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Statistical approach to a SHM benchmark problem
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Abstract. The approach to damage detection and localization adopted in this paper is based on a statistical
comparison of models built from the response time histories collected at different stages during the structure
lifetime. Some of these time histories are known to have been recorded when the structural system was
undamaged. The consistency of the models associated to two different stages, both undamaged, is first recognized.
By contrast, the method detects the discrepancies between the models from measurements collected for a damaged
situation and for the undamaged reference situation. The damage detection and localization is pursued by a
comparison of the SSE (sum of the squared errors) histograms. The validity of the proposed approach is tested by
applying it to the analytical benchmark problem developed by the ASCE Task Group on Structural Health
Monitoring (SHM). In the paper, the results of the benchmark studies are presented and the performance of the
method is discussed.

Keywords: damage detection; damage localization; regression analysis; structural health monitoring; sum of
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1. Introduction

The research in the field of Structural Health Monitoring (SHM) led to the development of several

algorithms for damage detection and localization which fulfil the requirements of effectiveness, simplicity,

reliability and low amount of data storage (Casciati and Casciati 2006, Casciati 2008, Masri, et al. 2000).

Within this framework, a method exploiting the response surface approximation theory (Breitung and

Faravelli 1996, Draper and Smith 1981) was formulated by the author in (Casciati 2005, 2009). Empirical

models are built from two different sets of data: a reference one which is associated to the undamaged case

and a second set of data, subsequently collected, which is a priori unknown since it could either represent

an undamaged or damaged case. A solution to the problem of damage detection and localization is then

pursued by comparing the SSE (sum of the squared errors) histograms associated with these models.

In view of the implementation of this algorithm into intelligent devices, its validation on a benchmark

problem is preliminarily performed. For this purpose, the benchmark problem proposed by the ASCE

SHM Task Group (Johnson, et al. 2000, 2004) is suitable and is considered as a case study in this paper.

2. The statistical approach

The approach adopted in this paper assumes that the measurement data from an undamaged baseline
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structure are available, and that another data set (marked with the suffix “new” in the following) is

subsequently collected from the same structure whose state in the meantime has become unknown (either

damaged or undamaged). Given this pair of data sets, the goal is then to conclude whether or not the new

state is associated with damage. 

Let NS the number of sensors placed across a structure. Each recorded time history is broken up into

several segments. Each segment is approached by regression analysis, so that the results from all the

segments can be used for a statistical analysis. Let nset be the number of segments, each of p points, with

p = αNS and α a positive integer. 

A regression analysis is repeatedly applied by assuming in turn the measurements taken at each sensor

as the response variable, vector y. At each instant of time, the corresponding measurements from the

remaining channels, matrix X, are considered as the predictors in the regression scheme. In other words,

for each sensor j and for each segment i, one can write:

(1)

where y is the p × 1 vector of the response variables, X is the p × (NS -1) matrix of the predictors, ηL and

η are the p × 1 vectors of the lack of fit errors and of the pure errors, respectively. The values contained

in these matrices vary depending on the sensor j whose measurements are assumed as responses and on

the considered segment i along the corresponding time history. For simplicity of notation, this

dependence will be omitted in the following.

In Eq. (1), one distinguishes the systematic lack of fit errors, ηL, due to the selected form of f (.), and the

random errors, or pure errors, η. The latter errors (Breitung and Faravelli 1996) arise from the remark that,

if the same experiment is run m times for the same values of X, the resulting outcomes y1, …, ym may

result different due to the randomness of the variables. It is generally assumed that the total error terms,

ε=ηL+η, are normally distributed uncorrelated random variables, with zero mean and variance σ 2, i.e.,

ε~N(0, σ). This assumption allows the analyst to perform the statistical tests, such as the t- or F-tests.

Since the aim of the proposed algorithm is only to perform regression analyses, no hypothesis on the error

distribution needs to be introduced (Draper and Smith 1981).

