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Control of PKM machine tools using piezoelectric
self-sensing actuators on basis of the functional principle

of a scale with a vibrating string
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Abstract. An adaptronic strut for machine tools with parallel kinematics for compensation of the influence of
geometric errors is introduced. Implemented within the strut is a piezoelectric sensor-actuator unit separated in
function. In the first part of this contribution, the functional principle of the strut is presented. For use of one
piezoelectric transducer as both, sensor and actuator as so-called self-sensing actuator, the acquisition of the
sensing signal while actuating simultaneously using electrical bridge circuits as well as filter properties are
examined. In the second part the control concept developed for the adaptronic strut is presented. A co-simulation
model of the strut for simulating the controlled multi-body behavior of the strut is set-up. The control design for
the strut as a stand-alone system is tested under various external loads. Finally, the strut is implemented into a
model of the complete machine tool and the influence of the controlled strut onto the behavior of the machine tool
is examined.
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1. Introduction

In machine tools with parallel kinematics of two or three translational degrees of freedom, as shown

exemplarily in Fig. 1, geometric errors in parts of the machine tool, such as assembly errors or differing

geometries due to production tolerances, lead to stresses within the structure. These stresses result in

deflections of the tool center point (TCP) reducing the quality of the workpiece. For compensation of

these deflections an adaptronic strut as depicted in Fig. 2 has been developed. The strut is similar in

shape to a conventional strut of machine tools with parallel kinematics. Cut in two halves with a

piezoceramic transducer in-between the strut is variable in length. Thus, an additional degree of

freedom for compensation has been achieved.

The piezoelectric transducer shall be used as self-sensing actuator fulfilling both functions, sensing

and actuating. In the first design step of the strut these two functions are still separated by using two

piezoelectric elements. However, using electric circuits, e.g. bridge circuits, the sensing signal can be

acquired while actuating at the same time.
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The considered deflections are static and sometimes quasi-static, and thus, they induce only static or

quasi-static signals within the piezoelectric transducer. However, due to the discharging resistance of

the piezoelectric material these signals are not measurable according to Bill (2002), Ruschmeyer (1995).

Therefore, a work-around based on the functional principle of a scale with a vibrating string was

designed Rudolf, et al. (2005). A string mounted along the strut is excited by a solenoid inducing a

dynamic signal onto the piezoelectric element. This signal can be aquired and its frequency can be

determined using frequency counters or phase-locked loops (PLL). Using the Eq. (1) between the

eigenfrequency f0 of the string and the prestress T on the string

, (1)

with lS, A and ρ being length, cross-sectional area and density of the string, respectively, the external

static or quasi-static load on the strut can be determined. Further information about the functional

principle of the adaptronic strut can be found in Fleischer, et al. (2006) and Rudolf, et al. (2005, 2006).

Within this contribution we only marginally consider the electromechanical relations of the

piezoelectric transducer between force, electric field as well as mechanical and electrical displacement.

For the stack actuator used, applying Einstein’s summation rule, the linear constitutive equations

f0
1

2lS
-------

T

Aρ
-------=

Fig. 1 Parallel kinematic machine tool with three translational degrees of freedom, Rudolf, et al. (2007)

Fig. 2 Adaptronic strut, Rudolf, et al. (2005)
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(2)

(3)

with p ∈ {1,2,3} hold for small voltage signals, where Tp and Sq are stress and strain and Ek and Dp are

electric field and electric displacement in the piezoelectric material. These system variables are related

with each other by the piezoelectric constants ekp, permittivity εkp
S at constant mechanical stress S and

elasticity constant cE
pq

at constant electrical field E. In case large signal behavior must be considered

during realization of the adaptronic strut the hysteretic dependency between, for example, voltage and

force can be described using elementary operators such as lefthanded and righthanded saturation, hysteresis

(or backlash) and creep operators. Their non-linear behavior can be made linear by compensation using

inverse control, see Janocha and Kuhnen (2000, 2006) and Kuhnen and Janocha (2001).

The first part of this contribution deals with piezoelectric self-sensing effects and the examination and

assessment of the different possible electric circuits for separating actuation and sensing signal of the

piezoelectric transducer to achieve these effects. Within the second part, starting with a lumped mass

model of the strut, the design of an appropriate control concept for the adaptronic strut is presented.

Firstly, the concept is evaluated on a model for the strut as a stand-alone system under external loads,

and secondly, the strut model is implemented into the model of the machine tool and its influence on the

behavior of the machine tool is treated.

