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Abstract. In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to 
the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structural
health monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and 
flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, 
especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper 
presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available 
at a price comparable to a microprocessor development board, was adopted. Data processing functions, including 
windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab 
Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory 
tests were carried out to validate the design.
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1. Introduction

1.1. Motivation

This study was motivated by the need to seek computational and power efficient means of embedding 

algorithms into wireless sensors. The advantages of using wireless sensor networks for structural health 

monitoring are well known and the advantages of processing data onboard, and then transmitting the 

processed and/or identified results (rather than raw data) have been well recognized (Liu and Tomizuka 
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2003, Spencer 2003, Smyth and Betti 2004). As structural engineers working on smart sensing 

technology for smart structures, it is important to note that microprocessors are not the only means to 

bring onboard intelligence to sensors in order to make them smart. Indeed, the computational and power

efficiencies of microprocessors are not always the ultimate that one can expect. Although their ubiquity 

and fast-improving performance could lead one to neglect this important fact, it would be imprudent to 

overlook other available options. For example, Texas Instruments has found that the speed of one its 

digital signal processors was increased by a factor of 18 by sending certain functions to custom-designed 

logic circuits (Tredennick and Shimamoto 2003). Comparable increases in power efficiency, which in 

many cases is more important than computational efficiency, can also be realized. It is proposed herein to 

introduce Field-Programmable Gate Arrays (FPGAs) as a complement and/or an alternative to microprocessors

in smart sensing technology. The goal is to achieve greatly enhanced computational efficiency, increased/

manageable power efficiency, superior flexibility of functionality and generally optimized performance of 

embedded systems.

For embedding intelligence, a hardware designer typically has three options. One could design a 

digital system using the traditional microprocessor (a Digital Signal Processor (DSP) or Reduced Instruction

Set Computer (RISC) can be considered as subsets), develop an Application Specific Integrated Circuit 

(ASIC), or use an FPGA (Table 1). ASICs are restricted to applications which require mass production 

due to their high initial setup costs (e.g. the cost of a single mask, implemented with a 0.09 µm technology is 

about $1,000,000 (Wolf 2004)). Besides phenomenal development costs, a relatively lengthy time-to-

market can also limit the the usage of ASICs. On the other hand, FPGAs, which can be roughly characterized 

as Programmable ASICs, offer substantial performance gains over the contemporary microprocessors with 

very low development costs and faster time-to-market.

1.2. FPGA architecture -an intrinsic advantage

A Field-Programmable Gate Array (FPGA) is an integrated circuit consisting of an array of programmable

logic cells. The basic architecture of an FPGA (better known as its fabric) consists of a few fundamental

elements, such as Combinational Logic Blocks (CLB), interconnects and Input/Output Blocks (IOB) as 

shown in Fig. 1 (Roth 1998, Maxeld 2004, Yalamanchili 2001). In a Xilinx Virtex-II FPGA, for 

example, a Virtex-II XC2V40 (Xil 2004d), there are 64 such CLBs organized in a eight row × eight 

column fashion. Each CLB consists of four slices, while each individual slice internally consists of various

components such as Look-Up-Tables (LUT), multiplexers, carry logic, AND-gates, and sequential elements

(flip-flops) (Xil 2004b,c). Beside slices, local routing is used to provide feedback between slices in the 

same CLB, and also allows routing to neighboring CLBs. For global routing, a Switch Matrix is used.