Typically, a polynomial form is assumed for f (.). Since the structural behavior of the system is linear

also after the braces removal (i.e., the occurrence of “damage”), a first-order polynomial is assumed as

sufficient to model the case under consideration. Therefore, for the j-th sensor and for the i-th segment

along its time history, the following linear equations can be written for the undamaged and unknown state

cases, respectively

(2)

where A is a p × NS matrix whose j-th column is a p × 1 vector of 1’s, and the remaining NS - 1 columns

are the p × 1 vectors of the predictors which were collected in matrix X. The problem turns to be one of

linear regression analysis, and β is the 1 × NS vector of the unknown linear regression coefficients. As

previously mentioned, the suffix “new” denotes that the same quantities are referred to the unknown state

of the structure.

The classical linear regression analysis provides the following estimates for the β-vectors
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(3)

The estimates values of the response vectors y are:

(4)

with PA and PA,new matrices of size p by p.

The further step in multivariate statistics usually consists of performing the analysis of variance. For this

purpose, each of the items listed below is computed together with its own number of degrees of freedom is

denoted as λ (Casciati 2009):

- the total sum of squares, SSY, with λ = p:

SSY = yTy

SSYnew = yT
new ynew (5)

- the regression sum of squares, SSR, with λ = NS :

(6)

- the residual sum of squares, SSE, with λ = p-NS:

(7)

The first two terms are sometimes corrected by the mean, i.e. ym=(Σi yi)/p. In this case, p(ym)2 is

subtracted to both SSY and SSR, whose degrees of freedom become p-1 and NS -1, respectively, while

the SSE stays unmodified. The SSE divided by the corresponding number of degrees of freedom,

provides an estimate s2 of the variance σ2 of the total error term. That is, the estimate of the standard

deviation of the total error is given by

(8)

When replicates of a single experiment are possible, i.e., when one can associate to the same matrix A

different response vectors y, this subset of experiments provides an estimate of the pure error variance.

The variance of the lack of fit error is then obtained by subtracting this estimate to s2. In the particular case

under investigation, the measurements are collected in a continuous monitoring. This prevents one from

collecting replicates able to estimate the pure error variance and, hence, the lack of fit and the pure error

cannot be distinguished one from the other.

The flow chart of Fig. 1 summarizes the whole procedure.
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3. Comparing two models

In the previous section two datasets collected during different tests on the same structure were used

to identify the corresponding linear regression models. In the literature, the model comparison is

usually performed on a statistical basis by adopting the F- or the t-test. This procedure, however,

resulted to be very sensitive to noise in the measurements (Casciati 2009) and, therefore, inadequate

Fig. 1 Flowchart summarizing the algorithm which leads to the damage indices calculation
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for SHM applications. The proposed methodology relies instead on a different approach for model

comparison which is outlined by assembling together both the measurements of the undamaged

structure and the ones of the unknown (new) structural state. In this case, the following matrices are

used in the linear regression analysis:

(9)

where yglob is a 2p × 1 vector and Aglob is a 2p × NS matrix. In agreement with this notation, the result of

the analysis of variance will be denoted as SSEglob.

Repeating the procedure for all segments i = 1, …, nset of the response time history of sensor j,

the analyses provide nset values of SSE from the undamaged dataset, and nset values of SSEglob, so

that, for the considered sensor j, histograms of these quantities can be drawn to represent their

distributions. The two histograms can be plotted together and compared after multiplying by two

the SSE ordinates, which refer to the undamaged state of the structure alone (Casciati 2009). This

factor of 2 is required in order to achieve a histogram of doubled size as the one obtained from the

global dataset.

By permuting the time history considered as response variable so that all sensors j = 1, …, NS are

considered, a histograms’ comparison can be built for each sensor location. Damage can be detected by

simply observing the shift between the means of the two histograms. 

Two situations are possible: 

(1) if no significant shift is noticed, the unknown state of the structure is classified as still undamaged; 

(2) instead, if there is a significant shift between the two histograms, then one detects that the structure

underwent some damage.

