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Abstract. Idea of using piezoelectric materials with flexible structures made of rubber-like materials is
quite novel. In this study a non-linear finite element model based on updated Lagrangian (UL) approach
has been developed for dynamic response and its control of rubber-elastic material with surface-bonded
PVDF patches/layers. A compressible stain energy density function has been used for the modeling of the
rubber component. The results obtained are compared with available analytical solutions and other
published results in some cases. Some results are reported as new results which will be useful for future
references since the number of published results is not sufficient. 
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1. Introduction

The use of rubber as strategic structural material is gaining popularity steadily due to some of its

specific features. One of the significant advantages of the material is its ability to dissipate kinetic

energy associated with impact, shock or any form of dynamic loading, which is much higher

compared to other materials. The material has extremely large amount of deformability and

interesting it retains elasticity in that range of deformation if Mullin’s effect and permanent set are

ignored. These unique features are exploited to solve many engineering problems in an elegant

manner. The use of rubber as vibration isolators, shock absorbers, load bearing materials, sealant

materials and filler materials between two railway lines are some of its important applications. This

specific aspect is well documented in the text by Gent (2001).

Discovery of the piezoelectric materials by the Curie brothers in the 1880s has opened a new area

of research and one of its fruitful applications is found in the control or suppress of vibration of

structures. In a piezoelectric material, electric charge is produced due to direct piezoelectric effect

when it is subjected to a mechanical deformation and it gets deformed when a polarity is applied to
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it through a differential voltage by virtue of converse piezoelectric effect. Initially the utilization of

piezoelectric materials was made in the field of ultrasonics. Later the advantage of these unique

properties has been successfully engineered in different fields of science and technology in early

1900’s. In the present context, the contributions of Olson (1956) Allik and Hughes (1970) and

Forward (1979) have deserved well mentioning. The use of a thin poly vinylidene fluoride (PVDF)

layer was first proposed by Bailey and Hubbard (1985) for having additional damping in thin

beams. By this time numbers of investigations have been carried out to study the effect of

integrated piezoelectric layers or patches on the behaviour of different structures under different

modes (Fanson and Caughey 1987, Crawley and de Luis 1987, Park and Chopra 1996). 

Samanta et al. (1996) presented a generalized finite element formulation for active vibration

control of a laminated plate integrated with piezoelectric polymer layers acting as distributed

sensors and actuators using a two-dimensional eight-node quadrilateral isoparametric element with

the help of higher order shear deformation theory. Chen et al. (1997) proposed a linear finite

element formulation for vibration analysis and its suppression of intelligent structures. Ray et al.

(1998) have extended their previous analytical model (Ray et al. 1993) to study the dynamic

analysis of smart laminated plates. They have presented the exact expressions of the mechanical

displacements, stresses, electrical displacements and potential for dynamic response of composite

plates with piezoelectric layers bonded at the top and bottom surfaces. They have shown that the

results obtained by their analytical solutions have good agreement with those obtained by their finite

element analysis (Ray et al. 1994). 

Gaudenzi et al. (2000) studied active vibration control of a cantilever beam made of aluminium

for the attenuation of vibration effects by two approaches – position and velocity control. They

validated their numerical model with experimental data. A nonlinear finite element analysis of

composite structures such as beams and plates integrated with piezoelectric material has been

proposed by Ye et al. (2000) using Updated Lagrangian approach. Lim et al. (2001) have conducted

a three-dimensional analytical study for a parallel piezoelectric bimorph used as sensor as well as

actuator utilizing state space formulation combined with an asymptotic expansion technique. 

Thornburgh et al. (2004) have derived an analytical model for smart structures and applied to

determine the transient dynamic response of arbitrary structures with piezoelectric materials. The

equations of motion have been obtained from a coupled piezoelectric-mechanical formulation. They

compared the results predicted by the higher-order laminate theory and the classical plate theory and

similarly the results predicted by the coupled and uncoupled piezoelectric models. The analysis is

confined to composite structures with surface bonded PZT materials only. Lee et al. (2004) have

studied the vibration control of transient dynamic response of laminated composite plates with

integrated smart material layers as sensors and actuators. They have used a unified plate theory that

includes classical, first-order and third-order plate theories as special cases. 

