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Analytical solutions for density functionally gradient
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Abstract. The general solution for two-dimensional magneto-electro-elastic media in terms of four harmonic
displacement functions is proposed analytically. The expressions of specific solutions of magneto-electro-elastic
plane problems with specific body forces are derived. Finally, based on the general solution in the case of distinct
eigenvalues and the specific solution for density functionally gradient media, two kinds of beam problems with
body forces depending only on the z or x coordinate are solved by the trial-and-error method. 
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1. Introduction

Due to their excellent properties, composites made of piezoelectric /piezomagnetric materials have

found widespread hi-tech applications in many areas such as electronics, microwave, navigation and

biology. Accordingly, these materials have been the focus of a considerable amount of research in

recent years. In particular, critical information is provided by theoretical analyses and accurate

quantitative descriptions of electric, magnetic, and stress fields inside piezoelectric /piezomagnetric

composites under working conditions caused by the joint action of mechanical loads, electric fields, and

magnetic fields. 

In regard to piezoelectric materials, Sosa and Castro (1994) presented the solutions for the cases of

concentrated loads and point charge applied at the line boundary of a piezoelectric half-plane. Ding, et

al. (1997) obtained the general solution of plane problem of piezoelectric media, in which all physical

quantities are expressed in three second-order harmonic displacement functions, as well as the solutions

for a piezoelectric wedge subjected to concentrated forces and point charge. Ding, et al. (1997) derived

Green’s functions for a two-phase infinite piezoelectric plane. Ding, et al. (1997, 1998) derived the

Green’s functions and fundamental solutions for plane and half-plane piezoelectric problems. Shi
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(2001) studied a piezoelectric cantilever with non-uniform body force while Shi and Chen (2004)

obtained a set of analytical solutions for a functionally graded piezoelectric cantilever beam subjected

to different loadings, based on a pair of stress and induction functions in the form of polynomials. Shi

(2002) obtained the stress and induction functions in the form of polynomials as well as the general

solution of a density functionally gradient piezoelectric cantilever by using the Airy stress function

method. Yang and Liu (2003) derived the analytical expressions of stress, electric displacement and

electric potential for bending of a piezoelectric cantilever beam using the inverse method. 

Magneto-electro-elastic materials simultaneously exert piezoelectric, piezomagnetic, and magnetoelectric

effects. Pan (2001) and Pan, et al. (2002) derived the exact solutions for three-dimensional anisotropy

linearly magneto-electro-elastic, simply-supported, and multi-layered rectangular plates under static

loads and analytical solutions for free vibrations, respectively. Pan (2002) derived three-dimensional

Green’s functions in an-isotropic magneto-electro-elastic full space, half space, and bi-materials based

on extended Stroh formalism by applying the two-dimensional Fourier transforms. Hou, et al. (2003)

analyzed the elliptical Hertizan contact of transversely isotropic magneto-electro-elastic bodies with the

general solutions in terms of harmonic functions. Wang and Shen (2002) obtained the general solution

expressed by five harmonic functions and applied the derived general solution to find the fundamental

solution for generalized dislocation and also to derive Green’s functions for a semi-infinite magneto-

electro-elastic solid. Ding and Jiang (2003) obtained the fundamental solution of an infinite magneto-

electro-elastic solid via the method of trial-and-error and derived the boundary integral formulation.

Chen, et al. (2005, 2003) analyzed the free vibration and bending of non-homogeneous magneto-

electro-elastic plates and magneto-electric thermo-elasticity, respectively. Pan, et al. (2003) obtained

the exact solutions for magneto-electro-elastic laminates in cylindrical bending. Heyliger and Pan

(2004) analyzed the static fields in magneto-electro-elastic laminates. Wang, et al. (2003) conducted an

analysis of multi-layered magneto-electro-elastic plates by the state vector approach.

For the magneto-electro-elastic plane problem, Wang and Shen (2003) presented analytic solutions

for the plane problem of a inclusion of arbitrary shape in an entire plane, or within one of the two

bonded dissimilar half-plane. Ding and Jiang (2004) obtained the two-dimensional fundamental solution for

an infinite magneto-electro-elastic plane on the basis of the general solution, and implemented a

boundary element method program to perform the numerical calculations. Jiang and Ding (2004)

derived the general solution in the case of distinct eigenvalues in which all physical quantities are

expressed in four harmonic displacement functions. They also obtained analytical solutions to various

problems with the trial-and-error method, including rectangular beam under uniform tension, electric

displacement and magnetic induction, pure shearing and pure bending, a cantilever beam with point

forces at the free end, and cantilever beam subjected to uniformly distributed loads. 