Furthermore, once damage has been detected, it can also be localized by comparing the plots obtained at

different sensor locations. The damage will be localized near the sensors where the larger shifts are

observed.

Based on these observations, a damage index is formulated as the absolute value of the difference

between the means of the two histograms and it is used in the application discussed in the next section.

4. Application to the benchmark problem

The test structure under consideration is the 2-bay by 2-bay, 4-story, scaled steel frame shown in Fig.

2(a). A data generation program (“datagen.m”) was implemented by the Task Group within the Matlab

software environment in order to create an analytical model of this structure (Fig. 2(b)) and to compute its

response under different excitation conditions. The m-file can be downloaded from wusceel.cive.wustl.

edu/asce.shm/. For the purposes of this paper, the user-defined parameters are set as their default values. In

particular, a noise level of 10 is included in the analysis, the sampling time interval is 0.001 s, and the total

duration of the analysis is 40 s.

Among the output of the data generation file, the acceleration-time histories computed at the measurement

points are collected in a single matrix a of size NP × N*
S . The number of rows is equal to the total number

of points in each time history, i.e., NP = 40001, while the number of columns is equal to the total number

of “sensors”, N*
S=16, i.e., the number of nodes which are included in the set for which the response time

histories are provided. These nodes numerically model a spatial distribution of sensors and they are the
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ones indicated in Fig. 2(b)). In particular, at each floor level, the accelerations of the nodes belonging to

the four middle columns are calculated for a single degree of freedom (d.o.f). The resulting total number

of “sensors” associated to each monitored d.o.f. is NS = N*
S /2 = 8. Therefore, the distribution of sensors for

this application is rather sparse, while the proposed damage detection method was originally developed in

the context of a distributed monitoring system. Meaningful results are, however, achieved and are discussed

in the present paper.

When running “datagen.m”, the user is prompted to select among several options which correspond to

different assumption on the numerical model and its loading conditions. Among the several cases

considered by the benchmark, attention is focused on cases 1, 2 and 3. Both cases 1 and 2 see the load

applied to all the floors along one of the two axis directions, but case 1 uses a numerical model with 12

degrees of freedom (d.o.f.), while case 2 uses 120 d.o.f.’s. Case 3 adopts the same model as case 1, but the

load is only applied to the top and its direction is along the bisector of the x-y plane.

For all cases, two damage patterns are studied: in damage pattern 1, all the first (bottom) level of

braces is removed; in damage pattern 2, also the third level of braces is removed. In next section the

statistical approach is applied with α set equal to 40; therefore, p = 320 and nset = int(NP/p) = 125

(Casciati 2004).

5. Results for the benchmark structure

The results for cases 1 and 2 of the benchmark problem are given in Table 1, while Table 2 refers to case

3 only. For each case, damage patterns 1 and 2 are considered (in Tables 1 and 2 the actual damage

locations are denoted by an asterisk). Damage pattern 1 is correctly identified in all cases by detecting the

damage at the sensors on the first floor only. 

For case 2 and damage pattern 1, the histograms’ comparison at each sensor location is shown in Fig. 3.

Fig. 2 The ASCE benchmark structural system: (a) real structure at UBC (University British Columbia), re-
arranged from Johnson, et al. (2000) (left); (b) analytical model and sensors location (right)
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From this figure, it is evident that a significant shift between the histograms occurs at the sensors located

on the floor 1 where the damage is introduced. In this case, all the other regions do not seem to be affected

by the damage (since the histograms stay close to each other). 

The histograms’ comparison at each sensor location for case 2 and damage pattern 2 is shown in Fig. 4.

Also in this case, a significant shift between the histograms occurs only at the sensors located on the floors

where the damage is introduced. 

When considering case 1 and damage pattern 2 (see Table 1) a small shift of the histograms is observed

in Fig. 5 also for the second floor, whose response is influenced by the removal of the braces on the first

and third floors. This effect becomes more significant for case 3 and damage pattern 2 (see Table 2), where

the shifts at the sensors on the second floor are larger than the ones at the sensors on the third floor.

