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Abstract. This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a
gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The
outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure
the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed
along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity
and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to
devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain
performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the
actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably
decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown
that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation
results are presented to prove the efficiency of the proposed control design.

Keywrods: control strategy; vibration; MEMS; gyroscope.

1. Introduction

The technology of micromachined accelerometers and gyroscopes has been expanded and commercialized
over the past decade. Accelerometers are detection devices that produce a signal relative to a linear motion
whereas gyroscopes generate a signal relative to an angular velocity or angular rotation. While accelerometers
are the current leaders of the MEMS market technology, gyroscopes are expected to gain more popularity
and exhibit similar success (Nasiri 2004). Micromachined gyroscopes are vibrating structures composed
of an outer mass oscillating along a drive direction and an inner mass coupled with the outer one via a
Coriolis force. The proof mass is suspended by elastic flexures anchored to the substrate (Acar 2004).
Vibrating on the drive direction, the outer proof mass induces a Coriolis force in the sense direction so that
the angular rotation becomes measurable. The oscillation in the drive mode, selected for amplifying the
gyro motion and applying control forces, transforms the energy to the sense direction capable of detecting
the angular rate or measuring the angular deflection (Zhuravlev 1993, Painter and Shkel 2003,
Piyabongkarn et al. 2005).
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From all the reported gyroscopes in the literature (including Acar ez al. 2009 and Trusov et al. 2009), the
requirements of higher order of magnitude, improved robustness and long-term stability must be met. In
fact, the micro-fabrication deficiencies and uncontrollable environmental variations affect the gyro
angular deflections. As a result of structural and thermal fluctuations, these deficiencies result in the
performance degradation of gyroscopes. Micromachining includes many steps to be performed: deposition
process, etching process and material pattern. These processes yield performance degradation of the
gyroscope since they contribute to the increase of the fabrication defects, such as anisoelasticity and
anisodamping (Shkel et al. 1999a, Gallacher et al. 2005). Anisoelasticity results in frequency mismatch
and mode coupling causing a disruption of the line of oscillation and exhibits an ellipsoid motion.
Damping non-idealities produce zero rate output which affects the measurements by leading to precession
of the line of oscillation and amplitude change (Park and Horowitz 2005). A vibrating gyroscope oscillates
to reach desired amplitude, and thus, perform a transfer of energy from the drive mode to the sense mode.
Then, the energy has to be kept at a constant value to measure the input angular velocity. Furthermore, the
device has to cancel out the effect of quadrature error due to fabrication imperfections, and finally a
measurement of the input angular velocity is performed.

To sum up, manufacturing defects such as anisoelasticity and damping affect the gyro output. For this,
control techniques are necessary to cancel out the error and null the parasitic effects while maintaining a
high accurate response. Generally, large imperfections which cause the interference between the
measurements and the Coriolis force are trimmed by electronic components. The small perturbations are
minimized by the implemented feedback control strategy. The drive combs are used to apply control
forces to maintain oscillation of the proof mass while the sense combs are used to detect angular
displacement and velocity.

Currently, force-balancing feedback control schemes (Yazdi ef al. 1998, Jiang et al. 2000, Chang et al.
1998) have been widely used to cancel the effect of off-diagonal terms in the stiffness matrix which is
referred to as the quadrature error, and also to increase the bandwidth and dynamic range of the gyroscope
beyond the open-loop mode of operation. Park and Horowitz (2004) developed a new MEMS gyroscope
operation mode and a corresponding continuous time controller determined from an adaptive control
algorithm. The adaptive controlled gyroscope is self-calibrating, compensates for friction forces and
fabrication imperfections that normally cause quadrature errors, and produces an unbiased angular velocity
measurement that has no zero rate output. They also presented a discrete time version of the observer-
based adaptive control system for MEMS gyroscopes, which can be implemented using digital process
(Park and Horowitz 2005). Recently, Park ez al. (2008) presented an algorithm for controlling vibratory
MEMS gyroscopes so that they can directly measure the rotation angle without integration of the angular
rate. Dong et al. (2008) developed a sixth order continuous-time force-feedback band-pass sigma-delta
modulator control system for the detection mode of micromachined vibratory gyroscopes.