2. Piezoelectric self-sensing

A signal representing the string vibration can be obtained with the piezoelectric transducer when

operated as a self-sensing actuator. The desired frequency information is contained in the superposed

dynamic load of the vibrating string on the transducer. For the considered application it is in a range of

4 to 6 kHz whereas static forces and corresponding driving signals to the actuator are in a frequency

range up to 1 kHz. The difference of their frequency ranges is an essential condition for the separation

of process loads and loads on the transducer due to the vibrating string.

2.1. Methods for self-sensing the string vibration

One approach to obtain the high-frequency signal of the vibrating string is, first, to gain the overall

load on the transducer by operating it in a self-sensing configuration and, second, filter this signal for

the known frequency range of the string vibration.

Common methods of using piezoelectric transducers as self-sensing actuators employ bridge circuits,

such as the capacitive bridge circuit exemplarily shown in Fig. 3, to determine the force-induced charge

component qF or strain-induced charge component qS. The bridge voltage

(4)

described in the frequency domain with complex electric impedances

(5)
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gets independent of the driving voltage Vin if the equilibrium conditions

and (6)

are fulfilled, reducing (4) to

. (7)

These conditions (6) are fulfilled by choosing

 and . (8)

However, this adjustment has shown to be quite cumbersome in practice as slight deviations dramatically

impair results, Babu ka and O’Donnell (1998). A version of the bridge circuit which is easier to handle

is shown in Fig. 4. For conditions

(9)

and

(10)

Eq. (4) reduces to Eq. (7) as well, becoming independent of the driving voltage Vin.

In this configuration only resistances have to be adjusted which is more easily accomplished in

practice than matching capacitances as it is required in Eq. (8). As a downside, however, the threshold

frequency at which dynamic loads can be measured will be raised if Rp1 is lowered to meet Eq. (9). For

the considered application, however, this is not an issue since high-frequency signal parts are of interest

and high-pass filtering has to be applied in the signal processing chain anyway.

Both bridge circuits described above are based on a linear model of the piezoelectric transducer since

constant capacitances and resistances are used for balancing. To overcome this downside the usage of

an identical unloaded piezoelectric transducer instead of the constant capacitance Cp2 in the reference

branch of the bridge in Fig. 3 has been suggested by Jones, et al. (1994).

Zp1 Zp2= Zr1 Zr2=

Vout
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Fig. 3 Capacitive bridge circuit for piezoelectric self-
sensing

Fig. 4 Bridge circuit with purely resistive reference
branch for piezoelectric self-sensing
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Another approach to obtain the vibration frequency of the string is to measure the charge on the

transducer and pass this signal through a frequency filter to extract the high-frequency component

induced by the corresponding high-frequency loads. To measure the charge on the transducer a Sawyer-

Tower circuit as depicted in Fig. 5 can be employed.

Since the amplitude of the wanted frequency range will be very low in this signal and the difference

between wanted and dominant frequencies is only about half of a decade a frequency filter with high

rolloff and therefore high order has to be used. However, on one hand high filter orders induce a phase

shift that might be unfavorable in dynamic control applications. On the other hand no adjustments as

with bridge circuits are required for this configuration.

Frequency filtering of the signal obtained by either bridge circuits or charge measurement can be

accomplished by a high-pass filter. Unwanted frequencies above 6 kHz, however, e.g. originating from

resonant vibration of the piezoelectric transducer, which might disturb the detection of the frequency of

the vibrating string will be passed through the filter as well. Therefore, an appropriate band-pass filter

might be necessary instead.

2.2. Experimental set-up

To verify the proposed concepts of a self-sensing actuator for extracting the vibration frequency of

the string experiments were conducted on a test rig. It consists of two piezoelectric multilayer bending

actuators (both of type PL140.00 by PI (Physik Instrumente) GmbH & Co. KG). One of them is operated as

self-sensing actuator placed into the different configurations described above, the other one is

mechanically coupled to the first one imposing an external force of sinusoidal form onto its tip.

This load is corresponding to the force induced by the string vibration on the strut. Since the force

between the actuators results from the interaction of both bending transducers the overall load on the

self-sensing actuator contains a second component due to the actuation of the self-sensing actuator. This

load component corresponds to the process load in the strut.

