
Smart Structures and Systems, Vol. 5, No. 6 (2009) 613-632 613

Dynamic displacement tracking of a one-storey frame
structure using patch actuator networks: Analytical plate
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Abstract. The present paper is concerned with the design of a proper patch actuator network in order to track a
desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case.
Weights for each patch of the actuator network found in our previous work were based on beam theory; in the
present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is
presented. For the sake of calculating the refined weights approximate solutions of the plate equations are
calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with
three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator
network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the
frame structures, to which electric voltages proportional to the analytically refined patch weights are applied.
Analytical and numerical results coincide very well over a broad frequency range.
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1. Introduction

Smart structure technology has become one of the key technologies for the design of modern, so-

called intelligent structures in civil, mechanical and aerospace engineering. Like human beings,

intelligent or smart structures react to external disturbances exerted upon them by the environment they

are operating in. Over the last decades, rapid developments have been made in the modeling and

control of smart structures. Crawley (1994), Tani and Tzou (1998) have presented reviews on the theory

and application of smart structures and Liu, et al. (2005) addressed future challenges and opportunities.

For practical applications of smart structures, for example in the fields of active structural vibration

control as well as active noise control we refer to Alkhatib and Golnaraghi (2003), Gopinathan, et al.

(2001), Irschik, et al. (2003).

The design of the smart structure is a highly multi-disciplinary task, which involves the modeling of
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the structure, the communication of the structure with a controller by means of suitable sensing and

actuation, the integration of the smart system in the structure and the implementation of the system.

One key aspect for a successful design is the communication between the structure and the controller,

the so-called control-structure interaction, see Gabbert and Tzou (2001). Sensors and actuators are

responsible for the functioning of this communication. In typical continuous systems a crucial point is

the spatial distribution of actuators to properly perform distributed control of continua. Finding spatial

actuator distributions, approximating them by discretely acting actuator networks and using them for

assigning to a continuous structure an arbitrarily distributed displacement field are the main topics of

the present paper.

Hence, we study the problem of how to distribute an actuation throughout a structure such that a

desired displacement is exactly assigned to the structure. Such problems are denoted as dynamic

displacement tracking problems. We assume the actuation to be put into practice by sources of self-stress,

so-called eigenstrains; see e.g. Reissner (1931), Nemenyi (1931), Mura (1991), Irschik and Ziegler (1988).

In the context of eigenstrains used as an actuation, those physical mechanisms that are exhibited by

smart materials are the ones of major importance. In this latter context one often speaks about strain-

induced actuation, see Tzou (1998). Although there are many such strain-induced actuation mechanisms

reported in the literature (e.g. Tani, et al. 1998) piezoelectric actuation is the most important one for

dynamic displacement tracking. Our group has been studying dynamic displacement tracking for some

time; here, we refer to Irschik and Krommer (2006) and Krommer and Irschik (2007) for a three-dimensional

solution and to Krommer and Varadan (2005) for thin plates. 

From a practical point of view an arbitrarily distributed actuation is restricted to special cases. Once

the distribution has been fixed, the applicability of the actuators to other problems is limited; patch

actuator networks in contrast can be used to overcome this limitation. In the latter case the distributed

nature of the actuation is approximated by the combination of a proper placement of the patch actuators

and assignment of weights to the individual members of the network. The advantage of using a network

is the increased flexibility in terms of design, but the disadvantage is that one can no longer find an

exact solution of the dynamic displacement tracking problem.

A lot of attention has been devoted to the design of patch actuator networks (in particular using

piezoelectric actuators) for the control of flexible structures. Many different strategies for the optimal

placement of patch actuators are reported in the literature; see e.g. Ip and Tse (2001), Quek, et al.

(2003), Zhang, et al. (2004) and Gabbert, et al. (2006). In most cases these strategies are based on

optimization criteria related to modal and system controllability, see e.g. Sepulveda and Schmidt (1991)

and Junkins and Kim (1993). As these methods are based on the projection of the dynamics of the

flexible structure onto a finite-dimensional space, usually made of eigenmodes, they may not necessarily be

used for dynamic displacement tracking. In the present paper the design of dense networks of actuator

patches for dynamic displacement tracking constitutes the main part. The network design is based on

the knowledge of the exact solution of dynamic displacement tracking by distributed actuation. Concerning

our own previous research we refer to Krommer and Varadan (2006) studying dynamic shape control of

sub-domains of plates by piezoelectric actuator networks and Krommer, et al. (2008) considering beam-type

structures. For simple geometries exact analytical solutions of dynamic displacement tracking by

distributed actuation can be found and for more complicated ones numerical solutions are available;

e.g. for discs and shells we refer to Irschik and Pichler (2001) and Nader, et al. (2003). Other methods

for the actuator network design, which do not use the knowledge of the exact solution for distributed

actuation are based, e.g. on genetic algorithms, see Jha and Inman (2003), da Mota Silva, et al. (2004)

and Yang, et al. (2005).