Structural anisoelasticities and nonproportional damping lead to significant modal coupling between the
sense and drive modes in a resonant gyroscope, thereby reducing the accuracy of the sense output.
Accurate modeling and identification of these characteristics will significantly enhance the ability to
compensate for these errors via feedback/feedforward control strategies thus leading to the next generation
“smart” MEMS gyroscopes with self calibrating capabilities (Painter and Shkel 2001). Piyabongkarn et
al. (2005) have developed a composite nonlinear feedback control system that compensates for the effects
of dissipative forces, mismatched springs, cross-axis stiffness and transmission of rotary torque and
ensures that the gyroscope’s mass behaves as a freely vibrating structure for accurate measurement of its
angle and angular rate for low bandwidth applications. Shkel et al. (1999a) have proposed an appropriate
feedback control that compensates for anisoelasticity while not interfering with the precession. Painter and
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Shkel (2003) have demonstrated the necessity for a dual stage control architecture comprising feedforward
and feedback control systems in order to compensate for fabrication imperfections and in-operation
perturbations prevalent in micromachined gyroscopes.

In this paper, feedback control strategies are synthesized for dual-mass gyroscopes for the purpose of
reducing the effects of anisoelasticity and damping coupling. The remainder of the paper is organized as
follows: section 2 is concerned with the modeling and control of dual-mass gyroscopes. Simulations are
presented in sections 3. Conclusions and future work are given in section 4.

2. Dynamics and control of dual mass vibratory gyroscopes

In this section, the control of a dual-mass vibratory MEMS-based gyroscope for sensing the angular rate
is proposed. The gyroscope is modeled by two masses; the first mass is driven in the x-direction, and the
response of the second mass is sensed along the y-axis (see Fig. 1).

It is assumed that the dynamics of the actual gyroscope is influenced by micro-fabrication imperfections
resulting from system anisoelasticity and structural aero-dynamic damping. In addition, the proposed
design assumes the knowledge of a reference (ideal) gyroscope that meets certain performance specifications
in the time and/or frequency domains. Specifically, the sensing direction and the amplitude of vibration
associated with the inner mass. In order to compensate for these imperfections, the proposed control
design can be stated as follows: given the dynamics of a reference gyroscope, devise a feedback control
law for the reduction of the error between the reference dynamics and that of the actual gyroscope.

2.1 Dynamics of the reference gyroscope

A dual-mass gyroscope is a lumped mass spring system. The gyro is modeled by a drive mass-active
gimbal m; which is vibrating with small amplitudes and a slave mass-sensing plate 2, which is oscillating
at large amplitudes if the amplitude amplification design is used (Chang et al. 1998). The dual-mass ideal
gyroscope assumes small cross-coupling damping coefficients and neglects the effect of the stiffness non-
idealities. In addition, the system is undamped with isotropic suspension.

Fig. 1 A dual-mass vibratory gyroscope
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The dynamics of the gyroscope is first derived using Newton’s second law. Let us consider the gyro
dynamics in the moving frame {x, y, z}. At any time instant ¢, the position vector of the center of mass of
m; (i=1, 2) at time 7 is O/, in the moving frame is

—
OM, = x5+, (1)

where % and y are unit vectors along the X and y directions, respectively. These unit vectors can be
expressed in terms of the unit vectors X and Y associated with the inertial frame as

N S N U >
X = cos@X+sinfY  J = —sinfX + cos@Y 2

The absolute acceleration of mass m; can be expressed as follows

—
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where Q is the input angular velocity vector. Applying Newton’s second law, the equations of motion
of the drive and passive masses can be written as
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where F s, and F s, are the spring forces and F p, and F p, the damping forces. It can be shown that the
open- loop dynamics of the reference gyroscope is written as