In this paper, we will consider the magneto-electro-elastic plane problems of density functionally

gradient media. First, the specific solutions to plane problems with linearly or non-linearly distributed

body forces are derived. In order to eliminate the surface tractions on surfaces and at ends caused by the

specific solutions, we superpose the solutions on several kinds of general solutions and the rigid body

motion solution obtained with the trial-and-error method to satisfy the boundary displacement conditions.

Finally, two kinds of beam problems with body forces depending only on the z or x coordinate are solved.

2. General solution to the plane problem of magneto-electro-elastic solid

For transversely isotropic magneto-electro-elastic bodies, the basic equations have been given in Pan
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(2001) (where xoy plane denotes the isotropic plane). For plane-strain problems, the displacements ui,

the electric potential Φ, and magnetic potential Ψ are assumed to be independent of y. The basic

equations for a two-dimensional magneto-electro-elastic solid in the xoz coordinates can be simplified

as follows

,   ,

, (1)

,

, ,

, ,

, (2)

where σi(τij), ui, Di and Bi are the components of stress, displacement, electric displacement and

magnetic induction, respectively; Φ and Ψ are the electric potential and magnetic potential,

respectively; fi, fe and fm are body force, free charge density and current density, respectively (according

to electromagnetic theorem, fm = 0), cij, eij, dij, εij, gij and µ ij are the elastic, piezoelectric, piezomagnetic,

dielectric, electromagnetic and magnetic constants, respectively. 

With the strict differential operator theorem presented by Ding, et al. (1997), the general solutions for

the two-dimensional magneto-electro-elastic solid without body forces in the case of distinct

eigenvalues sj ( j = 1~4) have been derived by Ding and Jiang (2004) and Jiang and Ding (2004) and

expressed in terms of four harmonic functions as follows
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The functions ψj satisfy the following equations

                 ,  ( j = 1~4) (5)

where zj = sj z ( j = 1~4) and sj
2 are the four roots of the equation (we take Re (sj) > 0)

(6)

where an (n = 1~5), kmj and ωmj (m = 1~3, j = 1~4) in Eqs. (6) and (3) are the same as those derived by

Hou, et al. (2003) and Ding and Jiang (2003). 

In calculating kmj, ωmj in Eq. (3) and an in Eq. (6), taking d15 = d31 = d33 = 0, g11 = g33 = 0, µ11 = 0 and

µ33 = 1, and changing j from 1 to 3, m from 1 to 2, respectively, we obtain a5 = 0, s4 = 0. It can be seen

that the degenerated general solution corresponds with that of plane problem of piezoelectric media

given by Ding, et al. (1997). Furthermore, The solution can also be degenerated into that of problem of

an orthotrpic beam as in Jiang and Ding (2005).

The harmonic polynol listed in Appendix A can be chosen as harmonic functions simply by replacing

z with zj. Six analytical solutions for a cantilever beam without body forces and with surface loads are

obtained by using the harmonic polynomials, as presented in the following section.

In the following sections, we consider the magneto-electro-elastic cantilever beam shown in Fig. 1.

At the fixed end (x = L) of the beam, the conditions of electric potential and magnetic potential are Φ = Φ0

and Ψ = Ψ0 at two appointed points, i.e., Φ(L, z')= Φ0 and Ψ(L, z'') = Ψ0, respectively. As both of electric

potential and magnetic potential can be superposed on arbitrary constants without inducing any difference

in the generalized stresses, the conditions of electric potential and magnetic potential are not presented.

3. Three solutions for cantilever beam without body forces and with surface loads

3.1. Cantilever beam under uniform loads on the upper and lower surfaces

We introduce the displacement function as follows
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Fig. 1 The geometry and coordinate system of acantilever beam
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where A2j, B3j and B5j ( j = 1~4) are unknown constants to be determined.