Chattopadhyay et al. (2004) have proposed a nonlinear vibration analysis procedure to investigate

the dynamic response of composite laminates with embedded and/or surface bonded piezoelectric

sensors having multiple finite/discrete delaminations. A refined layerwise plate theory has been used

to develop the piezoelectric-mechanical model for accurate prediction of the sensor voltage output

in the time domain analysis. Mukherjee and Chaudhuri (2004) have used displacement feedback

control and velocity feedback control technique to explain a comprehensive formulation for

instability control of piezolaminated imperfect struts made of steel and PZT layers using an

imperfect approach under arbitrary dynamic excitation. In this context, the study of Mukherjee and

Chaudhuri (2005a) is worth mentioning where the exact solutions have been presented along with
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experimental results to show the effect of axial forces on smart columns made of plastic substrates

and PVDF layers. They (2005b) have also studied the nonlinear dynamic response of piezolaminated

smart beams made of PVDF layers. However, all these studies are limited to structures made of

piezoelectric materials with conventional isotropic elastic materials.

The concept of using piezoelectric layers/patches integrated with a structural component made of

rubber is quite novel. So far the number of investigations carried out on this problem is very few

(Austin and Ananthasayanam 2002) but it has potential future applications, as rubber is steadily

gaining popularity in its use in various engineering problems. The modeling of is problem is quite

challenging, as rubber is a hyperelastic material having near incompressible behaviour and it often

undergoes an extremely large deformation, which leads to severe geometric nonlinearity. The

mechanical properties of rubber are characterized by a suitable strain energy density function, which

results in nonlinear stress-strain relationship. These are responsible for making the mathematical

model of piezolaminated rubber quite complex and it can be expected that the finite element model

of the problem would be an arduous task. In the study of Austin and Ananthasayanam (2002), an

attempted has been made to investigate the effect of piezoelectric patches on curvatures of the

rubber substrate due to application of actuating voltage. They concentrated their attention only on

linear static analysis of the structure. So a very limited information are available on the effect of

surface bonded piezoelectric patches/layers on the behaviour of rubber-like structural components

under static and dynamic loading. Keeping this aspect in view an attempt has been made in the

present study to develop a displacement based nonlinear finite element method for predicting the

dynamic response and its control of flexible structures made of rubber and the piezoelectric layers

(PVDF). The focus of the present study is to understand the piezoelectric effect on dynamic

response and its control of rubber components considering geometric non-linearity for both rubber

and piezoelectric materials and material non-linearity for rubber material.

2. Finite element formulation 

The incremental-iterative solution technique is most suitable for dynamic analysis of a smart

rubber component, as it involves severe nonlinearity in such analysis. In this solution scheme, the

entire path of deformation is divided into a number of time steps. It gives different configurations/

states such as , …., , …., where  is the initial state while  is any intermediate

one. In this system any displacement component and the electric potential at two adjacent states of

deformations may be expressed as

, (1)

where ui and ϕ are the increment of the displacement component  and the electric potential ,

respectively. In a similar manner the co-ordinates at any state may be expressed as

or (2)
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(3)

where

(4)

In the above Eqs. (3) and (4),  is the variation of Green-Lagrangian strain , is

the corresponding 2nd Piola Kirchhoff stress,  is the volume of an element, tρ is the density at

instant t,  is the body force per unit mass,  is the deformation independent surface force,

 is the surface charge and  is the surface area of an element at instant t. The left

superscript denotes the configuration at instant  where the quantity is considered whereas the

left subscript denotes the configuration at instant t and the quantity is measured with respect to this

configuration.