(m, 0 0 0 X, ¢ +c, —2mQQ —c, 0 X,
0 m 0 0] W . 2mQ ¢ +¢, 0 -, || 7
0 0 m 0%, -c, 0 o 2mQ| %,
L0 0 0 mjy 0 -c, 2m,Q c, ¥,
r— . 7 2 I x| (5)
k +k, —mQ 0 —k, 0 1 1
. 0 k, +k, —mQ’ 0 7 —k 7110 r
~k, 0 k, —m, Q) 0 x, | |0
or i 0 —k, 0 ky=mQ |y, | Lo
M3, + Dx, + Kx, = BF, (6)

where ¢, ¢,, ¢; and ¢, are the damping coefficients (not represented in Fig. 1) k,, k,, k; and k, are the
spring coefficients, Q is the angular velocity, assumed to be constant in this study, B is the input vector
of size 4, and F, is the driving force applied to the outer mass. In order to guarantee sufficiently large
amplitudes of the sensing mass, it is assumed that the reference gyroscope has no structural damping.
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The undamped reference gyroscope (c;=0; i=1,2,3,4) is composed of 4 natural frequencies
determined from

_2 pa—
@t 2L T g (M)
M K —-w'l+M~D

If k,=k (i=1,2,3,4), it can be shown that the resulting undamped natural frequencies are

2 K+ 2kmy + 207 mm,  kJm] -+ 4m;

), 0
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_ The frequency response of the ideal gyroscope is shown in Fig. 2 (m; = 5.2x10"" kg, m, =3.12x10" kg,
ki=k,=ky=k,=4Nm", ¢c,=c,=c;=c,=1.9x10°N sec m", Q=200 rad/sec). It can be observed
that at the frequency 10 KHz, the driving mass results into larger amplitude of the sensing mass. The
region between the two peaks associated with the driving mass is, general, taken as the operating
frequency range. More specifically, gyroscope design focuses the amplification of the time response
and/or the increase of bandwidth. Depending on the objective the control strategy is different in
structure.

0 S 10 15 20 25 30 35
Driving Frequency (KHz)

Fig. 2 Frequency response of the ideal dual-mass gyroscope
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Fig. 3 Response of the ideal dual-mass gyroscope

The open-loop response of the ideal gyroscope, in both local and inertial frames, is shown in Fig. 3. The
notion of angular precession holds true for both masses and a line of oscillation is associated with each. In

this case, notice that the sensing plate undergoes relatively larger amplitude with respect to that of the
driving gimbal mass ;.

2.2 Dynamics of the actual gyroscope

As a result of micro-fabrication imperfections, anisoelasticity causes the line of oscillation to precess
away from the physical axes of elasticity and follow the principal axis of elasticity. Anisoelasticity leads to
frequency mismatch and mode coupling resulting in performance degradation (Nasiri 2004). The coefficients
multiplying the position variables represent the non-ideal spring forces acting on the system rising from
the lack of perfect symmetry in the gyroscope. Here, we consider a 4-DOF sense angular rates MEMS
gyroscope shown in Fig. 4.

In the presence of structural aero-dynamic damping and anisoelasticity, the dynamics of the actual
gyroscope is governed by the following matrix equation

m 0 0 0 X ¢, te, ¢, —2mQ —C, 0 X,

0 m 0 0 », C, F 2m,Q ¢, +e,. 0 -c, »

0 0 m O0]X —c, 0 c, Cy, —2mQ || X,

0 0 0 m, Nz 2, O _C}': C.r.rz + 2m2Q cyz Y 2
k,+k, - m Y’ k,, —k,, 0 X, 1
. k, +k, —mQ’ 0 —k, ¥ 0

+ pal el 72 ! 5 = 1 = BF + Fd (9)

