr

Ψ′ r( )
r

--------------  Tθ Ψ″ r( )  Trθ 0=,=,=

Eθ 0   Dθ 0=   Er φ′ r( )–=   Dr

C5

r
------=, , ,=

Fig. 1 Schematic of the cross-section of the multi-layered piezoelectric cylinder
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(7)

where Ci (i=1~4) are undetermined constants. Based on the theory of elasticity, it can be easily

understood that C1 needs not to be considered because it has no influence on the elastic field. 

Substituting Eq. (7) into Eq. (5), the stress components can then be calculated by

(8)

in which

(9)

Finally, the displacement and electrical potential components can be obtained by using Eqs. (2)

and (3)

(10)

(11)

in which P1, P2, P3 and C6 are constants to be determined. Eqs. (6), (8), (10) and (11) constitute one

kind of solutions of the above basic equations, which can be used to study the bending behaviors of the

piezoelectric curved multi-layered actuator.

Furthermore, for a piezoelectric hollow cylinder, the above equations can be simplified as follows

according to the symmetrical characteristic and the fixed boundary condition at the inner surface

(12)
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3.2 The exact solution of the multi-layered piezoelectric hollow cylinder

By assembling the equations above, the exact solution can be obtained for a piezoelectric multi-

layered hollow cylinder as shown in Fig. 1. For convenience, the unknown constants in Eqs. (6),

(12), (13) and (14) will be distinguished by (Gi, Cji) (i =1~N; j = 2~6) corresponding to the i-th

layer of the curved actuator respectively. In order to find the exact solution of the multi-layered

actuator, certain boundary conditions and connecting conditions should be taken into account. First,

the connecting condition of the electric displacement at the interface of any two adjacent layers

( , i=1~N-1) leads to

(15)

The boundary conditions of the electrical potential at the outer and inner surfaces satisfy the following

two equations, respectively

(16)

(17)

The connecting condition of the electrical potential at the interface of any two adjacent layers

( , i=1~N-1) can be rewritten as

(18)

In this case, the mechanical boundary conditions = 0 and = 0 as well as the connecting

conditions between any two conterminous layers =  (i=1~N-1) are automatically

satisfied. Moreover, the boundary conditions  (the fixed end at r = R1) and = -q

are equivalent to the following two equations, respectively

(19)

(20)

The connecting conditions of the stress at the interface ( = , i=1~N-1) can be

expressed as

(21)
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(22)

Utilizing the above eight equations (Eqs. (15)~(22)), the (3N+1) unknown constants C3i, C4i, C6i

and C5 can be determined after tedious deduction. The relationship between Cij (i=3, 4, 6; j=1~N)

and C5 can be obtained as follows

(23a)

(23b)

(23c)

 (i = 3,4 j = 2~N) (23d)

  ( j = 2~N) (23e)

where the following notations are introduced. When N = 1

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

When N ≥ 2, one has 

(24j)

(24k)
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(24l)

(24m)

(24n)

(24o)

Keeping Eq. (9) in mind and substituting Eq. (23) into Eq. (16), one can find the expression of C5 as

(25)

in which

(26a)

(26b)

Substituting Eq. (25) into Eq. (23), all the unknown constants can be determined. 

Thus, all the mechanical and electrical fields of the multi-layered piezoelectric cylinder have been

obtained fully based on the theory of elasticity. 

Table 1 lists the data of the elastic, piezoelectric and dielectric impermeability constants of PZT-4,

which is transformed from Table 2 (Ruan et al. 2000). To perform a numerical calculation, consider a

5-layered curved actuator with the radius for each layer determined by Ri = R1 + (i - 1) RN+1−R1/

N(i = 1...6) as 16, 16.264, 16.528, 16.792, 17.056 and 17.32 mm. The piezoelectric coefficient g
31

 for

each layer (g31i, i = 1…5) is assigned as -7×10-3(BaTiO3), -9.5×10-3, -11.5×10-3, -13.8×10-3 and -17.8×10-3

m2/C (PZT-4), respectively. With the applied external voltage V0 = 100 V and external load q = 10 kN/

m2, Figs. 2-5 illustrate the variations of the normal stresses (Tr, Tθ), electrical potential φ and radical

electric displacement Dr with respect to the radius r (solid lines). Fig. 6 shows the displacement ur

with respect to r under the same boundary conditions (solid lines). Fig. 7 shows the relationship