Compared to microprocessors, in an ideal design, FPGAs would have dedicated hardware resources 

allocated for every task. This basic design architecture is the main factor for their high computational 

Table 1 General guideline for three options to implement onboard intelligence: ASICs, FPGAs, and microprocessors

Characteristic ASIC FPGA Microprocessor

Implementation of data
Processing functions

Application specific
hardware

General purpose 
hardware

General purpose 
software

Computational efficiency Very high High Low 

Cost Very high Moderate Low 

Power consumption Lowest Moderate Low 
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capabilities. This type of design model is termed a hardware execution model (Dehon and Wawrzynek 

1997). In microprocessors, general purpose hardware is used to accomplish different tasks. This type of 

design model is termed a software execution model (Dehon and Wawrzynek 1997). The key 

difference is illustrated with the example shown in Fig. 2, where 20 data points are multiplied by 

20 corresponding coefficients in a dot product fashion for two vectors. The computational 

efficiency of the hardware execution mode using an FPGA is improved substantially over the 

software execution mode using a microprocessor, if all the required multipliers are available (i.e. 

using fully combinational logic).

Fig. 1 A basic FPGA fabric following Wolf (2004) where CLB and IOB stand for Combinational Logic Blocks
and Input/Output Blocks, respectively

Fig. 2 An example to illustrate the difference between (a) a software execution model, and (b) a hardware 
execution model. Note that in (a), the execution follows a chronological sequence. In (b), however, the 
execution follows a concurrent sequence. In this simple example, if the microprocessor (having the software
execution model) and FPGA (having the hardware execution model) required similar time for a 
multiple operation, the FPGA would be 20 times faster with a higher throughput



72 Chetan Kapoor, Troy L. Graves-Abe and Jin-Song Pei
1.3. “FPGA vs microprocessors”-applications in wireless sensing

The technology associated with FPGAs is rapidly growing. Having been around for more than two 

decades, FPGAs have recently evolved from limited traditional roles (e.g. glue logic) into a new 

alternative for offloading computationally intensive digital signal processing and beyond. Though 

relatively new, many application topics using FPGAs for implementing algorithms have emerged in 

literature (ACM 2002, 2003, 2004). They include embedding Finite-Impulse-Response (FIR) filters, 

Fast Fourier Transform (FFT), and multilayer feedforward neural networks (Kung, et al. 2002, Ohtani, 

et al. 2002). FPGAs are considered for smart sensing applications in structural health monitoring based 

on the following reasons: 

1.3.1. Computational efficiency

On a typical chip with dimensions of 1.3 in. by 1.3 in. (for the Xilinx Virtex-II Pro-XC2VPX20 

FPGA in FF896 package (Xil 2004c)), an FPGA spatially composes primitive operations rather than 

temporally composing them as in a traditional microprocessor (Tredennick and Shimamoto 2003, 

Verkest 2003, Xil 2004d). This fundamental difference can be viewed as parallel computing 

architecture in FPGAs versus serial computing in microprocessors. This parallelism is the primary 

reason for FPGAs computational efficiency since it maximizes data throughput at the level of 

machine computation. 

1.3.2. Power efficiency

For sensor networks including the application in structural health monitoring, energy is generally 

consumed for data transmission, signal processing and hardware operation (Mahgoub and Ilyas 2006).

Loosely speaking, the enhanced computational efficiency of FPGA’s can directly result in increased 

power efficiency. In practice, it can be difficult to fully realize these gains as any logic blocks that are 

not used by a designer will nevertheless contribute to power use. Thorough power efficiency analysis 

(Shang, et al. 2002, Choi, et al. 2003) has indicated that the interconnects and the IOB (see Fig. 1) and 

clocking are amongst the primary power dissipation sources. There are new power saving technologies 

currently being developed that involve modifying the FPGA’s architecture in an effort to address the 

speed-power dilemma (Tuan, et al. 2006). 

1.3.3. Reconfigurability

In an FPGA, the major functional blocks traditionally found on microprocessors (e.g. processing 

cores, memory blocks, hard-wired functional units) are interconnected in a reconfigurable manner, allowing

them to be organized and deployed according to the needs of an application. A major advantage that an 

FPGA possesses over other Programmable Logic Devices (PLDs) (Roth 1998) is its ability to dynamically

change its configuration and thus perform different tasks without the need to be reprogrammed. This 

capability can be exploited in embedding multiple situation-specific configurations and hence creating 

a very potent and flexible system.

