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Estimation of viscous and Coulomb damping from
free-vibration data by a least-squares

curve-fitting analysis
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Abstract. The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is
examined. This paper presents a method for estimating the system parameters (damping coefficients and natural
frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous
damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting
software function to fit the known solution of the equations of motion to the measured response. The method was
tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-
spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light
inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and
noisy measurements from a lightly damped mass-spring system. 
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1. Introduction

This study investigated dynamic modeling of one-degree-of-freedom (1-DOF) mechanical systems

that are idealized to possess both viscous and Coulomb damping. The paper presents a method of

system identification for damping and natural frequency by least-squares curve fitting that uses all

discrete data points of a free-vibration decay. Numerical simulation and an experiment were performed

to examine the numerical functioning and accuracy of the method. The curve-fitting method is

compared with a method developed by Liang and Feeny (1998) that uses only the local extrema of a

free-vibration decay. According to Den Hartog (1931), the four most common types of mechanical

damping forces are: “viscous” damping (proportional to velocity), “Coulomb” damping, or dry friction

(independent of velocity), “air resistance” (proportional to the square or some higher power of

velocity), and “internal hysteresis” (dependent only on the amplitude of motion). We consider here

1-DOF systems in which only the viscous and Coulomb types are present. If damping is assumed to be

either ideal viscous alone or ideal Coulomb alone, then there are well-known classical methods for

estimating damping coefficients from experimental free-vibration data (Meirovitch 2001). 
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It is more difficult, though, if damping is a mixture of viscous and Coulomb. Jacobsen and Ayre

(1958) observed that viscous damping dominates at high amplitudes of free-vibration displacement

relative to the level at which static sticking occurs, and that kinetic Coulomb friction dominates at

amplitudes close to the static-sticking level; they illustrated a method, based upon this observation, for

estimating both viscous and Coulomb coefficients. More recently, Liang and Feeny (1998) derived

more general methods for estimating the viscous and Coulomb damping coefficients from both free-

vibration response and frequency response. Their free-vibration analysis uses the data at local crests

and troughs throughout a vibration decay trace; the details of this method are presented in Section 2.

Liang and Feeny (2004) also developed an algorithm to identify the damping parameters from

frequency-response data. They used the nonlinear solution derived by Den Hartog (1931) for frequency

response of a 1-DOF system that has both forms of damping. The Liang-Feeny analysis estimates

damping parameters from input-output pairs at resonance for two or more amplitudes of excitation and

response. 

This paper describes an alternative method to estimate values for both viscous and Coulomb damping

from the free-vibration data of a 1-DOF mass-spring system. Section 2 presents both the derivation

and details of the method. Section 3.1 presents numerical simulations to evaluate the method’s

performance. Section 3.2 describes the experimental study in which our method was applied to estimate

the damping parameters of a laboratory mass-spring apparatus. 

2. Theoretical model 

Consider a standard 1-DOF damped mass-spring system with mass m, spring stiffness k, viscous

damping coefficient c, and kinetic Coulomb resisting force Fk (subscript k for kinetic). Displacement of

the mass is denoted as x(t), velocity as v(t) = , and externally applied excitation is f(t). The general

equation of motion and initial conditions are: 

(1a)

(1b)

For free vibration f(t) = 0. The equation of motion is divided by m and expressed more directly by: 

if  (2a)

if  (2b)

in which the undamped natural frequency is defined by ωn
2 = k/m, the viscous damping ratio ζ is

defined by 2ζωn = c/m, and the effects of kinetic Coulomb friction are included through the Coulomb

step displacement xk = Fk/k. Static Coulomb friction can cause vibration to cease at a low but non-zero

value of displacement on the order of xk (Meirovitch 2001); however, we consider here only vibration

amplitudes above the threshold of sticking.