Now the abovementioned generalized stress and strain may be expressed with the help of

incremental decomposition as follows

(5)

and

(6)

Since  = 0 in the above equation, it may be expressed by splitting the incremental part ε into

linear and nonlinear components as 

(7)

where  and  are explained in Manna et al. (2009).

Again  is simply the generalized Cauchy stress tτ and with this, Eq. (5) becomes

(8)

The generalized Cauchy stress tτ and the incremental stress σ with corresponding electric

components in the above equation may be expressed as (Manna et al. 2009)
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ê
T

t
  L̂t–

ε
˜

t{ }

E
t{ }⎩ ⎭

⎨ ⎬
⎧ ⎫

Ct[ ] ε
t{ }= =

σ
˜

{ }

D{ }⎩ ⎭
⎨ ⎬
⎧ ⎫ Ĉt   ê
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Since it is not possible to solve the above equation due to the presence of nonlinear incremental

strains, it is linearized (Bathe 1996) by taking  and  to get an approximate

solution. With these the Eq. (11) becomes

(12)

Since  and , the virtual work due to external loads 

presented in Eq. (4) may be rewritten as 

(13)

Eqs. (12) and (13) may be expressed (Manna et al. 2009) as 

(14)

and

(15)

where the different matrices in the above Eqs. (14) and (15) are explained in Manna et al. (2009). 

Now Eqs. (14) and (15) are in convenient form for finite element implementation, which is

carried out with a twenty node 3D brick element (Fig. 1) based on isoparametric formulation.

According to isoparametric formulation, the displacements, geometry and electrical potential at

instant t can be expressed in terms of their nodal parameters with the help of same interpolation

functions (Bathe 1996) as 

, , (16)

where  or simply Nk is the interpolation function corresponding to k-th node, while

 and  are the coordinate, displacement and electrical potential at the corresponding node,

respectively. In a similar manner, the incremental displacements and the incremental electrical

potential φ can be expressed as 

and (17)

With the Eqs. (16) and (17), the incremental strain vectors  and {θ} in (14) and incremental

displacement vector  in (15) can be expressed in terms of incremental nodal displacement

vector  and  (Manna et al. 2009). 

Finally, with the help of Eqs. (14), (15), (16) and (17) after performing necessary rearrangement,

the incremental equilibrium equation may be obtained in its final form as
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(19)

(20)

(21)

(22)

(23)

(24)

Following the usual technique, one may carry out numerical integration involved in the above

quantities according to Gauss quadrature integration rule where number of Gauss points taken is 3

in all the three directions. To get the solution of the time dependent incremental equilibrium

Eq. (18), the direct time integration technique based on Newmark beta method (Bathe 1996) is used.

Since the present problem involves geometric as well as material nonlinearities, it requires some

iteration technique (Bathe 1996) to get the satisfaction of the equilibrium Eq. (18) within a specified

tolerance. The rubber is a near incompressible hyperelastic material and its constitutive tensor 

is obtained from the strain energy density function W of Peng and Chang (1997), which is explained

in Manna et al. (2009).
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Fig. 1 Twenty-node 3D brick element 
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3. Results and discussions

In this section, numerical examples are solved by the finite element model developed in this study

to demonstrate its capabilities. As there is no existing result for the dynamic response of rubber

component with surface bonded piezoelectric patches/layers, the validation is done an example of a

steel beam and a PVDF bimorph beam at the beginning. The model is then applied to dynamic

response and its control of smart rubber cantilever beam. 

 

3.1 A steel cantilever subjected to step transverse load at the free end

A steel cantilever beam having 100 mm length, 5 mm width and 1 mm thickness is subjected to a

step point load of −5.0 N at mid-point of the free end of the cantilever beam. The step load is

applied fully in two time steps. The linear and nonlinear dynamic response of the beam is evaluated

by the present model and the time history of the tip deflection is presented in Fig. 2. In order to

validate the present results, the beam is also analyzed by the commercial code ANSYS 8.0 and the

results obtained are included in Fig. 2, which shows a close agreement between the results obtained

from the two sources. The nonlinearity has given a stiffening effect as expected and it is reflected

through reduction of maximum tip deflection value as well as reduction in the period of vibration.