1.3.4. Cooperation with microprocessors

Reconfigurable hardware like an FPGA by itself might not provide the best solution for all situations. 

However, FPGAs containing both an FPGA architecture and an embedded microprocessor are available

to allow developers to readily utilize both, to facilitate various application needs for optimized 

efficiency, flexibility and performance, as was selected in this study (Xil 2004c). The microprocessor 
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available on the selected FPGA development board was not used in this particular proof-of-concept 

demonstration, however it can be utilized for an improved functionality in a future study. 

In short, the high processing power and customizability of FPGAs make them very suitable for 

enabling the current trend towards task-focused sensors in civil engineering applications (Liu and 

Tomizuka 2003). FPGAs will greatly enhance onboard data processing (i.e. DSP) and data interpretation

(i.e. system identification) capabilities. For example, Los Alamos National Laboratory has developed a 

system called “HERT” for structural health monitoring that uses FPGAs for onboard data processing 

(Farrar 2004). It is also reported that NASA Goddard Space Flight Center is developing an FPGA 

version of their Hilbert-Huang Transform (HHT) (NASA 2004). 

1.4. Objectives

The goal of this study is to create a proof-of-concept FPGA based wireless sensing unit. The objectives are 

listed as follows:

1. To replace a microprocessor with an FPGA in a measurement and instrument environment for 

wireless-sensing based structural health monitoring as shown in Fig. 3. This requires multiple 

interfacing efforts.

2. To adopt off-the-shelf products for the FPGA and other hardware components as often as possible. 

This simplies design as was explored in microprocessor-based wireless sensing in the structural 

health monitoring community (e.g. Lynch, et al. 2004).

3. To program an FPGA to perform onboard data processing to make the unit “smart”. In particular, 

examine an off-the-shelf high-level abstraction programming tool, Matlab Simulink-based System 

Generator from Xilinx (Xil 2004f), as opposed to using only VHDL-based programming. More 

abstract programming tools provide civil engineers with more convenient access to FPGA-based 

DSP design. 

4. To adopt a low-cost, i.e., non-high-end FPGA product. The consideration of cost is always critical 

in large-scale civil engineering applications. This design constraint imposed many challenges to 

this study, which in turns led to an optimal design.

Fig. 3 Comparison between (a) a microprocessor-based, and (b) an FPGA-based wireless sensing unit. Note 
that modern FPGAs can have sufficient built-in memory to store sensed data and processed results. 
ADC stands for analog-to-digital converter while MPU, microprocessor processing unit
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2. Proposed work

2.1. Project overall

Fig. 4 illustrates the scope of both the hardware and software design in this proof-of-concept study. A 

Single-Degree-of-Freedom (SDOF) building model on a shaking table was excited by a swept sine 

signal, while analog accelerometers were used at the client end to collect two channels (Channel 0 and 

Channel 1) of time histories as shown in Fig. 4(a1). The time series were collected using Analog-to-

Digital Converters (ADCs) and processed in an FPGA rather than a microprocessor. After applying a 

channel subtraction algorithm to obtain the relative acceleration of the floor mass, the resonance 

frequency of this relative acceleration was derived inside the FPGA by applying a windowing algorithm,

Fast Fourier Transform (FFT) algorithm and peak detection algorithm consecutively. This processed

frequency in its equivalent integer format (i.e. a frequency register as will be presented in Section 4.4) 

was then sent to the server end (see Fig. 4(a3)) through wireless data transmission and recorded using a 

Graphical User Interface (GUI). This entire FPGA-based smart sensing unit shown in Fig. 4(a2) was 

built on an off-the-shelf FPGA development board employing a Xilinx Virtex-II Pro chip and other 

components. Tools providing a high-level abstraction for programming FPGAs, such as Matlab Simulink-

based Xilinx System Generator (Xil 2004f), were used to embed the DSP algorithms.