While the sign of velocity  is constant, a 1-DOF system with both viscous and Coulomb damping

acts as a second-order linear oscillator with an externally applied step input. For a given direction of

motion, the solution of Eqs. (2) may be found for initial conditions x(t0) = X0>>xk>0 and (t0) = 0 as
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simply the superposition of initial-displacement response and step response, both of which are well

known. For the first half-cycle of motion, ( <0), the response is given by: 

x(t) = (X0 − xk) {cos[ωd(t−t0)] + ξ sin[ωd(t− t0)]} + xk (3)

The damped natural frequency is defined as , and , provided that

0≤ ζ <1. We define t0=0. For each successive half-cycle after the first, Eqs. (2) may be solved with

initial displacement given by the final, zero-velocity value from the previous half-cycle; this value

occurs at instant t when ωd (t−tj−1) = π ,  in which we define the instant at the end of the j th half-cycle of

displacement as tj = jπ/ωd. A recursion formula may be written for the displacement during each

successive half-cycle. The decay continues over each half-cycle until the amplitude falls beneath the

threshold of sticking, at which time motion ceases. (However, our analysis does not model this static

sticking at the end of a vibration decay.) The initial displacement for the ( j + 1)th half-cycle is 

                        Xj = − [Xj−1−(−1) j
−

1 xk]e
-ξπ + (−1) j

−

1 xk,                    j=1, 2,... (4)

The initial conditions may be applied to Eqs. (2) to derive the general solution for displacement

during the j th half-cycle:

(5)

Liang and Feeny (1998) proposed summing Eq. (4) for the j th and ( j + 1)th values in order to calculate

a local value ζj for viscous damping. The contribution due to Coulomb damping is eliminated, and the

following equation results: 

(6)

With ξj calculated from Eq. (6), then ζj = ξi / , and the local Coulomb step displacement xkj is

calculated directly from Eq. (4).

Liang and Feeny (1998) observed that experimental measurement of displacement might include a

constant small error. Prior to imposing initial displacement X0, the experimenter might zero the

displacement-sensor output with the mass in a static equilibrium position. However, this is not

necessarily the position the mass would occupy if there were zero Coulomb friction, because sticking

friction can produce a small static offset. This possible static offset or bias, which we denote as xε, is

initially unknown. Thus, the quantity actually measured in the vibration decay is

y(t) = xε + x(t) (7)

Therefore, the j th measured local extreme displacement (crest or trough) is denoted as Yj = xε + Xj. Liang

and Feeny arithmetically eliminated bias xε by differencing measured local extreme values: Yp−Yq = Xp−Xq,

in which p and q are any integers denoting extrema within the non-sticking part of the vibration decay.

Next, they arithmetically removed kinetic Coulomb step displacement xk by summing the equations for

Yj+1−Yj and Yj− Yj−1 to produce the following equation for local ξj as an alternative to Eq. (6), in

recognition of the possibility of bias xε:
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(8)

With ξj determined from Eq. (8), either the equation for Yj+1 − Yj or that for Yj−Yj-1 is applied to

calculate the associated local value xkj of Coulomb step displacement.

For light damping, Eq. (8) is inherently vulnerable to experimental error, because both numerator and

denominator of the fraction normally involve small differences of close large values. The most

extensive data presented by Liang and Feeny (2004) seem to reflect this vulnerability. They averaged

damping values calculated from 17 separate free-vibration decays, with two local applications of

Eq. (8) per decay over only five observable extrema. Their averaged value of ζ was 0.082, but the local

values varied greatly from 0.061 to 0.108; their averaged value of xk was 0.81 mm, but the local values

varied greatly from 0.51 mm to 1.01 mm.

The Jacobsen-Ayre method (1958) and the Liang-Feeny method use only the data from crests and

troughs, but no data from the response between those local extrema. In our approach, on the other hand,

all discrete data values from measured decay traces are used in the curve fit. The damping parameters ζ

and xk, and the other parameters ωn, X0 and xε as well, are determined such that the least-squares error

between the measured and predicted data is minimized. The minimization is expressed as:

(9)

The theoretical model for y(ti) consists of Eqs. (3)-(5), and (7). N is the total number of data points in

the time series of a decay record. An iterative technique is necessary to minimize the function in Eq. (9).

To determine the best-fit parameters ζ, xk, ωn, X0, and xε, we applied the function LSQCURVEFIT

from the Optimization Toolbox of MATLABa 6, Release 12. From MATLAB’s online documentation,

the algorithm of LSQCURVEFIT is a “subspace trust region method and is based on the interior-

reflective Newton method” described by Coleman and Yi (1996). To minimize the function of Eq. (9),

we provided the following inputs to LSQCURVEFIT: a function M-file representing the theoretical

model for y(ti); an initial-estimate 5×1 array of the minimization parameters ζ, xk, ωn, X0, and xε, an

estimate based primarily on a brief visual inspection of the vibration-decay trace; the experimental data,

consisting of an N×1 array of discrete sampling times and the corresponding array of discrete

displacement values; a 5×1 array of lower-bound constraints for the minimization parameters; and a

5×1 array of upper-bound constraints. We found that LSQCURVEFIT functioned very well and

converged accurately except when we provided intentionally misleading initial estimates. LSQCURVEFIT

was mostly insensitive to our lower-bound and upper-bound constraints. However, we always imposed

lower-bound constraints of zero on parameters ζ, xk, and ωn in order to narrow the search window and

to prevent physically impossible negative values for inherent damping and natural frequency.