Dynamic displacement tracking of a one-storey frame structure using patch actuator networks 615

In the present paper we study the particular case of dynamic displacement tracking for a one-storey

frame structure. In section 2 we briefly review the idea of dynamic displacement tracking of a one-

storey frame structure based on modeling the structure within beam theory. First, a solution using

distributed actuators is presented, which is an exact solution of the inverse problem of dynamic

displacement tracking, and second, a method for the placement and weight assignment for the

individual patches of a patch actuator network based on a static analysis is introduced. The results are

compared to three-dimensional Finite Element computations. It turns out that (1) beam theory is not

sufficient for modeling the frame structure and (2) the static weight assignment is not sufficient for

higher frequencies. The problem that beam theory is not suitable is directly related to the fact that the

width and the length of the sidewalls are of comparable order; hence, the kinematical assumptions of

beam theory, which are, among others, based on the slenderness of beams, are no longer justified.

In section 3 we introduce a new analytical model for the frame structure, for which the frame

sidewalls are modeled as thin plates, in order to get better results in comparison to the Finite Element

ones. Based on this analytical model the weights assigned to the patches of the actuator network are

refined for dynamic problems to overcome the limitations of the static weight assignment to the low

frequency range. In this step we consider the patches to be located at the locations derived from beam

theory, with the advantage that fixed locations on the one hand simplify the weight refinement and on

the other hand the locations do not change for different width to length ratios of the sidewalls. In

contrast, applying optimization techniques directly to the plate model with the locations and the weights

not fixed a priori, would result in different locations for different width to length ratios. Such methods

must be applied in case the width to length ratio no longer allows for a first approximation of the

structure as a beam, but requires the consideration of plate theory from the very beginning; yet, this is

not the case for the present frame structure.

Finally, numerical results are presented in section 4. The analytical model for the frame structure

based on thin plate theory and the refined design for the patch actuator network are validated by means

of the Finite Element computations. In both cases we find a very good agreement between analytical

and numerical results, from which we conclude on the accuracy of the analytical frame model as well as

on the proper patch actuator network design.

2. A short review on dynamic displacement tracking based on beam theory

In this section we shortly review the idea of dynamic displacement tracking for a one-storey frame

structure based on beam theory. A laboratory setup for the structure is shown in Fig. 1(a). The ideas

presented in this section have been previously published in Krommer, et al. (2008). Therefore, this

section is not going into any detail. The novel aspect of this section in extension to our previous work is

the comparison of analytical results to Finite Element computations; the discrepancy between these

results motivating the rest of the present paper.

2.1. Problem formulation

We model the one-storey frame structure as a beam of length L, in which L is the height of the frame

structure; a sketch of the model is also shown in Fig. 1(b). The constant bending stiffness is D and the

constant linear inertia is P; the latter two entities are twice the ones of a single sidewall. The lower end

of the beam is clamped and the upper end is assumed to have a zero slope. The floor, which is modeled
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as an end mass m is assumed to only move horizontally. The only external loading of the beam is an

eigenstrain type actuation MA(x, t), which we denote as actuation moment and which we use to achieve

the goal of dynamic displacement tracking. As a possible actuation moment we have in mind the use of

piezoelectric actuators, see also the picture in Fig. 1(a), in which piezoelectric patches are attached to

the sidewalls. Yet, within this section we assume a general source of self-stress, also called an eigenstrain

type actuation without further specifying its physical nature. In general, eigenstrains are incompatible strains

like thermal and piezoelectric strains, but also plastic misfit strains, inclusions as well as many others,

see the book by Mura (1991)  for details on the notion of eigenstrains, and the original papers by Reissner

(1931) and by Nemenyi (1931) for sources of self-stress (in German called “Eigenspannungsquellen”).

In the case of beam theory the bending moment My and the actuation moment are related to each other

by means of My(x, t) = -Dw"(x, t) - MA(x, t). w(x, t) is the deflection and a prime denotes the derivative

with respect to the axial coordinate x.