The selected linear single-degree-of-freedom (SDOF) system subjected to a base excitation can be 

considered as a model of a single-story building under an earthquake excitation. Application of Newton’s

second law results in the following equation of motion for the system: 

(1)

where m, c and k are the mass, damping and stiffness of the SDOF system respectively, and  is the 

mx·· cx· kx+ + mx··
g

–=

x··
g

Fig. 4 Overview of the project -an application of an FPGA in a smart sensing environment: (a) hardware, and 
(b) software development scope. In detail, (a1) shows a shaking table, building model and two channels 
of analog accelerometers, (a2) the proposed FGPA-based smart wireless sensing unit at the client end, 
and (a3) the server end
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input to the system, i.e., the ground acceleration collected at Channel 0.  denotes the relative 

acceleration of the roof with respect to the ground, i.e., the reading of Channel 1 minus that of Channel 

0. Processing the frequency information of this relative acceleration is the foremost step in deriving the 

frequency response function and transmissibility of such a system (Chopra 2000, Inman 1994). 

Therefore, it was decided to showcase the application of FPGAs in a real-world measurement environment

for structural health monitoring by extracting the resonant frequency of this relative acceleration and 

then sending it through the selected OEM radio. This entails the key technical focus of this exploratory 

research. The proposed work consists of two FPGA operation modes: 

2.1.1. “Pass through” operating mode

In the “pass through” mode of operation, the FPGA simply collects acceleration time histories from 

the two channels of the analog sensors, transmits them using the selected radio and displays the time 

histories using a GUI at the server end. This mode can be considered an intermediate step to achieve the 

“smart” mode and is mainly to verify the proper functioning of the designed hardware unit. Even this 

mode alone can also demonstrate the appropriateness of using FPGAs in such a measurement and 

instrumentation application. 

2.1.2. “Smart” operating mode

Once the “pass through” works, the proposed DSP algorithms from channel subtraction algorithm 

to peak detection algorithm are to be implemented into the entire design to make the FPGA-based 

unit operate in a “smart” mode, so that an identified resonant frequency or its equivalent quantity rather 

than raw time histories will be received at the server end. 

2.2. Choice of FPGA development board and its features

The foremost decision in this study was the appropriate selection of the FPGA device. There are 

many vendors in the market, providing designers with several options when considering a specific 

application. Furthermore, there are companies that offer specific Intellectual Property (IP) cores which 

could be utilized to shorten the overall development and testing cycle. Some well-known vendors for 

FPGA devices include Actel Corp, Altera Corp, Atmel Corp, Lattice Semiconductors Corp, Leopard 

Logic Inc, QuickLogic Corp and Xilinx Inc. 

The selection of the FPGA development board was based on several considerations. The key factor 

was the FPGA core. As outlined in Section 1.4, the defined tasks for the selected FPGA include 

acquiring data from the ADCs, performing a series of FFT-oriented data processing, and transmitting 

the result through a wireless link to a base station. The desired low-cost and the availability in a 

development board in a proper size narrowed the choice to either a Virtex-II Pro or Spartan-3 FPGA 

based system board. Other features, such as a moderate level of board complexity and future 

extendability using an embedded microprocessor made the low-level Virtex-II Pro based-system board 

the final choice. Its price was comparable to that of an off-the-shelf microprocessor development board 

that has been successfully used for structural health monitoring in Lynch, et al. (2004). 

Fig. 5(a) illustrates the selected FPGA development board containing a Xilinx XC2VP4-5FG456C 

FPGA (Mem 2004) as the system core. A photograph of the entire FPGA-based smart wireless sensing unit 

is shown in Fig. 5(b) in addition to the one in Fig. 4(a2), while the details will be presented later in 

Section 3. The FPGA product name denotes a Virtex-II Pro FPGA (XC2VP4), capable of operating at    

-5 speed grade (speed grade ranges from -5 to -7, with -7 being the best), housed in a Fine-Pitch Ball 

x··
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Grid Array (FPBGA) package with 456 pins. The FPGA itself consists of an embedded Harvard 

Architecture based PowerPC processor block (Xil 2004c) capable at operating up to 400 MHz. The 

system board has a 100 MHz low-voltage transistor-transistor logic (LVTTL) oscillator clock that 

drives the FPGA. Other important features of the board that were utilized for this study are an RS232 

port, a 50-pin user I/O connector providing 64 user-accessible I/O lines, a PC4 JTAG programming/

configuration port, and user LEDs (see Kapoor, et al. 2005 for details).