3. Results of numerical simulations and experiments

Both numerical and experimental studies were performed, utilizing least-squares curve fitting. The

numerical simulation was performed to evaluate the accuracy of the method and to study the effects of
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uncertainty in the data. The curve-fitting method was then applied to experimentally measured data

from an inherently damped mass-spring system.

3.1. Numerical simulations

For the numerical simulation, the natural frequency and damping constants were selected in the

following manner. The reference natural frequency was set at fref = ωref / 2π = 5 Hz. The reference

viscous damping was selected to cause the exponential envelope of response to decay to 2% of its initial

value within 1 sec when no Coulomb damping is present. Thus, the reference viscous damping ratio is

found by ζref = −ln(0.02)/ωref = 3.912/ωref. Evaluating this equation at ωref = 10π rad/sec gives ζref =

0.1245.

Similarly, the reference Coulomb damping was selected to cause the linear decay envelope of

response to decay to 2% of its initial value within 1 sec when no viscous damping is present. For fref = 5 Hz,

exactly five full cycles are completed within 1 sec. From Eq. (4) with ζ = 0, the peak absolute displacement

drops 2xk each half-cycle, so we calculated xk from X0−10×2xk−ref = 0.02X0. This gives the reference

Coulomb step displacement xk−ref = 0.049X0.

Numerical simulation was used to address important issues characteristic of experimental measurement. For

free vibration of a system, the number of significant samples and the sampling rate are limited by the

magnitude of damping and by the data acquisition system. Further, no data acquisition is free of error,

due to sources such as digital quantization and electrical noise. Both sampling and experimental error

(in the form of simulated noise) were considered in this analysis. Through simulation, the accuracy of

the method may be assessed easily because the correct result is known before the method is applied. For

a selected set of parameters, the simulated response to initial displacement was calculated from Eqs.

(3), (4), and (5). (In the numerical simulations, values X0=1 and xε=0 were fixed, so these quantities

were not minimization parameters.) Then LSQCURVEFIT was used with the simulated data to identify

parameters ζ, xk, and ωn. The differences between the identified parameters and the originally specified

“true” values provided an assessment of the accuracy of the method.

The curve-fitting method was tested with viscous damping alone (xk = 0) and with Coulomb damping

alone (ζ=0) to investigate the method’s effectiveness at decoupling the two forms of damping and to

determine the residual error in the excluded damping parameter. For the case of viscous damping alone,

the method was tested with true values ωn=10 π rad/sec and ζ = 0.81 ζref = 0.1 for noise-free data and

for data with 1, 3, and 5% simulated noise. The noise was computed by a random-number generator as

a normal distribution of zero mean and unit standard deviation, then multiplied by 1, 3, or 5% of the

initial displacement, and it was added to the perfect simulated data to form a typical noisy signal. An

example of each level of noise may be seen in Fig. 1.

The data were generated in MATLAB for free vibration resulting from unit initial displacement and

zero initial velocity, (x(0)=1, (0)=0). Simulated data sampled at increments of 0.005 sec over an

interval of 1.5 sec were computed to represent a typical measured signal. The least-squares curve-fitting

method was applied to one hundred different simulated free-vibration decays, and the results were

averaged to remove any biases from “less noisy” or “more noisy” signals due to randomness of the

simulated noise. The results for viscous damping alone, as displayed in Table 1, indicate that the

method was successful in decoupling the two forms of damping. For noise-free simulated data, Table 1

indicates nearly zero residual Coulomb damping and nearly zero error for the viscous damping ratio.

Furthermore, the table indicates that even with the presence of 3% random noise, the estimated viscous

damping ratio deviates from the true value by only 1%. The predicted natural frequency is quite good as

x·
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well for all levels of damping.

The curve-fitting method was also applied to a simulated system with Coulomb damping alone.