The actual goal of dynamic displacement tracking is to assign to both sidewalls a desired deflection,

which is assumed separable with respect to the height and to time, wd (x, t) = wd(x) f (t). We decompose the

total deflection of the beam into the desired one and the deviation from the latter, w(x, t) = wd(x) f (t)

+ Δw(x, t). We can now formulate an initial-boundary value problem for the deviation of the total

deflection from the desired deflection, which reads

(1)

Within his paper we assume the initial conditions trivial. The equation of motion for a beam can be

found in many textbooks; here, we would like to cite only the one by Ziegler (1998).

It has been shown in our previous work (see again Krommer, et al. (2008) as well as Krommer and

Irschik (2007)) that Δw(x, t) is zero, if the actuation moment is assumed as =
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Fig. 1 One-storey frame structure: (a) laboratory setup and (b) simplified beam model
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,

. (2)

The factor  is the square of some characteristic frequency and it is used to ensure M1(x) and M2(x)

both have the dimension of a bending moment.

Dynamic displacement tracking has also been studied by Irschik and Krommer (2005, 2006) and by

Krommer and Irschik (2007) for the three-dimensional case; both, with and without accounting for

viscoelastic effects. Yet, these papers do not at all consider the practically important case of patch

actuator networks, but rather assume the actuation to be arbitrarily distributed within the structure.

2.2. Approximate solution using actuator networks

The exact solution of the dynamic displacement tracking requires two actuation moments, both with

an arbitrary time variation and spatial distribution. In practical problems it is more realistic to work with

a network of n patch actuators with constant spatial variation, but with arbitrary time variations. The

span of the beam is divided into n subsections [xi, xi+Δxi] with x1 = 0, xn+Δxn=L and i = 1,...,n. We

assume one patch actuator is located within each subsection. The length of such an actuator is  and

 is the location of the i-th patch satisfying the condition . According to our

previous results the locations of the patch actuators are calculated from

. (3)

Furthermore, static weights are assigned to each patch actuator according to

. (4)

Then, the actuation moment at a single patch, say the i-th patch, is considered as =

. This design of the actuator network is based on a static analysis of the structure. In the

case of static displacement tracking, in which M2(x) is not needed, the actuation as defined in Eqs. (3)

and (4) will result into a deflection, which at locations xi and L has a deflection and slope identical to the

desired deflection and slope. The computation of patch locations and static weights as proposed in Eqs.

(3) and (4) is again a result of our previous paper (Krommer, et al. 2008).

In general, applying the patch actuation moments to the frame structure, the deviation of the

deflection from the desired deflection will not be zero; the error will depend on the number of patches

as well as on the time variation or frequency of the desired deflection. To show this, we proceed with a

numerical example.

2.3. Numerical example

As an example problem we consider the following frame structure, see the picture in Fig. 1(a). The
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two sidewalls are made of aluminum and the floor is made of plexiglas; as the floors are assumed rigid

in the analytical model, Young’s modulus of plexiglas plays no role for the analytical solution. In

contrast, due to its small value it significantly affects a numerical FE solution. In order to compare the

analytical solution to a numerical FE solution, we use a Young’s modulus for plexiglas, which is two

orders of magnitude higher than a physically realistic one in the FE model. By doing so, we ensure that

the results of the present paper can be directly translated to other beam-type structures with a moderately

large width compared to their length. For the future, also in the light of an experimental verification, we

intend to further take the effect of the flexibility of the floor into account in the analytical model.

Effective Young’s modulus, which accounts for the assumption of uni-axial stress, and the mass density

are given in Table 1.

The width of the sidewalls, the patch actuators as well as of the floor is b = 0.108 m. The sidewalls

are clamped at the bottom and they are perfectly connected to each other by the floor at their upper side.

The free length of the sidewalls is L = 0.49 m and their thickness is h = 0.002 m. The length of a single

patch actuator is . The undistorted distance between the sidewalls is d = 0.34 m,

which is also the horizontal length of the floor Lf. The thickness of the floor is hf = 0.012 m such that its

total mass becomes m = 0.628 kg. The bending stiffness and the linear inertia are D = 10.224 Nm2 and

P = 1.1595 kg/m. The first three beam natural frequencies are  f1 = 5.61 Hz,  f2 = 46.94 Hz, f3 = 124.74 Hz.