2.3. FPGA programming environment

Programming an FPGA basically encompasses configuring the available FPGA hardware to accomplish a 

specific task. The FPGA’s programming directly implements the desired logic functions and the 

required interconnections. VHDL and Verilog are the two hardware descriptive languages that are available 

to the designers for programming FPGAs. They offer the least amount of programming abstraction, therefore 

they can be considered equivalent to assembly language that is used for programming microprocessors.

To reduce the development time associated with implementing FPGA-based system designs, 

manufacturers provide high-level programming abstraction. Core Generator (Xil 2004e) and System 

Generator (Xil 2004f) are examples of such options. In this study, Core Generator was used for the 

ADC interfacing, while System Generator was utilized to implemented all the proposed DSP algorithms

shown in Fig. 4(b) (Kapoor 2005). Noteworthy is that System Generator is built upon a MATLAB 

Simulink (Mat 2005) design environment, where a designer can completely create a FPGA-based DSP 

design in Simulink by using Xilinx provided block-sets and then convert the design into a suitable 

format for downloading it into the FPGA. By using System Generator, hardware description languages 

like VHDL or Verilog were not used to develop the proposed DSP algorithms, rather they were used for 

a limited scope in this study (see Section 4) following Objective #3 of this study stated in Section 1.4.

3. Hardware implementation

As shown in both Figs. 3(b) and 4(a), the hardware for the proposed wireless sensing unit can be 

Fig. 5 (a) Prototyping FPGA board based on Xilinx Virtex II Pro FPGA, and (b) overall hardware design
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functionally categorized into analog sensors, an FPGA-based processing unit and a radio transceiver. 

The FPGA-based wireless unit was designed to accommodate any analog sensor with an output voltage 

ranging from 0 to 4 V. In this project, it was interfaced to two uniaxial ± 5 g accelerometers from 

Analog Devices for the purpose of sensing accelerations at the base (i.e. Channel 0) and floor (i.e. 

Channel 1) levels of the model structure. The FPGA-based processing unit consists of multiple Analog-

to-Digital Converters (one 16-bit ADC per channel), an FPGA and an RS-232 converter, as shown in 

Fig. 3(b). Overall, the analog signals from the sensors were digitized by the ADCs and relayed to the 

FPGA. Data was then processed by the FPGA and the result was passed onto the RS-232 converter, 

which forwarded it to the radio transceiver for transmission to a base station. Challenges and solutions 

in selecting the off-the-shelf components and interfacing them together to perform the defined tasks are 

elaborated in the rest of this section. 

3.1. Selection of ADCs: CMOS vs TTL 

Two main factors were involved in the selection of an Analog-to-Digital Converter (ADC) in this 

study: the choice of either a serial or parallel interface for communication between the ADC and the 

FPGA, and the operating voltage. As detailed in Kapoor (2005), the large number of interface lines 

available through the 50-pin I/O connector enabled the adoption of a parallel ADC interface to avoid 

the more complicated design requirements of a serial interface. The second factor was caused by a 

unique interfacing concern in this study: modern FPGAs use low-voltage-logic Input/Output standards 

such as Low-Voltage Transistor-Transistor Logic (LVTTL) or Low-Voltage Complementary Metal-Oxide

Semiconductor (LVCMOS). The operating range for these standards is 0 to 3.3 V. However, the output 

from the selected analog sensors ranges from 0 to 5 V. 