The Young’s modulus (E), density (ρ) and Poisson’s ratio (ν) of steel beam are taken as 197.0 GPa,

7.9×103 kg/m3
 and 0.33, respectively. The beam is modeled with 10 elements long the length, 1

element along the width and 2 elements along the depth (mesh: 10×1×2), and a time step (∆t) of

1.5×10−4 sec is taken for the time integration.

3.2 A PVDF bimorph cantilever beam subjected to axial and transverse step loads

The dynamic response of a bimorph cantilever beam made with two identical piezoelectric PVDF

layers having same dimensions and polarity as shown in Fig. 3 is studied in this example. The beam

is subjected distributed axial as well as transverse step load as shown in Fig. 4 where the total peak

transverse load is −0.005 N and that is 0.1 N for the axial compressive load. Fig. 4 also shows the

Fig. 2 Dynamic response of a steel cantilever beam 
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time variation of the loads where ∆t0 is taken as 0.002 sec, which is followed in an identical manner

in the subsequent examples. With the material properties given in Table 1 for PVDF, the analysis of

the beam is carried out with a mesh size of 10×1×2 using time step (∆t) of 0.001 sec. The time

history for the deflection obtained at the tip of the cantilever bimorph beam and the voltage

developed at the root of the beam are presented in Figs. 5 and 6, respectively along with those by

Mukherjee and Chaudhuri (2005b). Apart from these results based on nonlinear analysis, the results

based on linear analysis of Mukherjee and Chaudhuri (2005b) are also included in Figs. 5 and 6,

which predicts a much smaller structural deformation and sensed voltage. In this case the nonlinearity

gives softening effect due to the presence of axial compression. 

The same bimorph cantilever beam is studied under identical condition except the magnitude of

the transverse loads, which is taken as −0.025 N in the present case i.e., much larger than the

previous case. The time history for the deflection at the tip of the beam and voltage developed at

the root of the beam, obtained in linear as well as nonlinear analyses are presented in Figs. 7 and 8,

respectively, which show a similar effect. However, the larger transverse load introduces larger

Fig. 3 PVDF bimorph cantilever beam 

Fig. 4 Loads on the PVDF bimorph cantilever beam
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structural deformation as well as sensed voltage.

Again, the bimorph beam is studied with the transverse load of −0.025 N and without any axial

load to see the nonlinear effect on the behaviour of the beam. The tip deflection and sensed voltage

at the fixed end are plotted in Figs. 9 and 10, respectively, which show that the nonlinear effect on

both deflection and sensed voltage is marginal. It has shown that presence of axial compressive

force has imposed severe nonlinearity in the present bimorph beam.

The bimorph beam is once again analyzed with the loads used in the first case (−0.005 N of

transverse load and 0.1 N of axial compressive load) taking a time step of 0.0005 sec. The analysis

is carried out with feedback control taking gain G as 0 and 10. The tip deflection obtained in the

nonlinear analysis is presented in Fig. 11 along with those obtained by Mukherjee and Chaudhuri

(2005b) for validation. Fig. 11 shows that both the results agree well.