Therefore, in this case the damage could have been introduced either at the second or at the third floor.

This ambiguity is mainly due to the reduced number of degrees of freedom used by the numerical models

of the structure under investigation. Furthermore, the number of sensors available is the minimum to

guarantee the system observability. These circumstances affect the performance of the method, which is

not optimal.

Table 2 Results for CASE 3 and damage patterns 1 and 2

CASE 3, Damage 1 CASE 3, Damage 2

y-dof x-dof y-dof x-dof

Damage index Sensor Damage index Sensor Damage index Sensor Damage index Sensor

0.0041 14 0.0116 15 0.5813 14 0.1126 13

0.0118 16 0.0148 13 0.6023 16 0.1172* 11*

0.0353 8 0.0567 5 1.3998* 12* 0.1221 15

0.0477 6 0.0597 7 1.4100* 10* 0.1258* 9*

0.0724 12 0.1302 11 6.6094 8 0.7058 5

0.0816 10 0.1307 9 6.6256 6 0.7070 7

1.2044* 4* 0.4573* 1* 10.8644* 4* 2.1328* 1*

1.2091* 2* 0.4704* 3* 10.8765* 2* 2.1370* 3*

Table 1 Results for CASE 1 and CASE 2 and damage patterns 1 and 2 (a star marks the location where actually
damage developed)

CASE 1, Damage 1 CASE 1, Damage 2 CASE 2, Damage 1 CASE2, Damage 2

Damage index Sensor Damage index Sensor Damage index Sensor Damage index Sensor

0.0305 10 0.0735 14 0.1040 12 0.1465 6

0.0396 12 0.0794 16 0.1056 10 0.1492 8

0.0471 6 0.4782 6 0.1326 6 0.2244 16

0.0593 8 0.4959 8 0.1344 8 0.2357 14

0.0752 16 0.8333* 10* 0.1481 16 0.7142* 2*

0.0828 14 0.8496* 12* 0.1537 14 0.7151* 4*

1.0757* 2* 1.6321* 2* 0.8721* 2* 0.7298* 10*

1.1150* 4* 1.6671* 4* 0.8887* 4* 0.7339* 12*
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Fig. 3 Histograms comparison at different sensor locations for CASE 2, damage pattern 1. The results are
displayed so that the sensors placement in Fig. 1(b) is reproduced (from the first floor (bottom) to the
top). The histograms coming from the model built on of the doubled size set of response time histories
from the undamaged structure are drawn in blue, and in red the ones obtained after mixing damaged
and undamaged time histories
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Fig. 4 Histograms comparison at different sensor locations for CASE 2, damage pattern 2. The results are
displayed so that the sensors placement in Fig. 1(b) is reproduced (from the first floor (bottom) to the
top). The histograms coming from the model built on of the doubled size set of response time histories
from the undamaged structure are drawn in blue, and in red the ones obtained after mixing damaged
and undamaged time histories
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Fig. 5 Histograms comparison at different sensor locations for CASE 1, damage pattern 2. The results are
displayed so that the sensors placement in Fig. 1(b) is reproduced (from the first floor (bottom) to the
top). The histograms coming from the model built on of the doubled size set of response time histories
from the undamaged structure are drawn in blue, and in red the ones obtained after mixing damaged
and undamaged time histories
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6. Conclusions

Given the response time histories collected at different times during the structure lifetime, a method

based on the statistical comparison of models is employed for damage detection. The benchmark problem

of the ASCE SHM Task Group (Johnson, et al. 2000, 2004) is considered as case study. The reference

model associated to response time histories collected when the undamaged system is first constructed. A

second set of data is then considered as representative of an unknown state, which could either be

damaged or undamaged. The approach identifies the presence of damage and localizes it by a comparison

of the sum of the squared errors (SSE) histograms.

The results from the benchmark study show that the method is well promising for structural health

monitoring applications, provided that a sufficiently dense network of sensors is available. 
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