An ADC with independent reference voltage (Vref) and supply voltage (Vss) was desired so that Vref

could be set close to the maximum voltage for the analog sensing range while still retaining Vss= 3.3 V 

(for communication with the FPGA). It was found that the MAX1165 (Max 2004a) by Maxim Dallas 

fitted these requirement perfectly, with an independent Vref and Vss. Furthermore, it had a 16-bit parallel 

bus interface, and its maximum sampling rate of 165 KSPS was found to be adequate for this 

measurement application. The only drawback of using this ADC was that it lacked an internal 

multiplexer for the input analog channel, thus limiting the number of analog sensing channels to one. 

This deficiency was overcome by using multiple ADCs corresponding to the number of channels 

required. A custom printed circuit board (PCB) was developed for this sensor unit to house the external 

ADCs as shown in both Figs. 4(a2) and 5(b). Four separate ADCs were employed to digitize the analog 

signals from the accelerometers (the two will be used for future expansion). These four ADC shared a 

common 16-bit wide databus, but had individual sets of control lines. The digital and analog voltages of 

3.3 and 5.0 V respectively, were supplied by the FPGA board. All these signals and voltages were 

connected to the FPGA board using a 50-pin connector on the ADC board through a 50-wire ribbon 

cable. 

3.2. Off-the-shelf radio

A MaxStream OEM radio board with a carrier frequency of 900 MHz (Max 2004b) was adopted in 

this study. This selected radio uses an RS-232 interface for communication and data transfer from the 

host controller (i.e. the FPGA at the client side and the computer at the server side). Frequency hopping 

spread spectrum (FHSS) modulation technique is employed by the radio, which provides better immunity 
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from radio interference as compared to other available radios (or radio modules) operating on single 

frequencies. Furthermore, the radio is able to form a transparent serial link over the air creating a virtual 

wired connection and thus hiding the complexity usually involved in creating and managing a wireless 

data transfer link. This conceals the issues of handshaking, error detection and correction and frequency 

management. Besides using a radio board which incorporates the RS232 protocol, separate radio 

modules can be directly interfaced to the FPGA, similar to the case of a microprocessor-based design 

(Lynch, et al. 2004).

3.3. Hardware interfacing

Details on interfacing the selected ADC to the FPGA are documented in Kapoor (2005). Overall, the 

manufacturer recommended details were followed except making 3.3 V as the input digital voltage 

since the selected FPGA follows LVCMOS standards. The ADC internal referencing has been set to 

4.096 V by the manufacturer, therefore the analog sensing voltage range is 0 to 4.096 V. Also, precise 

timing and waveform of the the ADC Chip-Select (CS) and Read/Convert (R/C) signals, are critical to 

the proper operation of the ADC according to the timing diagram of the selected ADC (Max 2004a). As 

detailed in Kapoor (2005), two shift registers were employed to generate these control signals. The 

contents of these registers were sequentially shifted out (starting from the least signicant bit) at rate of 

1.6 KHz to generate the required signals.

In terms of the radio interface, two available pins on the RS-232 port on the selected FPGA development 

board, namely Transmit Data (TD) and Receive Data (RD), were utilized in the hardware design, while 

an MAX3221 on the board was used as the RS-232 driver (Mem 2004). This is required because the 

FPGA’s input/output data lines operate on a LVCMOS voltage level (i.e. 0 to 3.3 V), whereas the RS-

232 protocol requires the voltage level of ± 12 V for data communication (Kapoor 2005).

4. Software implementation

To meet the dual Objectives #3 and #4 specified previously in Section 1.4, namely, using an off-the-

shelf high-level abstraction tool and working with a low-cost, non-high-end FPGA, the capacity of the 

selected low-cost FPGA and the demand from various algorithms and execution models (i.e. parallel vs 

sequential) is examined in Section 4.1. Based on this analysis, an overall design guideline was obtained 

to increase the overall throughput of the design (i.e. the computational efficiency) while balancing the 

available resources including slices, multipliers and block RAMs to implement the proposed scope of 

software development outlined in Section 2.1 and illustrated in Fig. 4(b).