—k, 0 k. —m,Q k., X, 0
0 —k, k., k, —m,Q* || », 0
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Fig. 4 Actual dual-mass gyroscope affected by anisoelasticity and damping coupling

or
M3, + Dx,+ Kx, = BF + BF, (10)

where m; and m; are the masses, ¢, , ¢,,, Cx,, €y, Cy,=Cyx, and ¢y, =C,,, are the damping coefficients, £, ,
ky,, ke, k., ko, =k, and k, =k, are the spring coefficients, Q is the angular velocity of the moving
frame (x, y) attached to the outer mass with respect to the inertial frame (X, Y) (not shown in Fig. 4), B is
the control input matrix of size 4xm (1<m<4), F is the feedback control vector of size m, and B is the
input matrix associated with the driving force F; applied to the outer mass. The device commonly
operates by first driving the proof mass into forced oscillation. Upon reaching the desired amplitude,
the drive force is removed and the energy of the system is maintained using the designed feedback
control law F (Shkel ef al. 1999a). The spring coefficients are given by

k. =k, +h;cos(2e;) Kk, = k,—h;cos(2a;) Kk, =k, = h;sin(2e;) i=12 (1)
where k, =(ki + k,)/2 and k, =(k; + k4)/2 are the isotropic stiffnesses, and s, = (k; - k2)/2 and hy = (k; -
k4)/2 are the mismatch stiffnesses along the principal axes of elasticity. Similarly, the damping
coefficients are

¢, = ¢, tdicos(2B) ¢, = c,~d;cos(2B) ¢, = ¢, = d;sin(2f) i=12 (12)
where ¢, = (¢ + ¢2)/2, ¢,, = (¢3 + ¢4)/2 are the ideal damping coefficients, d; = (¢ - ¢2)/2 and d» = (c3 -
c4)/2 are the cross-damping terms, and f; (not shown in Fig. 4) is the angle between the physical axes
and principal axes of damping.

The uncontrolled response of the dual-mass gyroscope is shown in Fig. 5 (Q = 200 rad/s, m;, = 5.2x107'°
kg, m,=3.12x10"° kg, k; =4 N/m, k,=3.8 N/m, k3 =3.9N/m, ky;=3.8 N/m, ¢; =1.2x10® N sec/m,
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Fig. 5 Motion of the inner and outer masses in the moving and inertial frames

¢, =0.25x10® N sec/m, c; = 1.933x10°®* N sec/m, ¢; = 0.68x10°* N sec/m, a; = 71/36, o, = 7/54, B = 7/72,
and £ = 71/36). Plots show an erratic pattern of oscillation manifested in an elliptic pattern bounded by a
parallelogram.

As shown in the figures above, the line of oscillation is disturbed due to the effect of non-idealities and
the motion is more amplified in the drive mass compared to the sensing plate. Thus, the imperfections
shift the natural frequencies and lead to variations in the motion of each mass. To quantify the
performance difference between the ideal and actual gyroscopes, let &, = x,-x, and &, =y,-y. (i =1,2) be
the errors in the x; and y-directions, respectively. For control purposes, an augmented system can be
constructed using Egs. (6) and (10). We get

kS A A el R R

where
xlu xl,. g.\‘,
yln ylr 8‘1
x, = x, = E=
X, Xy g,
_y2u ] _yZ, i _812 i

The damping and stiffness matrices D and K associated with the actual gyroscope are assumed to be
expressed by D + 8D and K + 5K, respectively. The matrices 6D and 6K characterize the deviations
from the ideal device due to imperfections. Simulations of the open-loop dynamics show that the steady-
state error cannot be brought faster to zero due to the effect of anisoelasticity (see Fig. 6). A feedback
control force is thus required to compensate for these errors. For this, we propose two types of feedback
control strategy. The first is based on the Lyapunov technique and the second is constructed using optimal
control.
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Fig. 6 The error is not regular

2.3 Lyapunov-based control

In this section, we propose a Lyapunov-based control design for the reduction of the dual-mass
gyroscope sensitivity to micro-fabrication imperfections. Eq. (11) reveals that the error dynamics can be
written as

Mi+Di&+Ke = — 6Dx,— 6Kx,+ BF (14)

or
Mg+ (D + 6D)e+ (K+ 6K)e = — 6Dx;— 6Kx; + BF (15)