Substituting Eq. (7) into Eqs. (3) leads to

(8a)
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superposed on the rigid body displacements solutions as follows

,   (14)

where

,  

(15)

3.2. Cantilever beam with axial force N and bending moment M at the free end

We constitute the displacement function as follows

             ( j = 1~4) (16)

where A2j and B3j are unknown constants to be determined.
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the axial force N is positive in tension and the bending moment M acts clockwise.
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The unknown constants A2j and B3j can be determined from Eqs. (19) and (20). To satisfy the boundary

conditions Eqs. (18c), the solution above should be superposed on the rigid body displacements solutions as

follows
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where

, ,   (22)
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The boundary conditions are

,  (m = 1~3),  (25a)

(25b)

  u = 0,   w = 0,  (25c)

Substituting Eqs. (24c)-(24e) into Eqs. (25a,b), we have
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From Eq. (24b) and the third of Eqs. (25c), we have

(38)

The unknown constants B2j, B4j, B6j, B8j, B3j, B5j and B7j can then be determined from Eqs. (26)-(38). To

satisfy the left boundary conditions of Eqs. (25c), the solution above should be superposed on the rigid

body displacements solution as follows.
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(45)

where .

From Eqs. (45), we find that the beam has uniformly distributed generalized stresses τxz
* , σz

*, Dz
* and

Bz
* on surfaces (z = ± h/2) along length, and distributed loads τxz

* , σx
*, Dx

* and  Bx
* along height at the two

ends (x = 0, L).

4.2. The body forces depends only on the x coordinate

, ,  (46)

where Q(x) and P(x) are two arbitrary functions of x.

It is easy to verify that Eqs. (1) and (2) have the specific solution as follows

,    ,    ,   (47)

where G(x) and F(x) are expressed as Eq. (43), and the coefficients are 

,   ,   (48a)

(48b)

Substituting Eq. (47) into Eqs. (2) leads to the specific solution of generalized stress

,  ,  ,   ,

(49)

From Eqs. (49), we find that the beam has distributed generalized loads τxz
* , σz

* , Dz
* and Bz

* on surfaces

(z = ± h/2) along length, and uniformly distributed loads τxz
* , σx

*, Dx
* and Bx

* along the height at the two

ends (x = 0, L).

5. The analytical solutions to density functionally gradient cantilever beams

For magneto-electro-elastic plane problem, the solution to Eqs. (1) and (2) should be expressed by the

superposition principle:

σ x
* kF′ z( )  σ z

* F′ z( )  Dz
* 0=  Bz

* 0=, ,=,=

τ xz
* G′ z( ) Dx

*
e15

c44

------G′ z( ) Bx
*

d15

c44

-------G′ z( )=,=,=

k c13∆1 ε31∆2 d31∆3+ +( ) ∆⁄=

 fx Q x( )–=  fz P x( )–= fe 0=

u*
1

c11

------G x( )= w*
S1

S
-----F x( )= Φ*

S2

S
-----F x( )= Ψ *

S3

S
-----F x( )=

S1 ε11µ11= g11

2
– S2 e15µ11= d15g

11
– S3 d15ε11

= e15g11–

S

c44    e15    d15

 e15   ε11–    g11–

d15  g11–   µ11–

=

σ x
* G′ x( )= σx

*
c13

c11

------G′ x( )= Dz
*

e31

c11

------G′ x( )= Bz
*

d31

c11

-------G′ x( )=

τ xz
* F′ x( )    Dx

*, 0    Bx
*, 0= = =
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,  ,   (m = 1~3) (50a)

,  ,  , (m = 1~3) (50b)

where u0, wm0 (w10 = w0, w20 =Φ0, w30 = Ψ0), σx0, σm0 and τm0 are the general solutions expressed as

Eqs. (3) for beams without body forces, and u*, wm
* , σx

*, σm
*  and τx

*  are the specific solutions expressed

as Eqs. (42) and (45) or (47) and (49) for beams with body forces.

In the next sections, we consider two kinds of cantilever beam of functionally gradient material

(FGM) as shown in Fig. 1. The boundary conditions are 

,    (m = 1~3),   τxz = 0 (51a)

   (m = 1~3) (51b)

(51c)

5.1. The solution to cantilever beam with body forces depending only on the z coordinate

,    ,    (52)

where d0 and λ are material constants, ρ is the density, and g is the acceleration of gravity. 