Simulated noise was generated by a random-number generator, multiplied by 1, 3, or 5% of the initial

condition, and added to the perfect data to produce simulated noisy signals. Data at increments of 0.005

sec over an interval of 1 sec were computed to represent a sampled signal. The method was applied for

one hundred signals, and the results were averaged. The results from this process, as displayed in Table 2,

indicate very little residual viscous damping. Furthermore, the Coulomb damping value was estimated

Fig. 1 Examples of response with 1, 3, and 5% random noise included for a system with 5 Hz natural frequency
and with viscous damping ratio ζ = 0.03 and Coulomb step displacement xk = 0.01 units

Table 1 Accuracy of least-squares curve-fitting analysis for natural frequency and viscous damping, with no
Coulomb damping included in the simulated system, sampled at 200 Sa/sec for 1.5 sec; ζref = 0.1245
and xk-ref = 0.049 unit

True value  Average Error or Residual 0% Noise 1% Noise 3% Noise 5% Noise

 fn = fref = 5 Hz Frequency Error [%], 3.9 × 10-12 2.7 × 10-2 8.6 × 10-2 1.42 × 10-1

ζ = 0.81 ζref = 0.1 Viscous Damping Error [%] 1.9 × 10-8 3.6 × 10-1 1.0 × 100 1.91 × 100

xk = 0 Coulomb Damping Residual 7.8 × 10-9 2.0 × 10-3 5.9 × 10-3 1.1 × 10-2

xk/xk-ref
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very accurately from noise-free data. For data with 1% simulated noise, the results indicate only a 1%

difference between the estimated and true Coulomb damping values. For the 5% simulated noise, the

results indicate a nearly 5% error in the Coulomb damping value. Thus despite significant noise, there

is relatively little error in the estimated parameters.

Theoretically, only three samples are required for the least-squares curve-fitting method in this

simulation study, in which case the minimization equations become a single system with three

unknowns, ωn, ζ, and xk. However, it is clear that many more samples are required to represent a full

vibration-decay record. The effect of sample size was tested by determining the average percent

difference in the parameters associated with a given sample length at a sampling rate of 800 Sa/sec.

Sample lengths of 154, 311, 462, 619, 772, 927, and 1081 data points were examined, corresponding

respectively to 1, 2, 3, 4, 5, 6, and 7 complete cycles of damped vibration. Both numerically perfect

simulated data and data with simulated noise of 1% of the initial displacement, as described previously,

were considered. The numerically perfect data showed nearly zero differences in the estimated

parameters for all sample periods tested. For the case of 1% simulated noise, Fig. 2 shows that error

decreases as the sample size increases. Fig. 2 suggests that accurate estimation of the damping

constants requires data from as many cycles of vibration decay as possible.

Table 2 Accuracy of least-squares curve-fitting analysis for natural frequency and Coulomb damping, with no
viscous damping included in the simulated system, sampled at 200 Sa/sec for 1.0 sec; ζref = 0.1245
and xk-ref = 0.049 unit

True value Average Error or Residual 0% Noise 1% Noise 3% Noise 5% Noise

fn = fref = 5Hz Frequency Error [%] 6.8 × 10-12 3.3 × 10-3 7.2 × 10-2 1.4 × 10-1

xk = 1.02xk-ref = 0.05 Coulomb Damping Error [%] 8.1 × 10-5 9.7 × 10-1 2.4 × 100 4.9 × 100

ζ = 0 Viscous Damping Residual 3.8 × 10-7 7.1 × 10-4 1.6 × 10-3 3.7 × 10-3

ζ /ζref

Fig. 2 Effects of sample size on errors in estimated parameters for a simulated system with true values ωn =
10π rad/sec, ζ = 0.02, and xk = 0.02 unit, and with 1% simulated noise. Sampling rate = 800 Sa/sec.
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3.2. Experiments with a laboratory mass-spring apparatus

The apparatus was a Model 210a Rectilinear Plant purchased from Educational Control Products

(ECP) of Bell Canyon, California, USA. Figure 3 is a photograph of the mechanical portion of the ECP

210a used for the present study. The complete ECP 210a can be configured as a 1-, 2-, or 3-DOF mass-

spring system. The following description is taken from the user’s manual (Parks 1999): “The apparatus

... consists of ... three ... mass carriages interconnected by bi-directional springs. The mass carriage

suspension is an anti-friction ball bearing type with approximately ±3 cm of available travel. The linear

drive is comprised of a gear rack suspended on an anti-friction carriage and pinion ... coupled to the

brushless servo motor shaft.”