 

∆i g31i g31 i 1+( )–=

 

 

C5 V ′ ΣN( ) 1–⋅=

 

 

Table 1 Some material constants of PZT-4 (For Model-g constitutive relations)

Elastic constant
(10-12 m2/N)

Piezoelectric constant
 (10-3 m2/C)

Dielectric impermeabil-
ity constant (106 m/F)

s11
D s13

D s33
D s44

D g31 g33 g15 ζ11 ζ33

7.95 -3.03 7.91 17.91 -17.8 23.91 40.36 76.87 99.65

Table 2 Some material constants of PZT-4 (For Model-d constitutive relations)

Elastic constant
(10-12 m2/N)

Piezoelectric constant
(10-12 C/N) 

Dielectric impermeability 
constant

s11
E s13

E s33
E s44

E d31 d33 d15 ε T

11 εT

33

12.4 -5.52 16.1 39.1 -135 300 525 1470 1300
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between the tip deflection ur and the applied electrical potential V0 while the external load q = 10 kN/

m2 (solid lines). It is noted that in Figs. 2-7, the lines with square are functional graded piezoelectric

(FGP) results which will be explained in Section 5.

Fig. 2 Distribution of stress Tr along radial direction Fig. 3 Distribution of stress Tθ along radial direction

Fig. 4 Distribution of potential φ along radial direction Fig. 5 Distribution of electric displacement Dr along
radial direction

Fig. 6 Distribution of displacement ur along radial
direction

Fig. 7 Relationship between radial displacement ur

and external voltage V0
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4. Bending behavior of the piezoelectric hollow cylinder with generalized piezoelec-

tric parameter 

The functionally graded piezoelectric hollow cylinder with fixed end at the inner surface as shown in

Fig. 8 is considered in this section. It is assumed that the actuator is polarized in radial direction. The

electric potentials of the outer and inner surfaces are V0 and 0, respectively. The pressure applied on

the outer surface is q. In this section, the case that the piezoelectric parameter g31 has an arbitrary

distribution (i.e., g31 = g31(r)) is considered. Without loss of generality, all the material parameters

except g31 are assumed as constants in the analysis. In order to find the solution, Taylor series

expansion method is introduced and the arbitrary function g31(r) is expressed in terms of the following

Kth order polynomial

(27)

where Ji (i = 0...K) are the material constants. Eqs. (1)-(6) are still valid in this case. Using Eqs. (1)-(6),

Airy stress function Ψ(r) can be obtained as follows

(28)

where

(29)

Ci(i = 1~5) are undetermined constants. Based on the theory of elasticity, C1 needs not to be considered

because it has no influence on the elastic field. 

Substituting Eq. (28) into Eq. (5) and keeping in mind the symmetry of the cross section and the

boundary conditions of the fixed end at the inner surface, the stress components can then be calculated

by

g31 r( ) J0 J1r J2r
2 … JKr

K
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i 0=

K

∑ r
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= =
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′ r
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Fig. 8 Schematic of the cross-section of the continuously graded piezoelectric cylinder
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(30)

in which

(31)

The displacement and electric potential of the actuator can be found to be

(32)

(33)

where

(34)

 (35)

It can be easily found that the electric displacement Dθ automatically satisfies the boundary

conditions, and the shear stress automatically satisfies all the mechanical boundary conditions.

Other mechanical and electrical boundary conditions can be expressed as follows

(36)

Keeping Eq. (9) in mind and using Eq. (12), the unknown constants C3, C4, C5 and C6 can be

obtained as

 (37)

in which

(38)

where 

(39a)

 

 

 

 

 

 

ur r R
1

=
0= Tr r R

2
=

q–= φ
r R

1
=

0= φ
r R

2
=

V0=, , ,

C H
1–
L=

 

 



986 Taotao Zhang and Zhifei Shi

(39b)

(39c)

(39d)

(39e)

Thus, all the mechanical and electrical fields of the curved actuator with arbitrary distribution of the

piezoelectric parameter g31 have been obtained. 