3.3 A rubber cantilever beam with surface-bonded piezoelectric layers under step load

The problem of a rubber cantilever beam having 100 mm length (L), 5 mm width (b) and 10 mm

thickness (ts) with a PVDF layer having 0.5 mm thickness (tp) bonded on the top surface of the

 
Table 1 Material constants of piezoelectric material (PVDF) (Mukherjee and Chaudhuri  2005b)

Material Material constants

PVDF

Young’s modulus, E (GPa) 2.0

Poisson’s ratio, ν 0.29

Density, ρ (kg/m3) 1800

Piezoelectric stress coefficient, e31 (C/m2) 0.046

Dielectricity, L3 (F/m) 1.062×10-10

Maximum operating voltage (V/µm) 30

Fig. 5 Dynamic response (deflection) of the bimorph
cantilever beam under transverse load of
−0.005 N and axial compressive load of 0.1 N
applied at the free end

Fig. 6 Dynamic response (sensed voltage) of the
bimorph cantilever beam under transverse
load of −0.005 N and axial compressive load
of 0.1 N applied at the free end
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rubber beam as shown in Fig. 12 is studied in this example. The beam is subjected to a step point

load (Pt) of 0.2 N acting at the point (Q) of the free end of the beam as shown in Fig. 12. The

rubber material is modeled with the strain energy density function of Ogden-Tschoegl model (Peng

and Chang 1997) taking different material properties as stated in Table 2. The density of the rubber

layer is taken as 1.2×103 kg/m3. The analysis is carried out with a time step of ∆t = 0.0015 sec for

the time integration where the rubber layer is divided into 120 elements (mesh size: 20×1×6) while

the PVDF layer is divided into 20 elements (mesh size: 20×1×1). The time history for the deflection

at point Q and the sensed voltage at point P (Fig. 12) due to direct piezoelectric effects obtained in

the nonlinear as well as linear analysis are presented in Figs. 13 and 14, respectively. In the linear

Fig. 7 Dynamic response (deflection) of the bimorph
cantilever beam under transverse load of
−0.025 N and axial compressive load of 0.1 N
applied at the free end

Fig. 8 Dynamic response (sensed voltage) of the
bimorph cantilever beam under transverse load
of −0.025 N and axial compressive load of
0.1 N applied at the free end

Fig. 9 Dynamic response (deflection) of the bimorph
cantilever beam under transverse load of
−0.025 N applied at the free end

Fig. 10 Dynamic response (sensed voltage) of the
bimorph cantilever beam under transverse
load of −0.025 N applied at the free end
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analysis, the constitutive relation is taken at the undeformed state of the rubber layer. Figs. 13, 14

show that the geometric nonlinearity and possibly material nonlinearity to some extent of the rubber

material jointly reduced the tip deflection and the sensed voltage at the root of the cantilever beam.

3.4 Vibration control of a smart rubber cantilever beam

The vibration control of a smart rubber beam is studied by three different potential feedback

control schemes/simple feedback control schemes and it is observed that these schemes did not

work well. So an attempt is made with a different scheme, known as velocity feedback control

scheme, used in the study of Samanta et al. (1996), and it work well. 

The smart rubber cantilever beam is 100 mm long, 5 mm wide and consists of 2.5 mm thick

central rubber layer with two surface bonded PVDF layers each 0.5 mm thick used as sensor and

actuator as shown in Fig. 15. The vibration control of the beam is studied using velocity feedback

control scheme (Samanta et al. 1996) with the information of velocities at the nodes of the sensor.

The rubber layer is divided into 160 elements (mesh size: 20×6×1) and each PVDF layer into 20

elements (mesh size: 20×1×1). The material of the rubber layer is modeled with the strain energy

Fig. 11 Vibration control of the bimorph cantilever beam

Fig. 12 A rubber cantilever beam with surface bonded piezoelectric layer 
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density function of Ogden-Tschoegl. The density of natural rubber material (1.2×103 kg/m3) is used.

A vertically downward point load of 0.025 N is suddenly applied at the midpoint of the rubber top

PVDF layer interface at the free end of the beam. The load is suddenly removed at an instant

0.0175 sec after its application. The time step (∆t) used for time integration is 7.0×10−4 sec. The

value of the charge amplifier gain (Gc) is taken as 3.98×102 Ω and the gain factor (G) of the

controller is taken as 0 and 10. The tip deflection of the beam and the sensed voltage in the senor at

fixed end of the beam are plotted against time in Figs. 16 and 17, respectively. It is found that the

variation of tip deflection across the thickness direction of the beam is insignificant. It is observed

from the figures that the velocity feedback control has gradually reduced the amplitude of vibration

of the beam and consequently the sensed voltage in the sensor. It should be mentioned that any

structural damping or viscoelastic damping of the rubber is not considered so far. Time rate of

amplitude decay at larger gain value will be higher. Hence the beam reaches the undeformed state

(tip deflection is zero) earlier. Thus the settling time in this case is much less.