Therefore, for small anisoelasticity and damping effects, the error stability is linked to system (M, D,
K). For this, we propose to use the following Lyapunov energy function

L=Yme+ LR (16)
2 2

The time derivative of the Eq. (16) suggests that the controller (B is set to the identity matrix) be in the
following form

F, 2Em 0 0 0 £y
F, __ 0 28,m, 0 0 &y 17)
F, 0 0 2&,m,, 0 £
F, 0 0 0 28,mye, || €,

where w; (i = 1,2,3,4) are the ideal gyro’s natural frequencies and &, &, & and &, are damping ratios.
The resulting performance is shown in Figs. 7 and 8. It is clear that the errors are remarkably reduced
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Fig. 8 Controlled errors of the actual gyroscope

with the proposed control strategy, and thus, the actual gyroscope tracks the ideal dynamics. The
remaining constant amplitude of the error is due to the effect of the feedforward term presented in Eq.
(15) leading to the appearance of the beating phenomena.

It can be noticed that the aforementioned control structure uses a full feedback control (use of 4
actuators). The advantage of the above control is that its structure is simple since the control law is made
of 4 independent derivative control forces. In the next section, we develop a different control strategy in
which the number of actuators is addressed.

2.4 Optimal control

This section is concerned with the design of an optimal control strategy with the aim of stabilizing the
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closed-loop dynamics of the dual-mass gyroscope and reducing the error amplitude during precession. In
the presence of structural damping and anisoelesticity, the error dynamics is governed by the following
equation

Mg+ (D + 8D)e+ (K+ 5K)e = — SDx;— 6Kx, + HF (18)
or
ml 0 O 0 (E':.\‘l c,\'l + CA\'Z Cx)"l - 2le —CA\’Z O éxl
0 ml O 0 ‘E’:vl c,\'\fl + 2le c\'l + CVZ O _CVZ ‘C‘.‘vl
) + 3 ) ) ) )
0 0 m 0| é, —C,, 0 Cr Con —2mQ || €,
0 0 0 m|lé&, 0 —C,5 oo +2m, Q2 €, &, (19)
kxl + kx2 kxyl _kr2 0 g,rl
k. k,+k 0 -k &g,
e " |= -6Dx, - SKx, + HF
—kAZ O kx2 xp2 ExZ
0 —kyZ xy2 y2 gyZ

We notice that the error stability is clearly affected by the damping and anisoelasticity coupling terms
oD and OK. Therefore, to reduce the effect of these imperfections, a control technique should be
synthesized. However, if the error dynamics is stabilized via the feedback gains, it may not be possible
to drive it to the zero steady state because of the effects of damping and anisoelasticity. Consequently,
the task of the optimal control design is to guarantee both stability and tracking in the presence of
micro-fabrication imperfections where 6D and JK are considered as parameter uncertainties affecting
gyroscope damping and stiffness.

Since MEMS-based gyroscopes operate at high frequency (in the order of some KHz), one may be
faced with numerical problems using modern softwares, such as Matlab and Mathematica, to calculate the
feedback gains. It is then necessary to introduce a scaling factor « for the time variable. It is given by

t=ar (20)
Substitution of Eq. (20) in (18) leads to
L Me"+L(D+6D)& +(R +6K) e =~ 5Dx) — 5Kx, + HF @1
a” a o
where the prime denotes d"/d7 and

. 1 .,

&= =& (22)
lo

The optimal control gains are determined from the following dynamics (characterizing the ideal
dynamics)

z = Az+BF (23)

0, 1,. , 0,., _ e
A: 24_\471_ 4,\471_ B:a-M—l 4x2 z = i
-aM K —-aM™D H £

where
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The control force vector F'= K& minimizes the performance index
J = % [0z + F'RF)
the solution of which is obtained by solving the following algebraic Riccati equation
A'Z+Z4-05ZBR'B"Z+20 = 0 (24)
Thus, the gain matrix K is determined from
= -0.5R'B'Z (25)