Since the piezoelectric bending actuators in the experimental set-up are characterized by low resonant

frequencies of around 160 Hz the frequencies of the envisaged application could not be applied in the

test rig. Instead a proportional frequency range of up to 10 Hz for the driving voltage Vin of the self-

sensing actuator and between 40 and 60 Hz for the external vibrational force was used. For Vin the

Fig. 5 Sawyer-Tower circuit for charge measurement
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symmetric test signal depicted in Fig. 6 was used. It contains two sinusoidal logarithmic chirp waveforms

from 1 µHz to 10 Hz and vice versa as well as two DC-sections joined at t = 7.5 s by half of a period of

a cosine at 10 Hz. The second actuator generating the external vibrational force was driven by a

sinusoidal voltage signal whose frequency follows the course shown in Fig. 7.

2.3. Experimental results

Three different self-sensing bridge circuits were investigated: The capacitive bridge circuit shown in

Fig. 3, a capacitive bridge circuit with a third identical unloaded piezoelectric bending transducer in-

stead of the constant reference capacitance Cp2, and the bridge circuit with a purely resistive reference

branch depicted in Fig. 4. The bridge voltage Vout was passed through a fourth-order Butterworth-band-

pass filter with cut-off frequencies of 35 and 65 Hz.

In addition to the bridge circuits a Sawyer-Tower circuit for charge measurement was investigated.

The measured voltage Vout had to be passed through an eighth-order Butterworth-band-pass filter with cut-

off frequencies of 35 and 65 Hz to obtain signals that were comparable to those of the bridge circuits.

To visualize the frequency information contained in the resulting signals of all tests a frequency-time-

plot was created by determining the frequency as the inverse of twice the time between zero crossings.

Fig. 6 Test signal for the driving voltage Vin of the
piezoelectric self-sensing actuator

Fig. 7 Frequency course of the external vibrational
force generated by the second piezoelectric
transducer

Fig. 8 Frequency extracted with capacitive bridge circuit

Fig. 9 Frequency extracted with capacitive bridge
circuit with piezoelectric transducer instead of
constant reference capacitance Cp2
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These diagrams are shown in Figs. 8-10 and 12. The frequency courses shown in Fig. 11 and Fig. 13

were obtained by averaging the frequency values over the last 50 ms at any time point. This method

results in smoother curves with smaller errors. However, frequency changes are detected more slowly.

The experimental results show clearly that the frequency information of an external force component

on an actuating piezoelectric transducer can be obtained by using self-sensing techniques. The best

results are obtained from the bridge circuit with resistive reference branch. This may be due to better

adjustability of this bridge circuit compared to the full capacitive bridge circuits. Although due to their

linear characteristics bridge circuits are considered limited to the small-signal range for self-sensing the

amplitudes of the mechanical quantities force and deflection their performance appears to be sufficient

even in large-signal range if only frequency information is of importance. A successful transfer of the

bridge circuit with a resistive reference branch onto the target system of the adaptronic strut for

machine tools can be found in Munzinger (2007).

In addition to bridge circuits, a new approach of self-sensing the frequency information of an external

force was verified. It directly exploits the circumstance of different frequency ranges by measuring and

frequency filtering the charge on the transducer. Charge measurement was accomplished by a Sawyer-

Tower circuit. This approach is insusceptible to detuning, its performance, however, turns out to be

inferior to that of the bridge circuits. Furthermore, a frequency filter of higher order is necessary which

introduces additional phase shift into the measuring chain. For use in control concepts for compensation

of static and quasi-static signals this solution is appropriate, for extension of the frequency range of the

Fig. 10 Frequency extracted with bridge circuit with
resistive reference branch

Fig. 11 Averaged frequency extracted with bridge circuit
with resistive reference branch

Fig. 12 Frequency extracted with Sawyer-Tower circuit Fig. 13 Averaged frequency extracted with Sawyer-
Tower circuit
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application, however, this phase shift must be regarded in the controller design. On the contrary, higher

harmonics occurring due to nonlinearities of the piezoelectric material in large-signal operation have no

significant influence on the operation behavior due to their small amplitudes. Since the overall results

prove useful this concept can easily be transferred into the control system for the adaptronic strut shown

in Fig. 2.

3. Design of control concept for adaptronic strut

Within this section different models of the adaptronic strut are presented. Starting with a simple three

rigid body oscillator the control concept is developed and transferred to more complex models of the

strut.