The numerical and parametric analyses are performed as the next step to verify the obtained

analytical solutions. In this case study, an exponential function is assumed for the piezoelectric

parameter g31 as follows

(40)

where g0 and λ are material constants and λ defines the graded property of the material. These

parameters can be determined by the values of g31 at the inner and outer surfaces of the curved actuator,

i.e.

(41)

in which g
31

i
and g

31

o
are the values of g31 in the inner and outer surfaces of the curved actuator,

respectively. In terms of Taylor’s series expansion theory,  can be expanded as

(42)

Here it can be seen that the coefficients  correspond to the parameters

( ) in Eq. (27), respectively. 

In the following analysis, it is assumed that the inner and outer surfaces of the curved actuator are

made of BaTiO3 and PZT-4, respectively. So g
31

i and g
31

o can be taken to be g
31

i = -9.35×10-3 m2/C and

g
31

o = -17.8×10-3 m2/C. Other material parameters of the actuator are listed in Table 1. Besides, R1 and

R2 are taken to be 16 mm and 17.32 mm, respectively. The variations of the normal stresses (Tθ, Tr),

the electrical potential φ and the electric displacement Dr with respect to the radius r are plotted in

Figs. 9 to 12, respectively, under the external voltage V0 = 100V and external load q = 10 kN/m2. 

The relationships between the analytical results of the displacement ur and the radius r at V0 =

100 V and q = 10 kN/m2 are provided in Fig. 13. For comparison, numerical analysis obtained by

 

 

 

 

g31 g31 r( ) g0e
λr

= =

 

g31 r( )

 

 

J0 J1 J2 J3 … JK…, , , , ,



Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties 987

Ansys 9.0 with Solid 5 element is also plotted in Fig. 13. In numerical calculation, the distribution of

g31 as shown in Eq. (40) is considered. These two figures demonstrate that the exact solutions

obtained in the present paper agree very well with the FEM findings. These figures show that the

curves of K = 15 and K = 20 are very close and the curve of K = 30 is almost superposed upon

Fig. 9 Distribution of stress Tθ along radial direction Fig. 10 Distribution of stress Tr along radial direction

Fig. 11 Distribution of potential φ along radial direction Fig. 12 Distribution of electric displacement Dr along
radial direction

Fig. 13 Distribution of radial displacement ur along radial direction
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the curve of K = 20. This indicates that the convergency of Eq. (28) is excellent. Besides, Figs. 9

and 10 show that the non-zero internal stresses (Tr, Tθ) always exist in the functionally graded

curved actuator. The authors found that all the internal stresses will vanish in the linearly graded

flat actuator when it was subjected to the external voltage (Hauke et al. (2000). Moreover, Figs.

11 and 12 show that both the electrical potential φ and the electric displacement Dr change almost

linearly in the radial direction. Therefore, different distribution of g31 in radial direction only

results in a slight change in the electric field E. 

5. Conclusions

Based on the theory of elasticity, the analysis of multi-layered and continuously graded piezoelectric

hollow cylinders showed in Figs. 1 and 8 is given and the exact solutions are obtained. In order to

verify the validity of the solutions, the comparison between the two models is performed. In the

continuous cylinder, the exact solutions given by Eq. (27) in the case of K = 2 is also plotted in Figs.

2-7. The subscript FGP (functionally graded piezoelectric) represents the exact solution in the

continuous cylinder when K = 2. From the comparison, the following results can be found: (1) when

cylinder is simultaneously subjected to the electric field and external load, Tr and Tθ will be non-zero

in the FGP hollow cylinders. This is the major difference between the curved transducer and the flat

transducer. Previous studies proved that there is not any stress component existing in the flat FGP

transducer when it is subjected to the electric field. (2) The displacement ur of the continuous cylinder

is slightly larger than that of the multi-layered cylinder, the internal normal stresses of both cylinders

are close. (3) Different distribution of the piezoelectric parameter g31 in radial direction does not cause

major difference for the distribution of the electric field E. (4) The limit of the solutions of the multi-

layered cylinder is consistent with that of the continuous cylinder as the number of layer increases.
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