We seek the spatial distribution of the desired deflection wd(x) to coincide with the second eigenmode

of a clamped-clamped beam, see Fig. 2. In a first step we calculate the two spatial distributions of the

actuation moment from Eq. (2), in which we consider the characteristic frequency to be the second

natural frequency of a clamped-clamped beam with stiffness and linear inertia identical to the actual

beam, . The result is presented in Fig. 3. Note that the solutions of Eq. (2) are not unique; any

constant can be added. We have used this non-uniqueness to make the spatial distributions skew-

symmetric with respect to the center of the beam axis. Next, we divide the beam into four subsections,

the limits of which we choose from the zeros of M1(x). Then, we compute the locations of four patch

actuators from Eq. (3). Once the locations are known, static weights are assigned to the patch actuators

according to Eq. (4). The locations of the patches and the static weights are also presented in Fig. 3.

Δxi Δx 0.03 m= =

ω ω2

cc
=

Table 1 Young’s modulus Y and mass density ρ

Material Y [1010Nm-2] ρ [kgm-3]

Plexiglas 70 1411

Aluminum 7.1 2684

Fig. 2 Normalized second eigenmode of a clamped-clamped beam



Dynamic displacement tracking of a one-storey frame structure using patch actuator networks 619

We proceed with assuming the time variation of the desired deflection to be harmonic. In this case the

amplitude of the harmonic actuation moment of the patch actuators is MAi(ω) = MA1i + (ω/ω
2

cc)2MA2i. In

the static case, ω = 0, only one actuation has to applied. Besides the case ω = 0, we also consider two

other frequencies; namely, f = (30,90)Hz. These frequencies are in between the first and second natural

frequency and in between the second and third natural frequency. All analytical results are compared to

a harmonic analysis of the one-storey frame structure using the commercially available Finite Element

code ANSYS. In the Finite Element model the patch actuators are put into practice by means of piezoelectric

patches attached to both sidewalls. As our analytical solution assumes the bending stiffness and the linear

inertia constant, we have used very thin piezoelectric patches (hp = 0.0005 m) in the Finite Element

model and we have assumed the mass density of the piezoelectric material (PZT-5A) very small. This

allows for a comparison between analytical and numerical results. Details of the Finite Element model

of the frame structure are given in the appendix. In order to relate the analytical actuation moment at the

patches MAi to a voltage Vi to be applied to the piezoelectric patches, we have used the following formula

, (5)

in which an effective piezoelectric coefficient  has been considered.

The factor 2 comes into the play, because we are using piezoelectric actuators at both sidewalls; hence,

the total actuation moment is put into practice by two piezoelectric actuators. In Fig. 4 the results are
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Fig. 3 Spatial distributions of the actuation moment, patch locations and static weights: (a) M1(x) and (b) M2(x)

Fig. 4 Deflection amplitude: (a) f = 0 Hz, (b) f = 30 Hz and (c) f = 90 Hz
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shown. The analytical results are identical to the ones found in (Krommer, et al. 2008), but the

comparison to the Finite Element results was missing in our previous publication. Two conclusions

must be drawn from the results. (1) The numerical results and the analytical results do not coincide at all for

the static case, and (2) the goal of dynamic displacement tracking is not achieved as soon as we approach

higher frequencies, not even in the analytical solution. In order to overcome these two difficulties we

proceed in two directions. Firstly, we refine the assigned weights of the actuator network for higher

frequencies using a method developed in (Krommer, et al. 2008), in which it was based on the frame

structure modeled as a beam. Secondly, we update this method to the case the sidewalls are modeled as

thin plates. In the latter extension to thin plates, we will derive an analytical model based on own work

on analytical dynamic models for thin plates with actuator patches, see Huber, et al. (2008).

3. Dynamic weight and model refinement

In order to refine the weights applied to patch actuators, we assume the sidewalls of the frame structure to

be modeled as thin Kirchhoff plates. We assume the domain of the rectangular plate to be 

and . Each sidewall is isotropic with a plate stiffness  and with a linear inertia per unit

area . If both sidewalls have the same bending motion we can model the frame structure as one plate

with plate stiffness  and linear inertia . At x = 0 this plate is clamped and at x = L the deflection is

independent of y with a vanishing slope in x direction. Moreover an end mass per unit width m/b is

attached to the end x = L. The sides of the plate at y = 0 and y = b have to satisfy free boundary conditions.

The location of the patch actuators are taken to be the ones computed within beam theory.

We assume the actuation moment at each patch is characterized by an isotropic two-dimensional

second order actuation moment tensor

. (6)

Here, mAji are given static weights, with mA1i = MA1i/b and mA2i = MA2i/b known from the previous

section and the remaining mAji are known, but yet to be specified; we assume the mAji to be computed

from

(7)

compare Eq. (4) for j = 1,2. Proper choices for Mj(x), j = 3, ..., N will be discussed later. In contrast, the

time variations uj(t) are unknown. 