Therefore, the resulting feedback control force can be put in the following form

&

F =Kz = [K, Kz][ } — K e+ K, (26)

&g

Using the time variable ¢, the feedback control law (26) can be rewritten as
F =K, e+ akK,& 27)

At this stage, a practical issue of importance is the number of actuators employed in the control design.
Of course, reducing the number of actuators is preferred at the implementation phase. We shall consider
three design cases. In the first case, a set of four forces are applied to both masses (two actuators
assigned to each in the x and y directions). The second case assumes two forces applied to the outer
gimbal in both x and y directions. Finally, a third case considers the application of a single force to the
outer gimbal in the x direction only. All cases aim at reducing the sensitivity of the dual gyroscope to
micro-fabrication imperfections. In others words the three design cases are defined as follows

Fxl
. Fyl
(i) four actuators H = 1,,, F =
FxZ
y2
10
(ii) two actuators H = 01 p- Fa
00 F,
00
1
(iii) one actuator H = 0 F-= Fq
0
0

2.4.1 Optimal control with four actuators
In this part, we shall consider the use of four actuators for driving the actual gyroscope to track the ideal
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Fig. 9 Distribution of 4 actuators

dynamics. The actuator distribution is as shown in Fig. 9.

In this case, at each mass, two control forces are applied along the drive and sense directions. Therefore,
the optimal control strategy yields the system performance displayed in Figs. 10 and 11. It can be seen that
the controlled error of the dual mass rate integrating gyroscope is reduced, and thus, the actual gyroscope
tracks the ideal dynamics.

Though the employment of the optimal control method using four actuators yields satisfactory results,
the implemented algorithm seems to be costly. Therefore, investigation of an optimal control using two
actuators is sought in the following section.
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05 ------- 05
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Fig. 10 Controlled motion of both the outer and the inner mass the actual gyroscope
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Fig. 11 Controlled error of the actual gyroscope

Fig. 12 Distribution of 2 actuators

2.4.2 Optimal control with two actuators

In this section case, two actuators are applied to the driving gimbal as shown in Fig. 12.

The applied optimal control leads to the time response shown in Figs. 13 and 14. As compared to the
first case, two actuators led to a slightly larger error. However, the global response of the gyroscope tracks
well the ideal dynamics. It can be seen that two actuators suffice to control the dual-mass system, and
therefore, represents a solution to the problem of reducing the number of actuators in the gyroscope
design.

2.4.3 Optimal control with a single actuator
Finally, this study seeks the possibility of using a single actuator applied to the driving gimbal along the
x direction as depicted in Fig. 15.
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Fig. 13 Controlled motion of the outer mass and inner mass of the actual gyroscope

0

Fig. 14 Controlled error of the actual gyroscope

Fig. 15 The use of a single actuator
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Fig. 17 Error response of the actual gyroscope to a single actuator

The resulting performance of the dual-mass gyroscope is shown in Figs. 16 and 17. Though, the error in
the drive direction is drastically reduced, a single actuator fails to reduce effectively the error in the y
direction.
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3. Conclusions

This paper presented the control design of vibratory dual-mass MEMS-based gyroscopes. Due to micro-
fabrication imperfections, including anisoelasticity and damping effects, these gyroscopes do not allow
accurate measurements of the angular velocity and displacement. For this, feedback controllers were
devised to reduce the effects of such imperfections. The design consisted of two steps. First, an ideal
gyroscope was designed to meet certain performance specifications. Second, two feedback control
strategies were synthesized to reduce the error dynamics between the actual and ideal gyroscopes. Using
both strategies, it was shown that the error dynamics of dual-mass gyroscopes was remarkably decreased
with the application of four actuators applied to both masses in the drive and sense directions. It was also
demonstrated that, using the second control strategy, it was possible to reduce the error dynamics with
only two actuators applied to the outer mass only. Simulation results were presented to prove the
efficiency of the proposed control designs.
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