An optical encoder measures the position of each mass carriage: a pulley is attached to the encoder

shaft, and a taut wire attached at the front and back ends of the mass carriage is wound in a loop around

the pulley, thus converting translation of the mass carriage into rotation of the encoder shaft. One

complete rotation of the shaft produces 16,000 encoder counts, corresponding to mass-carriage

translation of 7.06 cm. Hence, the displacement resolution is 4.41 × 10-4 cm/count, an insignificant

quantization step relative to the mass-carriage displacements on the order of a centimeter that we

initiated. Acquisition and storage of data is managed by a personal computer that runs ECP software

and is equipped with an ECP controller circuit board. For the present study, encoder counts were

sampled at increments of 0.000884 sec (sampling rate = 1.131 kSa/sec). Sampling times and encoder

counts from each data acquisition were stored in a text file, and these data were subsequently

transferred into MATLAB for processing.

We configured the mass-spring apparatus as a 1-DOF system by locking down the second and third

mass carriages. The linear drive motor is designed to provide excitation and/or control force to the first

mass carriage through the link shown on Fig. 3; however, the drive motor was turned off for the free-

vibration motion of this study, so the motor-gear-link combination served only to add parasitic inertia

and damping to the 1-DOF system. The inherent passive damping of this system was due presumably to

several natural causes, including: rolling of the bearing balls and rubbing against races; parasitic drag

from the drive motor and the optical encoder; structural damping in the springs; and aerodynamic drag.

Additional masses of nominal values 0.25 kg and 0.5 kg can be attached to each carriage of the ECP

210a, and we used this feature to configure five distinct 1-DOF systems, each with a different vibrating

mass and possibly different damping magnitudes due to the different weight on the ball bearings.

Fig. 3 Photograph of the portion of the ECP 210a mass-spring system used in this study
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Our procedure to produce free vibrations by hand was to perturb the first mass carriage into a

displacement greater than a centimeter, then to release the mass carriage. In order to eliminate the

effects of any inadvertent hand-induced initial velocity, we discarded about the first half-cycle of data.

Thus, the data that we analyzed was initialized at the first crest or trough of the vibration decay

following the release, at which instant the velocity was closest to zero.

Each free-vibration-decay time series acquired was input to MATLAB’s LSQCURVEFIT program

along with the M-file algorithm representing the theoretical response of the system, as is described at

the end of Section 2. The parameters estimated by the least-squares curve-fitting method are: viscous

damping ratio ζ, Coulomb step displacement xk, natural frequency ωn, initial displacement X0, and

displacement bias xε.

Fig. 4 Measured and best-fit vibration decays of mass carriage with zero added mass

Fig. 5 Measured and best-fit vibration decays of mass carriage with 1.965 kg added mass
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The measured and best-fit estimated vibration decays for zero added mass (mass carriage weight

only) are shown in Fig. 4, and those for the maximum added mass are shown in Fig. 5. These figures

illustrate generally excellent correlation between best-fit response and measured response. We note that

the best-fit response deviates from the measured response near the end of the time series at low levels of

vibration: the frequency of the measured response increases slightly before motion ceases, behavior that

is not modeled by the theory used for curve fitting.

The most significant of the best-fit parameters calculated from free-vibration data for all five values

of mass are listed in Table 3. In all cases, the best-fit value for initial displacement X0 turned out to be

almost identical to the initial value of the measured displacement, and the best-fit value for

displacement bias xε turned out to be extremely small, on the order of 0.007 cm or smaller.

It is relevant to compare the parameter estimations from our curve-fitting method with estimations

based upon the same experimental data and calculated from the method of Liang and Feeny (1998)

using Eq. (8), as their method is described in Section 2. We analyzed by the Liang-Feeny method our

experimental data for the zero-added-mass case, with the following results. The Liang-Feeny average

value of ζ over the entire vibration decay is 0.0189 (as compared with our best-fit value of 0.0184), but

the local values vary from 0.0106 to 0.0322. The Liang-Feeny average value of xk over the entire

vibration decay is 0.0107 cm (as compared with our best-fit value of 0.0112 cm), but the local values

vary from the physically impossible -0.0160 cm to 0.0274 cm. Clearly, our curve-fitting method

produces more reliable estimates than the Liang-Feeny method for damping constants over an entire

vibration-decay record.