3.1. Three-body-oscillator

The strut within this model is simply considered to be consisting of three rigid bodies, the lower and

the upper part of the strut and the piezoelectric transducer in-between. Using a lumped component

approach, the system can be simplified as depicted in Fig. 14, where ci, di and mi define the material

properties of the lumped bodies and F represents an external force.

With Fr being the force resulting from the piezoelectric actuator a, the equations of motion of the

system read

, (11)

and rewritten in state space form

(12)

with state variable vector zT=[ T, xT], u=Fr and us=F.

3.1.1. Linear quadratic regulator

Using the analytical model in state space Eq. (12) a state controller for this single variable system is

designed. The parameters are determined using the principle of a Least Quadratic Regulator (LQR).

The controller force then reads

(13)

while r is chosen to minimize the quadratic cost functional

Mx·· Dx· Cx+ + fFr fSF+=

z· Az bu bS uS+ +=

x·

Fr r
T
z–=

Fig. 14 Three-body oscillator
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. (14)

The solution of this minimization problem reads

(15)

where P is the solution of the algebraic Riccati equation

PA + ATP + Q −k P bbTP = 0. (16)

The scalar k > 0 is a value for the cost of the controller input, Q is a positive, semi-definite matrix.

The matrix Q is chosen as

(17)

such that zTQz represents a modified total energy of the system. The parameters wkin and C* represent

weights for kinetic and potential energy, respectively. For more details on applying the LQR method

and on setting the required parameters and weights, see Föllinger (1994), Lunze (2004), Preumont

(2002) or Rudolf, et al. (2007).

3.1.2 Full state observer (Luenberger observer)

In general, the describing state vector of the system is not completely available. However, using a full

state observer it can be estimated with a measured output y by

, (18)

where l is the observer feedback vector. The eigenvalues of a state controlled closed loop system (A, b,

r) are not shifted if an observer is inserted into the system. According to Föllinger (1994), their number

is simply enhanced. Thus, as long as the plant is controllable and observable, the eigenvalues of

controller and observer can be set separately. For realizing state control using a full state observer, the

observer has to be faster in estimating the state vector than the controller. Using the pole assignment

procedure according to Ackermann, Föllinger (1994), Tsui (2004), this can be achieved by placing the

observer poles further on the left of the imaginary axis than the closed-loop controller poles, i.e.

, (19)

where λL* are the eigenvalues of the observer system L*=A - lc and λA* are the eigenvalues of the

controller system A*=A−br.

3.1.3 Simulation results

For simulation the model of the three-body oscillator was built within the commercial multi-body

soft-ware program Msc.Adams. The co-simulation interface between Adams and Matlab/Simulink was

used for realizing controller and observer within the system. The exchange interval between the two
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ẑ· A z̃ bu l ŷ y–( )+ +=
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programs was set to ∆t = 0.1 ms, which is identical to the maximum step size of the BDF integrator.

For the presented simulations the initial conditions of the system are zero velocities and positions, i.e.

zi = 0. The system is disturbed by the external force

. (20)

For a chosen set of parameters wkin and C* according to Rudolf, et al. (2007) the simulation result of

the controlled system is shown in Fig. 15. A steady-state control error is remaining.

To achieve a zero steady-state error an additional controller as shown in Fig. 16 shall be implemented.

The plant including the LQR controller is represented by G, in the feedback path a simple integrator is

placed, i.e. H=1/s. The pre-filter F which is only included for completeness is set to F=1. By adjusting

the compensation element C using the root locus procedure, D’Azzo, et al. (2003), Lunze (2005), an

optimal system behavior and a large stability margin can be achieved with dominating poles far away

from the imaginary axis. It turns out that a simple proportional element for C is sufficient, Rudolf, et al.

F 2 kNσ t 0.05 s–( )=

Fig. 15 LQR state controlled system under influence
of external disturbance F=2 kN σ (t-0.05 s)

Fig. 16 Closed-loop system structure with integrator
in feedback path

Fig. 17 LQR-PI state controlled system under influence
of external disturbance force F = 2 kN σ (t−
0.05 s) Fig. 18 Actuator force
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(2007).

In the following this combination of the LQR state controller, the integrator in the feedback path and

the proportional element in the forward path is referred to as LQR-PI-controller. The efficiency of using

both controller parts is shown in Fig. 17. There is no remaining steady-state error and the influence of

the external force is compensated within less than 10 ms. The required actuator force for this control is

depicted in Fig. 18.