3.1. Dynamic weight refinement

One can easily show that the deflection w(x, y, t) of the sidewalls (if assumed identical for both

sidewalls) due to the actuation moment tensor can be computed from a convolution integral representation of

the form:
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. (8)

Eq. (8) represents an extension of the well-known Maysel’s formula from the theory of thermal

stresses to the case of general eigenstrain actuation as well as with respect to dynamics; for a

comprehensive discussion of the application of Maysel’s formula in the theory of thermal stresses, see

Ziegler and Irschik (1987). The convolution integral in Eq. (8) has been derived in detail by Krommer

and Varadan (2005, 2006). In the latter papers it was used for solving the problem of dynamic shape

control of sub-domains of thin plates using piezoelectric actuators. In Krommer, et al. (2008) a

simplified version valid for beams was used for computing refined actuator weights for the problem of

dynamic displacement tracking of the frame structure based on beam theory. In the present paper we

apply Eq. (8) for the computation of refined actuator weights for dynamic displacement tracking based

on thin plate theory, as we have shown that beam theory is not sufficiently accurate for the present case, in

which the width of the sidewalls is approximately one fifth of the length of the sidewalls.

In Eq. (8) entities with a superscript d refer to a so-called dummy loading case and  is the two-

dimensional Laplace operator. In the dummy loading case the plate is loaded by an arbitrary transverse

force per unit area pz
d(x, y, t) and by a tip force per unit width qd(t), which does not depend on y; no

actuation moment is applied. These dummy loadings result into the deflection wd(x, y, t).

In order to compute the unknown time variations uj(t) we have to choose  dummy loading

cases; we choose each of them to be applied impulsively pzk
d (x, y)δ(t) and pz

d
δ (t) with k = 1,..., M.

Hence, from the left hand side of Eq. (8) we find time functions

, (9)

which we denote as sensor functions. By inserting the desired deflection into the definition of these

sensor signals, we can compute the desired time variations of the sensor signals ykd(t) with k = 1,...,M.

Each dummy loading case results into a dummy deflection , such that from Eq. (8) we have

k = 1,..., M coupled integral equations for the j = 1,...,N≤M unknown time variations uj(t),

. (10)

A crucial point is a proper choice of the dummy loading cases. In case N = M, it is near at hand to

consider the spatial distribution of the dummy loadings to coincide with the spatial distribution of

loadings that can be obtained from the j = 1,…, N functions Mj(x), which are used in Eq. (7) to calculate

the patch actuation. Hence, we choose the following dummy loading cases:

. (11)

This choice results in sensor signals that are collocated to the distributed actuation moments Mj(x) of

Eq. (7). From a control point of view such collocation is highly desirable, see e.g. Kugi (2001), Kugi, et

al. (2006) or Preumont (2004). In case N < M additional loading cases must be chosen; this will be

discussed later for our specific example problem.
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In order to find a solution to the coupled integral equations, solutions for the deflection of the

sidewalls of the frame structure modeled as a thin plate must be known for the dummy loading cases.

As this requires the solution of partial differential equations, we will present in the next section an

approximate method to derive a finite-dimensional approximation for the model of the frame structure

based on thin plate theory.

3.2. A finite-dimensional model for the frame structure based on thin plate theory

In this section, we seek to derive a finite-dimensional model for the frame structure by projecting the

dynamics of the frame structure onto a space made of beam eigenfunctions. Our approach considers the

deflection of each of the sidewalls identical and to be approximated by the series expansion

. (12)

In Eq. (12) the first part w1(x, y, t) considers the first eight eigenmodes of the frame structure modeled

as a beam in a series expansion,

. (13)

The eight normalized eigenmodes Wxi(t) are shown in Fig. 5. This first part does not take any

dependency of the deflection on y into account, and would therefore simply result into an approximation of

the frame structure modeled as a beam. In order to incorporate the y dependency we consider the

second part of the series expansion w2(x, y, t) as:

. (14)