The thoughtful reader might assert that Liang and Feeny’s approach of analyzing only data from

crests and troughs of a vibration-decay record is preferable to our approach of using all the data,

because their method requires much less, and more easily observable experimental data. This would be

a reasonable assertion, especially, if the experimental record consisted only of an analog graph as, for

examples, from the screen of an analog oscilloscope, or from a figure in a printed report. However, in a

situation such as that, fitting of a theoretical model to all the experimental crest and trough

displacement values globally would be preferable to the Liang-Feeny approach of calculating local

damping values and then averaging these over the entire record. The theoretical model for this global

approach consists of Eq. (7), and the equation for crests and troughs, Eq. (4). We tried this global

approach using LSQCURVEFIT with only the crest and trough data from the zero-added-mass case,

and the resulting best-fit values for ζ, xk, and X0 were identical to three significant digits with the

corresponding values calculated by considering all the data. 

In addition to estimating damping parameters, we applied the best-fit natural-frequency data listed in

Table 3 to identify the effective carriage mass mcarriage and the stiffness constant k of the 1-DOF ECP

210a system. The natural frequency, ωn, is defined as ωn
2 = k/m where m = mcarriage + madded is the total

Table 3 Resulting parameters for variation in added mass of ECP 210a

Added Mass [kg] Frequency, ωn [Hz] Viscous Damp. ζ Coulomb Damp. xk [cm]

0 6.89 0.0184 0.0112

0.2415 6.06 0.0174 0.0112

0.4915 5.45 0.0160 0.0117

0.9835 4.65 0.0144 0.0119

1.4750 4.12 0.0134 0.0121

1.9650 3.74 0.0136 0.0132
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vibrating mass. Algebraic manipulation leads to the equation

maddedωn
2 = mcarriage(−ωn

2 ) + k (10)

Thus, we can determine the system constants by plotting the five different values of madded ωn
2 versus

−ωn
2, and then fitting a straight line to these data points to calculate best-fit values for slope mcarriage

and intercept k, as displayed on Fig. 6. Note that this method is a generalization of the classical added-

mass method found in the homework exercises of most textbooks on mechanical vibrations (Meirovitch

2001). The excellent least-squares straight-line fit shown on Fig. 6 gives mcarriage = 0.8203 kg and

k = 1539 N/m. To assess the accuracy of these estimated system parameters, we removed the springs

from the apparatus shown in Fig. 3, and we measured directly k = 1546 N/m. For the ECP 210a apparatus,

it is not possible to make an accurate direct measurement of mcarriage.

4. Conclusions

A method was presented for modeling and identification of a 1-DOF mass-spring system that is

damped by a combination of viscous and Coulomb forces. The method uses a least-squares curve-

fitting analysis to fit the theoretical model to all of the displacement data measured from a free-

vibration decay. The subcritical viscous damping ratio and the kinetic Coulomb frictional force, as well

as system natural frequency, are the primary parameters identified from the experimental data.

Numerical simulations demonstrated that the method is successful in decoupling the two forms of

damping, leaving nearly zero residual in Coulomb damping when there is only viscous damping in the

simulated data, and vice versa. The simulations also indicated that if the data is contaminated by noise,

the parameter estimation becomes progressively more accurate as the number of cycles of data retained

in the analysis increases.

The method was applied to free-vibration data measured from a laboratory mass-spring apparatus, the

Fig. 6 Determination of carriage mass and spring stiffness from the data in Table 3
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mass of which translates on linear bearings that are the primary source of light inherent damping. The

quantity of system mass was varied, and free-vibration decays were measured and analyzed for five

distinct cases. For two typical cases, the measured and the best-fit-estimated vibration decays were

plotted together on the same figure. These figures demonstrate generally excellent agreement of the

identified theoretical system with the actual system.

For both the numerical simulations and the experimental study, the damping was light. Thus long

samples of multiple cycles were recorded, and the estimated parameters were accurate. Further study is

needed to examine the effectiveness of this curve-fitting method when damping is heavier. The method

presented here is valid for 1-DOF systems only. The success of this method results from the existence

of a closed-form theoretical solution for 1-DOF free-vibration response. Parameter estimation of

systems with multiple modes is also a matter of practical importance; however, it is unlikely that there

exists a comparable theoretical solution for multiple-degree-of-freedom systems with Coulomb damping.

We suggest that a least-squares analysis might still be possible, fitting experimental data to an appropriate

numerical solution of the coupled, nonlinear differential equations.
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