3.2. Adaptronic strut by flexible bodies

Fig. 19 shows the first model including flexible bodies instead of lumped masses and lumped material

properties. It comprises an upper and a lower half of the strut with the piezoelectric transducer in-

between. The same control configuration with LQR and P-I elements is used for this model, whereas

instead of the position x3 of lumped mass m3 the tip deflection of the upper half of the strut is used as

control variable. The efficiency of the transfer of the control design under the influence of the same

external disturbance force F is depicted in Fig. 20.

3.3. Adaptronic strut by CAD data

Using the design CAD data the exact geometry and exact material properties of the adaptronic strut

can be considered in the flexible multi-body model shown in Fig. 21. Although this system is more

complex the presented control configuration with LQR and P-I-elements is used with the tip deflection

of the upper half of the strut being the control variable. This procedure was chosen since the design of a

perfectly fitting control concept for this flexible multi-body model is rather laborious. The large number

of modal coordinates required to describe the flexible behavior of the components result in a big

number of state variables and thus, the handling gets costly and expensive. The response of the controlled

system to the external disturbance force is depicted in Fig. 22.

The magnitude of the external force for this simulation was reduced by 1 kN, since the simple control

model reaches its limits at F=1 kN for a step function when used for control of the complex model of

the adaptronic strut. However, since mainly static and quasi-static loads are in focus of the application,

Fig. 19 Simple model of adaptronic strut
Fig. 20 LQR-PI state controlled system under influence

of external disturbance force F = 2 kN σ (t-
0.05 s)
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higher but slowly changing loads might still be compensated with the presented control concept.

Further studies on this subject must be conducted. Additionally, investigations into the behavior of the

adaptronic strut when built into the exemplary machine tool with parallel kinematics have to be done

for evaluating the design and its transfer onto the complex model.

4. Adaptronic strut implemented in machine tool

Fig. 23 shows the exemplary machine tool with parallel kinematics where three conventional struts

were exchanged by three adaptronic struts. Since both the compensation efficiency as well as the

mechanical behavior of the machine tool depend on number and position within the machine tool of the

substituted struts further investigations shall be conducted.

On one hand a substituted strut introduces an additional degree of freedom, allowing the correction of

a small angular deflection of the TCP due to static or quasi-static loads. Thus, for turning processes one

Fig. 21 Model of adaptronic strut by CAD data Fig. 22 LQR-PI state controlled system under influence
of external disturbance force F=1 kN σ(t-
0.05 s)

Fig. 23 Msc. Adams model of exemplary machine tool with parallel kinematics, exchanged adaptronic struts at
positions 2,3,5 (ad235)
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adaptronic strut might be sufficient since mainly point contact exists between tool and workpiece. For

milling processes, however, usually planar contact between tool and workpiece occurs. Therefore, at least

two adaptronic struts must be implemented into the machine tool. On the other hand, implementing the

struts into the machine tool changes the stiffness of the machine tool. In a first step this influence is

examined without controlling the strut. The frequency responses Gxx of the deflection of the TCP to a

process load, that is acting on the TCP along the x-axis, depending on number and position of the

adaptronic struts within the machine tool are depicted in Fig. 24 and Fig. 25.

As easily can be seen symmetries of the machine tool behavior due to it symmetric structure occur.

The implementation of an adaptronic strut reduces the lowest resonance frequencies of the machine tool

due to a decrease of its stiffness. The number of exchanged struts itself influences the stiffness only

marginally as long as only one strut of each pair per guiding skid is exchanged. 

The overall decrease of stiffness due to the implementation of the designed adaptronic strut is

unwanted. By adding a second piezoelectric transducer and placing both elements off-center within the

Fig. 24 Influence of number and position of adaptronic struts onto the stiffness of the machine tool, shown
exemplarily by the frequency response Gxx of the position of the TCP to a process load

Fig. 25 Influence of position of adaptronic strut onto the stiffness of the machine tool, shown exemplarily by
the frequency response Gxx of the position of the TCP to a process load
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strut the stiffness of the adaptronic strut can be increased reaching the same magnitude as the original,

conventional strut.

In the following the influence of a strut which is non-ideal and the influence of the position of the

compensation unit on the considered machine tool are studied. Assuming strut number four according

to Fig. 23 to be 10 µm longer than the other struts with the rest of the machine tool structure being ideal

deflections of the TCP arise. These constant translational (dx, dy, dz) and angular (ϕx, ϕy, ϕz) deflections

with respect to the global coordinate system are listed in Table 1.