Substituting Eq. (52) into Eq. (43) leads to 

,   G(z) = 0 (53)

The corresponding specific solution can be obtained by substituting Eq. (53) into Eqs. (42) and (45)

,    ,   (m = 1~3) (54)

,   ,    (55a)

(55b)

It is apparently that the boundary displacement conditions (51c) at the fixed end (x = L) have been

satisfied with Eq. (54). At the same time, we find that the specific solution Eq. (55a) may cause normal

surface tractions (z = ± h/2)

(56)

u u0 u*+= wm wm0 wm
*+=

σx σx0 σx
*+= σm σm0 σm

*+= τm τm0 τ m
*+=

z h 2⁄±= :  σm 0=

x 0: σxdz 0= ,     σxzdz 0= ,     τmdz 0= ,  
h 2⁄–

h 2⁄

∫
h 2⁄–

h 2⁄

∫
h 2⁄–

h 2⁄

∫=

x L= z 0=,( ): u 0=   w 0     ∂w ∂ x⁄ 0=,=,

 fx 0=  fz ρg= ρ d0e
λz

=

F z( ) d0g
z

λ
---–

e
λz

λ
2

------
1

λ
2

-----–+⎝ ⎠
⎛ ⎞–=

u* 0= wm

0 ∆m

∆
------– d0g

z
λ
---–

e
λz

λ2
------

1

λ2
-----–+⎝ ⎠

⎛ ⎞=

σ x
* kd0g

1
λ
---–

e
λz

λ
------+⎝ ⎠

⎛ ⎞–= σ z
* d0g

1
λ
---–

e
λz

λ
------+⎝ ⎠

⎛ ⎞–= τ xz
* 0=

Dx

*
Dz

*
0= =   Bx

*
Bz

*
0= =,

σ x
* P0 d0g

1
λ
---–

e
λ± h 2⁄

λ
-------------+⎝ ⎠

⎛ ⎞ d0g

λ
--------– 1 cosh

λh

2
------+–⎝ ⎠

⎛ ⎞ d0g

λ
--------– sinh

λh

2
------⎝ ⎠

⎛ ⎞±=–= =
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To satisfy the surface tractions conditions (51a), we need only superpose the specific solution (54) and (55)

on the analytical solution (8) for a cantilever beam without body forces and under uniform loads

on upper and lower surfaces, where β1 = , β2 = 0, β3 = 0, , C2 = 0,

C3 = 0. Then, in order to satisfy the tractions conditions (51b) at the free end (x = 0), the specific

solution should be superposed on the analytical solution (17),

with  ,   .

5.2. The solution to cantilever beam with body forces depending only on the x coordinate

,   ,   (57)

where cn(n = 0, 1, 2, 3) are material constants.

From Eq. (43), we have

,   G(x) = 0 (58)

The corresponding specific solution can be obtained by substituting Eq. (58) into Eqs. (47) and (49)

,     ,   (m = 1~3) (59)

,   (60)

It is apparently that the specific stress solution Eqs. (60) satisfies the traction boundary conditions

(51b) at the free end (x = 0) automatically, and may cause the fourth power of x tangential tractions on

the two surfaces (z = ±h/2).

(61)

To satisfy the surface tractions conditions (51a), we should superpose the specific solution (59) and

(60) on the analytical solution for a cantilever beam without body forces and under distributed surface

loads (σz = 0, Dz = 0, Bz = 0, τxz = ), i.e., the solution (24) with , ,

 and T1 = c0g, respectively.

To satisfy the displacement conditions (51c) at the fixed end (x = L), we should superpose the specific

solution (59) on the rigid body displacements solutions as follows.

d0g

λ
-------- 1– cosh
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2
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(62)

where 

,    (63)

6. Examples

In order to demonstrate the advantage of FGM, the weight of the beam ρ0hLg is assumed to be a

constant, i.e.,

(64)

where ρ0 is the average density. Substituting Eq. (52) and (57) into Eq. (64), we obtain ρ0 =

for the first kind
 
of beam (density depend only on the z coordinate) and ρ0 =  for the

second kind (density only on the x coordinate), respectively. When λ = 0 or c1 = c2 = c3 = 0, the beam is

homogeneous.