Here, the functions Wxi(t) are taken as the first four eigenmodes of a clamped-clamped beam with a

length identical to the height of the frame structure, and the function Wy(y) is the first flexible free-free

mode of a beam with a length identical to the width of the sidewalls. The four clamped-clamped

eigenmodes and the free-free mode are shown in Fig. 6. We are using the second part of the

approximation in order to account for the deviation of the deflection of the sidewalls of the frame

w x y t, ,( )=~ w* x y t, ,( ) w1 x y t, ,( )+w2 x y t, ,( ) Ai t( )
i 1=

12

∑ Wi x y,( )= =

w1 x y t, ,( ) Ai t( )Wi x y,( )
i 1=

8

∑ with: Wi x y,( ) Wxi= x( ),=

w2 x y t, ,( ) Ai t( )Wi x y,( )
i 9=

12

∑ with: Wi x y,( ) Wy= y( )Wxi x( ),=

Fig. 5 First eight eigenmodes of the frame structure modeled as a beam: (a) 1-4 and (b) 5-8
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structure from the deflection of a beam, as it has been obvious in the numerical results we presented so

far, that beam theory is not sufficient. We would like to mention that we have already introduced this

approximation for the frame structure in our previous papers, see Huber, et al. (2008). In extension to

our previous work we have included four more eigenfunctions in the first part of the approximation in

the present paper, in order to derive an analytical model of higher accuracy. This is important, because

an accurate approximation is imperative for the dynamic weight refinement to work well.

With a given proper approximation for the deflection of the sidewalls we are free to choose any

available method to derive a finite-dimensional dynamic model for our frame structure. Our approximation

satisfies all necessary kinematical boundary conditions; yet, the dynamical boundary conditions are not

satisfied. Therefore, we use an extended Galerkin procedure, in which fictitious forces and moments

occur at the boundary, because the dynamical boundary conditions are not satisfied, see e.g. Ziegler (1998).

The actuation due to the patch actuators is included in the fictitious boundary moments along the free

boundaries as well as in additional fictitious moments at locations  and +Δ , i=1,2,3,4; the extension of

the Galerkin procedure with respect to eigenstrain actuation can be found in Parkus (1976), in which a

thermal actuation was considered. Without going into any further details, the extended Galerkin procedure

results into a finite-dimensional dynamic model of the form

, (15)

in which M is the 12×12 mass matrix, C is the 12×12 stiffness matrix,  the

vector of generalized coordinates and  the load vector. The mass matrix and

the stiffness matrix are not diagonal, because we are using two different sets of beam eigenfunctions

that are not orthogonal. The load vector accounts for a transverse force loading in the plate domain, for

a tip force per unit length applied at x = L and for the actuation applied at the four patch actuators.

We will use this dynamic model for the computation of the deflection in the dummy loading cases

needed for the proposed method to calculate the dynamically refined patch actuator weights as well as

for the simulation of the harmonically actuated frame structure.

4. Numerical example

We consider as a numerical example the frame structure we have already used before. Four patch

actuators are attached to each sidewall. Yet, we consider analytical solutions to be computed by the

xi xi x

Ma·· t( ) Ca t( )+ f t( )=

a t( ) A1 t( )…A12 t( )[ ]T=

f t( ) F1 t( )…F12 t( )[ ]T=

Fig. 6 (a) First four eigenmodes of a clamped-clamped beam and (b) first eigenmode of a free-free beam
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newly developed finite-dimensional dynamic model based on thin plate theory.

4.1. Model validation

Before we discuss dynamic displacement tracking, we validate the analytical model of the frame

structure by a comparison to the Finite Element model. In Table 2 the first 6 bending natural

frequencies from the analytical model are compared to the corresponding natural frequencies for

open electrodes obtained from the electromechanically coupled Finite Element model; the results

coincide very well.

As we have seen in the previous results the static actuator weights computed from beam theory result

into an analytically computed deflection that does not at all coincide with the Finite Element solution

for the static case. Therefore, we apply these static beam weights to the analytical plate model and

compare the results to the Finite Element ones for the static case. The result is presented in Fig. 7;

analytical and numerical results match well. Hence, the analytical plate model is much better suitable

for modeling the behavior of the frame structure than the analytical beam model in the static case; for

the harmonic case we will see in the next section that this is true as well. Nonetheless, the static weights

are not suitable to match the desired deflection amplitude at all.

Finally, we study harmonically excited vibrations by applying to the first patch actuator (the one closest

to the clamped end) a harmonic actuation moment. In Fig. 8 the absolute value of the dynamic

magnification factor for the tip displacement is presented for the analytical model and the Finite

Element model. The results match very well.