Depending on the position within the machine tool structure the in°uence of an adaptronic strut

regarding the compensation of this geometric error varies. Therefore, the following examinations were

accomplished. Starting from a parallel kinematic structure which originally was ideal apart from the

elongation of strut number four strut i was regarded to be of adjustable length. While the machine tool

has been at rest the length li of the strut was changed by elongations ∆li with -30 µm ≤ ∆li ≤ 20 µm. The

results are shown in Figs. 26-29. For reference, the olive colored graphs depict the constant deflections

of the TCP due to the non-ideal strut 4 alone without any other influence.

As easily can be seen in the presented figures the influence of struts 2 and 6 on the deflections of the

TCP are nearly equal. The same holds for the influence of struts 1 and 5. These similar effects are due

to the rotational symmetry of the examined PKM machine tool. As shown in Fig. 26 and Fig. 27 all

struts opposite to strut four (1,2,5,6) have similar influence on the translational deflections of the TCP.

While the deflection dy is set to zero by reducing the length of the corresponding strut the deflection dz

increases which is undesirable. However, this deflection can easily be compensated by moving all three

guiding skids of the machine tool identically. Regarding the angular deflections of the TCP a similar

behavior of these four struts (1,2,5,6) is found, as shown in Fig. 28 and Fig. 29. Here the reciprocal

Table 1 Constant deflections of TCP when strut number 4 is 10 µm longer than the other struts

dx [m] dy [m] dz [m] ϕx [rad] ϕy [rad] ϕz [rad]

0  6.31e-6  8.73e-7 2.51e-9 -3.91e-5 3.06e-5

Fig. 26 y-deflection of the TCP due to ∆l4=10 µm
and -30 µm ≤ ∆li ≤ 20 µm

Fig. 27 z-deflection of the TCP due to ∆l4=10 µm
and -30 µm ≤ ∆li ≤ 20 µm



Control of pkm machine tools using piezoelectric self-sensing actuators 181

behavior can not be compensated by an additional movement of the guiding skid. Hence, the angular

deflection of the TCP can only partially be reduced. This, however, might be sufficient, depending on

the machining process. In turning processes there is only point contact between tool and workpiece, and

thus, a single angular deflection might not affect the process and, therefore, the quality of the

workpiece. Yet, if milling processes are considered such a deflection must be taken into account and

one compensation unit might not be sufficient.

In this special case of a non-ideal strut 4 the best way for compensation is by making strut 3

adjustable in length. As long as both struts are of equal length all arising angular deflections can be

compensated at all times by a position adjustment of the guiding skid corresponding to these two struts.

5. Conclusions

In this contribution an adaptronic strut for compensating static and quasi-static errors within machine

tools with parallel kinematics has been presented. Using the functional principle of a scale with

vibrating string static and quasi-static loads can be measured with piezoelectric transducers. For a better

utilization of the limited size for the actuator element within the strut the usage of piezoelectric

transducers as self-sensing actuators has been examined. Several different electrical circuits for acquiring

the sensing signal while actuating simultaneously, such as capacitive and resistive bridge circuits and a

Sawyer-Tower circuit, have been studied, verified, and evaluated by means of experimental results.

Furthermore, a control concept has been developed and tested within three different models of the

adaptronic strut: First a lumped parameter approach, second a flexible body approach and finally a model

by CAD data. The evaluation of the presented control concept was accomplished by means of simulation

results under external disturbance loads. At last, the static influence of number and position of the presented

compensation unit within the machine tool was examined.

Intended future studies follow two parallel paths. Firstly, the presented electrical circuits shall be

Fig. 28 Angular deflection ϕy of the TCP due to ∆l4=
10 µm and -30 µm ≤ ∆li ≤ 20 µm

Fig. 29 Angular deflection ϕz of the TCP due to ∆l4=
10 µm and -30 µm ≤ ∆li ≤ 20 µm
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integrated into the experimental test-rig of the adaptronic strut. Further studies of using the self-sensing

properties of the piezoelectric transducer under loads comparable to loads during the machining process

shall be conducted. Secondly, the controlled struts shall be implemented into the machine tool.

If more than one strut is substituted the extension of the presented single variable control to a multi

variable control might be essential. Depending on the position of the TCP in the workspace of the machine

tool the compensation of static and quasi-static errors shall be achieved. The efficiency of the strut shall

be studied under machining processes such as turning and milling. Finally, an extension of the frequency

range for compensating dynamic loads as well is envisaged.
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