Based on the above equations, all the displacements, stresses, electric and magnetic quantities at any

inner or boundary point of the cantilever beam can be obtained. In the calculation, we set L = 150 mm,

h = 6 mm and ρ0 = 7800 kg/m3. Assume that a piezoelectric cantilever beam and an orthotropic

cantilever beam have the same constants as those of magneto-electro-elastic beam shown in Table 1 and

the same geometric dimensions and boundary conditions.

The deflections (w1, w2) of the beam at point (x = z = 0) are listed in Table 2 for comparison, and are

caused by two kinds of functionally graded density depending only on the z coordinate or on x

coordinate for six cases, respectively. When the density depends on the z coordinate: (case 1) λ = 500/m,

(case 2) λ = 400/m, (case 3) λ = 300/m, (case 4) λ = 200/m, (case 5) λ = 100/m and (case 6) λ = 0;

when the density depends on the x coordinate: (case 1) c0 = ρ0, c1 = c2 = c3 = 0 (case 2) c1 = 2ρ0,

c0 = c2 = c3 = 0, (case 3) c2 = 3ρ0, c0 = c1 = c3 = 0, (case 4) c3 = 4ρ0, c0 = c1 = c2 = 0, (case 5) c0 = c1

= c2 = c3 = 12/25ρ0 and (case 6) c0 = 1/4ρ0, c1 = 1/2ρ0, c2 = 3/4ρ0, c3 = ρ0. Meanwhile, the stress σx
1

and σx
2 stand for the point (x = L/2, z = -h/2) corresponding to the two kinds of density depending

only on z coordinate or on the x coordinate for the six cases given above, respectively. In Table 2, “M”,

“P” and “E” denote magneto-electro-elastic, piezoelectric and orthotropic material beam, respectively. The x

coordinate of the center of gravity (x0, z0) is listed in Table 3 for different cases, where x0
1 and x0

2 denote the
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Table 1 Material properties (Pan 2002)

c11

1.66×1011
c12

7.7×1010
c13

7.8×1010
c33

1.62×1011
c44

4.3×1010
c66

4.45×1010

e31

-4.4
e33

18.6
e15

11.6
d31

580.3
d33

699.7
d15

550

ε11

1.12×10-8
ε33

1.26×10-8
g11

5.0×10-12
g33

3.0×10-12
µ11

5×10-6
µ33

10×10-6

Unit: c - N/m2, e - C/m2, d - N/Am, ε - C/Vm, µ - Ns2/C2, g - Ns/VC.
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two kinds of density depending only on the z coordinate or on the x coordinate, respectively. 

From the results listed in Table 2 and 3, we arrive at the following:

(1) when the density depends only on the z coordinate, all the results of deflections and stresses of six

considered cases correspond with those of a homogeneous beam, because the center of gravity remains

at the same distance from the fixed end (x = L). The deflection of the piezoelectric beam is larger than

that of magneto-electro-elastic one, while the deflection of orthotropic beam is the largest. However,

the stresses exhibit no noticeable differences.

(2) When the density depends only on x coordinate, all the results of deflections and stresses are

different for the six considered cases and for different material, that is, the longer the distance between

the center of gravity and the fixed end (x = L), the larger deflections and stresses. For the fourth case, the

deflection caused by body force is the smallest, and is nearly twenty-three percent of the homogeneous beam,

and the stress is only five percent of the homogeneous beam. For the same case, the deflection of

piezoelectric beam is larger than that of magneto-electro-elastic beam, while the deflection of the orthotropic

beam is the largest. However, the differences between the stresses are slight.

7. Conclusions

From Table 3, we can qualitative analyse the law of the deflections and stresses varying with x for

different cases and material. Using the equations and the analytical solutions, we can make a

quantitative analysis of the deflections and stresses. The analytical solutions to density functionally

gradient magneto-electro-elastic cantilever beams derived in this paper by the superposition principal

and the trial-and-error method are more explicit and convenient than those by the stress method.