Fig. 7 Deflection amplitude for the static case using static beam weights

Table 2 First 6 bending natural frequencies of the frame structure

Natural frequency # Analytical Finite Element

1 5.802 Hz 5.817 Hz

2 48.63 Hz 48.80 Hz

3 129.0 Hz 130.12 Hz

4 250.2 Hz 250.09 Hz

5 412.3 Hz 411.3 Hz

6 620.6 Hz 617.4 Hz
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4.2. Dynamic displacement tracking

In order to study the validity of our method for the computation of refined weights for dynamic

displacement tracking of the frame structure we consider again harmonic displacement tracking. We

use the same frame structure as in our previous example with the locations of the four patch actuators

known from the actuator network design based on beam theory.

4.2.1. Actuator network design

We assume the total actuation of the network to be

, (16)

see Eq. (6). The time variation is harmonic with a forcing frequency ω. The factor eIωt is understood in

the following and the Uj’s are the unknown amplitudes to be computed. We are using three different

distributed actuators to compute the static weights for the patch actuators:

. (17)

We choose static beam bending moments, which are any solution of the three incomplete simple boundary

value problems:

,

. (18)

The first two bending moments in Eq. (18) are identical to the ones shown in Fig. 3. In Eq. (18) wd(x) is

the desired deflection coinciding with the second eigenmode of a clamped-clamped beam and (ω2
cc)2 is

the square of the corresponding second natural frequency of the clamped-clamped beam. In order to get

good results for higher frequencies we have included a third distributed actuation in Eq. (18), which is

computed identical to the first one, but the right hand side accounts for the fourth eigenmode of the

clamped-clamped beam instead of the second one. Not considering the first and third eigenmodes is

motivated by the fact that our desired deflection is skew symmetric and, hence, we must not use any

symmetric actuation. For a detailed discussion on the appropriateness of using these three actuators we

mAi t( ) I mAji

j 1=

N

∑ Uje
Iω t

i 1 … 4, ,=,=

mAji
1

bΔx
---------- Mj x( ) Ad

xi
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Fig. 8 Absolute value of the dynamic magnification factor for the tip displacement
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refer the reader to Krommer, et al. (2008).

4.2.2. Dummy loading cases

We choose four dummy loading cases. The first three follow directly from the bending moments of

Eq. (18). We insert Eq. (18) into Eq. (11) and find

,

with: . (19)

The remaining one is introduced in order to ensure the third eigenmode of a clamped-clamped beam is

not excited. Hence, we have

, (20)

in which w3(x) is the third eigenmode of the clamped-clamped beam. λ2, λ3 and λ4 are eigenvalues of

the clamped-clamped beam. From the four dummy loading cases we calculate four sensor signal

amplitudes

(21)

in which we have introduced simpler sensor signal amplitudes

(22)

As the sensor signal amplitudes in Eq. (21) are a linear combination of the ones in Eq. (22), it is

sufficient to discuss the ones in Eq. (22). Inserting the desired displacement amplitude into Eq. (22) for

w(x, y), one can easily obtain the desired sensor signal amplitudes, which are the sensor signal amplitudes in

case the deflection is the desired one. They are:

(23)

If our actuation were capable of ensuring these four conditions are met for the deflection it produces,

we could at least conclude that (1) the expansion of the actuated deflection into a series with the second,

third and fourth eigenmode of a clamped-clamped beam as base functions is identical to the desired

displacement, and (2) the actuated deflection is zero at x = L. As our actuation is only composed of

three independent actuations this will not be possible exactly, but at least in some optimal sense.

From Eq. (10) we find four linear equations for the three unknown actuator amplitudes Uj. In the

harmonic case we have from Eq. (10).
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(24)

in which  is the deflection due to the four dummy loading cases resulting into the sensor signal

amplitudes as defined in Eq. (22). These loadings are

(25)

From Eq. (24)  we find a system of linear equations of the form

(26)

We use a simple least square method to find the actuator amplitudes Uj, , and

moreover, the harmonic time signals to be applied to each of the four patch actuators,

(27)

The appropriateness of the design of the patch actuator network based on the four criteria given in Eq.

(23) has also been investigated in detail by Krommer, et al. (2008) for the case of modeling the frame

structure as a beam.

4.2.3. Numerical results

We consider four forcing frequencies, ω = 2π(0, 30, 90, 190)rad/s. First we compute the actuation

amplitudes Uj, j = 1,2,3, from which we find the individual actuation amplitudes at each patch actuator

from Eq. (27). The results are presented in Table 3, in which we have also included the non-refined

results obtained from beam theory (scaled with the factor 1/b) for comparison sake. Patch 1 is the one

closest to the clamped end, the weights for patch 3 are the negative weights for patch 2 and the weights

for patch 4 are the negative weights for patch 1.