A similar example of the cantilever smart rubber beam (Fig. 15) with different dimensions is

studied to see effect of material nonlinearity of the rubber layer. The rubber layer is 1000 mm long,

50 mm wide and 25 mm thick while each PVDF layer has same thickness (0.5 mm) as used in the

previous case. The analysis is carried out with same mesh size taking time step of 0.02 sec for the

time integration. In order to observe the effect of material nonlinearity of the rubber layer, the

 
Table 2 Material constants of the different rubber material models

Material model
m µ1 µ2 µ3 α1 α2 α3 ν

(MPa)

Neo-Hookean (NH) 1 0.3924 0.0 0.0 2.0 0.0 0.0 0.49932

Mooney-Rivlin (MR) 2 0.367 -0.0292 0.0 2.0 -2.0 0.0 0.49932

Ogden-Tschoegl (OT) 3 0.618 0.001245 -0.00982 1.3 5.0 -2.0 0.49932

Fig. 13 Time history of the deflection at the tip of
the rubber cantilever beam with surface
bonded PVDF sensor layer

Fig. 14 Time history of the sensed voltages at the
root of the rubber cantilever beam with
surface bonded PVDF sensor layer
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analysis is carried out with hyperelastic/nonlinear material behaviour as well as linear material

behaviour where the constitutive tensor is taken corresponding to undeformed state of the rubber

material. The geometric nonlinearities is taken in both the cases. The beam is subjected a suddenly

applied point load of 0.25 N in a similar as that of the previous case. The load is removed after 25

time steps when a linear material behaviour is taken for the rubber while it 20 time steps in the

other case. The velocity feedback control scheme is activated after the removal of the load. All

other things are identical to those taken in the previous one. The tip deflection and sensed voltage in

the sensor at the fixed end obtained in the present analysis are plotted against time in Figs. 18 and

19, respectively. Fig. 18 shows that the material nonlinearity of rubber layer has reduced the

vibration amplitude of tip deflections for both G = 0 and 10. A similar behavior is observed in the

sensed voltage plotted in Fig. 19.

Fig. 15 Control arrangement of the cantilever smart rubber beam 

Fig. 16 Dynamic response (tip deflection) of the
cantilever smart rubber beam

Fig. 17 Dynamic response (sensed voltage at fixed
end) of the cantilever smart rubber beam  
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4. Conclusions 

A finite element model based on updated Lagrangian approach is proposed for nonlinear dynamic

response and its control of rubber components with surface bonded piezoelectric layers under

different loading conditions. A compressible stain energy function is used to get the constitutive

matrix of the near incompressible hyperelastic rubber material. A twenty-node solid brick element is

used to implement the present formulate. The present model is applied to a PVDF bimorph beam

subject to a combination of transverse and compressive forces to validate the present formulation.

The results predicted by the present model agreed well with the available published results. The

model is then applied to a smart rubber beam comprising piezoelectric (PVDF) and rubber layers

under transverse and compressive axial forces is considered to show the spring stiffening and

softening effects of piezoelectric material. Finally, a cantilever smart rubber beam is investigated to

show how the piezoelectric materials are uilized to control the structural deformations using

potential feedback control schemes/simple feedback control schemes and velocity feedback control

schemes. It is observed that the velocity feedback control scheme is more effective in the present

problem. The present method gives a straightforward and simple approach for the nonlinear analysis

of rubber components with piezoelectric patches.
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