Table 2 Deflection w and stress σx of cantilever beam with body force

ρ case (1) (2) (3) (4) (5) (6)

w1 (M) 0.1085E-4m 0.1085E-4m 0.1085E-4m 0.1085E-4m 0.1085E-4m 0.1085E-4m

w1 (P) 0.1145E-4m 0.1145E-4m 0.1145E-4m 0.1145E-4m 0.1145E-4m 0.1145E-4m

w1 (E) 0.1253E-4m 0.1253E-4m 0.1253E-4m 0.1253E-4m 0.1253E-4m 0.1253E-4m

w2 (M) 0.1085E-4m 0.5775E-5m 0.3602E-5m 0.2463E-5m 0.7466E-5m 0.5673E-5m

w2 (P) 0.1145E-4m 0.6099E-5m 0.3795E-5m 0.2594E-5m 0.7881E-5m 0.5986E-5m

w2 (E) 0.1253E-4m 0.6663E-5m 0.4148E-5m 0.2830E-5m 0.8618E-5m 0.6544E-5m

σx
1 (M) 0.2148E+6 Pa 0.2148E+6 Pa 0.2148E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa

σx
1 (P) 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2148E+6 Pa

σx
1 (E) 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa 0.2149E+6 Pa

σx
2 (M) 0.2149E+6 Pa 0.7154E+5 Pa 0.2678E+5 Pa 0.1069E+5 Pa 0.1259E+6 Pa 0.7097E+5 Pa

σx
2 (P) 0.2149E+6 Pa 0.7175E+5 Pa 0.2680E+5 Pa 0.1077E+5 Pa 0.1259E+6 Pa 0.7105E+5 Pa

σx
2 (E) 0.2149E+6 Pa 0.7157E+5Pa 0.2680E+5Pa 0.1070E+5Pa 0.1259E+6Pa 0.7099E+5Pa

Table 3 The x coordinate of the center of gravity of the cantilever beam 

ρ case (1) (2) (3) (4) (5) (6)

x0
1/L 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

x0
2/L 0.5000 0.6667 0.7500 0.8000 0.6160 0.6792
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Numerical results show that adopting certain value of in-homogeneity parameters cn can optimise the

mechanical-electric responses. This will be of particular importance in modern engineering design.
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Appendix A

Harmonic polynomials for the plane problems can be written in the following form

 (m = 0,1; n = 1, 2,...) (A1)

where  denotes the largest integer . From Eq. (A1), the first seventeen harmonic

polynomials can be written as follows

(A2)

CC

ϕn

m
x z,( ) x

n m–
z
m

1–( )i

i 1=

n m–

2
-------------

∑+
n m–( ) n m– 1–( )… n m– 2i– 1+( )

2i m+( )!
-------------------------------------------------------------------------------------------x

n 2i m––
z

2i m+
=

n m–

2
------------- n m–

2
-------------≤

ϕ0

0
x z,( ) 1 ϕ1

0
x z,( ) x   ϕ1

1
x z,( ) z   ϕ2

0
x z,( ) x

2
z

2
–=,=,=,=

ϕ2

1
x z,( ) xz ϕ3

0
x z,( ) x

3
3xz

2
  ϕ3

1
x z,( ) x

2
z 1

3
---z

3
–=,–=,=

ϕ4

0
x z,( ) x

4
6x

2
z

2
– z

4
+ ϕ4

1
x z,( ) x

3
z xz

3
–=,=

ϕ5

0
x z,( ) x

5
10x

3
z

2
– 5xz

4
+ ϕ5

1
x z,( ) x

4
z 2x

2
z

3
– 1

5
---z

5
+=,=

ϕ6

0
x z,( ) x

6
15x

4
z

2
– 15x

2
z

4
z

6
–+ ϕ6

1
x z,( ) x

5
z

10

3
-------x

3
z

3
– xz

5
+=,=

ϕ7

0
x z,( ) x

7
21x

5
z

2
– 35x

3
z

4
7xz

6
–+ ϕ7

1
x z,( ) x

6
z 5x

4
z

3
3x

2
z

5 1

7
---z

7
–+–=,=

ϕ8

0
x z,( ) x

8
28x

6
z

2
– 70x

4
z

4
28x

2
z

6
– z

8
+ +=

ϕ8

1
x z,( ) x

7
z 7x

5
z

3
– 7x

3
z

5

xz
7

–+=