Finally, we present the deflection amplitudes, both for the analytical results as well as for the numerical

Finite Element results, for the four forcing frequencies in Fig. 9. Note that we have used the relation

given in Eq. (5) with b = 1 to calculate electric voltages to be applied in the Finite Element analysis.

Comparing these results to the ones obtained based on beam theory, we see that the analytical results

match the numerical ones much better, and that the refined actuator weights result into a displacement

that is close to the desired displacement. In the static case, in which the beam solution did not work at

all the results are much better; it is worth mentioning that the plate weights in this case are smaller than

the beam ones. For ω = 2π30rad/s the results are comparable to the beam ones, both for the deflection

amplitude as well as for the weights. For ω = 2π90rad/s we have a significant improvement, but one
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Fig. 9 Deflection amplitudes: (a) f = 0 Hz, (b) f = 30 Hz, (c) f = 90 Hz, (d) f = 190 Hz

Table 3 Individual patch actuation amplitudes [Nm/m]

f [Hz]
Patch 1 Patch 2

Beam Plate Beam Plate

0 102.8 75.12 -250.2 -226.1

30 140.2 141.7 -183.4 -187.1

90 439.6 104.6 351.0 -73.66

190 - -136.5 - 247.2

Fig. 10 Finite Element model of the frame structure
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can see from  Table 3 that the plate weights are much smaller than the beam ones. This clearly indicates

that the beam theory is not at all suitable for the higher frequency range. In contrast, the weight

refinement based on plate theory can be used up to a frequency in between the third and fourth natural

frequency of the structure, ω = 2π190rad/s. In order to go to higher frequencies, we would need to use

more actuator patches, resulting into a denser actuator network. Yet, using only four patch actuators

renders very good results over a broad frequency range.

5. Conclusions

In the present paper we have studied dynamic displacement tracking of a one-storey frame structure.

Three major aspects have been discussed in detail. (1) The modeling of the frame structure as a thin

plate in order to account for the relatively large width (compared to the length) of the sidewalls resulting into

a significantly improved dynamic model in comparison to beam theory. (2) The computation of weights

for the individual members of an actuator network constituted by patch actuators attached to the

sidewalls of the frame structure in order to accurately solve the dynamic displacement tracking problem. (3)

The comparison of both, the results of the dynamic analysis of the analytical plate model and of the

dynamically refined actuator weights applied to the harmonic displacement tracking problem to results

computed with a Finite Element model of the actual frame structure. The presented results validate the

accuracy of the analytical model and the analytical solution of the tracking problem for the one-storey

frame structure.

For the future we are planning on conducting research with respect to some important extensions of

the method we have presented in this paper. These aspects are:

• The incorporation of domain-wise varying stiffness and linear inertia, in order to accurately model

the effect of attached piezoelectric patches.

• To account for electromechanical coupling within the piezoelectric material to also properly include

the sensing capabilities of piezoelectric patches.

• To generalize the method to an arbitrary and possibly high number of patch actuators constituting

the actuator network; especially with respect to the choice of the spatial distribution of actuators and

with respect to the proper choice of dummy loading cases.

• The extension to multi-story frame structures and to the active control of such structures by using

piezoelectric patch actuator and sensor networks in combination with feedback control methods.

Besides these extensions, we are currently working on the experimental verification of the proposed

method. For that sake a laboratory setup has already been constructed, see Fig. 1(a); yet, for a proper

network design we still have to incorporate varying stiffness and linear inertia and the flexibility of the

floor into our analytical model of the frame structure. Moreover we will have to identify effective

material properties of the piezoelectric patches from the real structure to be used in the analytical

solution in order to account for effects not included into the analytical plate model; among others, the

bonding of the patches to the substrate structure.
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Appendix

Here, we shortly summarize the details of the Finite Element model as it was implemented in the

commercially available software ANSYS1 Workbench 11.0 SP1. The mesh is presented in Fig. 10. The

total number of nodes is 16734 and the total number of elements is 2424. The two sidewalls and the floor

(see Table 1 for the material parameters) are modeled using SOLID186 hexahedron elements with 20

nodes and  3 displacement degrees of freedom. The piezoelectric patches are modeled using SOLID226

elements with 20 nodes, 3 displacement degrees of freedom and one electrical voltage degree of freedom.

The material parameters of the piezoelectric material (PZT-5A; polarized in the y-direction, which is

normal to the plane of the sidewalls) are as follows:

• Permittivity tensor:

• Elasticity tensor (IEEE Standard notation):

• Tensor of piezoelectric moduli:

 

 

 

1ANSYS, Inc.; www.ansys.com
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