4.1. Design constraints and guidelines

The available resources in the selected low-cost FPGA are summarized in Tables 2; note that the 

FPGA on the selected low-cost development board is next to the smallest FPGA in the V2P family. 

Various device options are summarized as follows: 

4.1.1. FFT

Since the core of the proposed DSP is FFT, the resources required for performing FFT using System 

Generator under three different options are listed in Table 3. Here the terms of “Radix-2” and “Radix-
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4” are two of the variations of the FFT. In short, Radix-2 refers to the commonly seen implementation 

of the DFT of data points of a power of 2 as originally introduced in the Cooley-Tukey algorithm as 

appeared in textbooks (such as Oppenheim, et al. 1999). Radix-4 has an improved computational 

efficiency with the DFT of data points of a power of 4. The number of slices required for a 1024-point 

FFT Radix-4 (streaming mode) exceeds the selected FPGA capacity. Memory capacity is also 

exhausted as 27 out of 28 Block RAMs are consumed, thus there are not sufficient slices and/or 

memory available for implementing other proposed functions such as windowing, peak detection as 

well as ADC/radio interfaces. For the case of a 1024-point FFT Radix-4 (block mode), the resources 

are just enough for implementing the FFT, however there might be insufficient slices/memory for other 

proposed functions. An FFT Radix-2 implementation thus seems the most suitable option for the 

selected FPGA with sufficient margins.

4.1.2. Windowing function

To implement a 1024-point windowing function using fully combinational logic as in Fig. 2(b), 1024 

multipliers would be needed to fulfill a concurrent operation in one clock cycle. According to Table 2, 

even the largest Virtex II Pro FPGA would not be sufficient to meet such a design requirement. 

Therefore, a designer needs to allocate a specific number of multipliers and then pipeline the data 

accordingly. Three design flows were considered for implementing the windowing function as detailed 

in Kapoor (2005), and a hybrid combination of serial and parallel arrangement of data flow was 

obtained for 1024-point windows with 50% overlapping as will be further presented in Section 4.2.

Table 2 Virtex II Pro (abbreviated as V2P in the table) device parameters (Xil 2004c). See Fig. 1 and Section 1.2 for 
some of the key terms, refer to Xil (2004d) for the rest of the terms

Device XC2VP2 XC2VP4 XC2VP100 

Rocket I\O transceivers block 4 4 20 

Number of PowerPC processor block 0 1 2 

Number of logic cells 3,168 6,768 99,216 

Number of slices 1,408 3,008 44,096 

Max distributed RAM (Kb) 44 94 1378 

18×18 multiplier blocks 12 28 444 

18 Kb block RAM 12 28 444 

Max block RAM (Kb) 216 504 7992 

DCM 4 4 12 

Max user I\O pads 204 348 1164 

Notes the smallest FPGA
in V2P family

adopted in this
study 

one of the largest FPGA
in V2P family

Table 3 Resource requirements for implementing 1024-point complex FFT using one Xilinx System Generator 
FFT block (Xil 2004a) and available resources from the selected FPGA

Required number for
specified implementation 

FFT Radix-4
streaming mode

FFT Radix-4
block mode

FFT Radix-2
Available number from

the selected FPGA

Number of slices 3,840 2,849 1,262 3,008

18×18 multiplier blocks 18 18 6 28

18 Kb blocks RAM 27 11 5 28
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4.1.3. Data length
Kapoor (2005) provides an example of the calculation of block RAM requirements for this software 

design assuming a data length of 4096 points per analog channel with eight windows of 1024-point 

each and a 50% overlapping between windows. It was found that this data length would use up all the 

available block RAMs thus leaving no margins for other software implementations such as the ADC/

radio interfacing. Therefore, the design was finally implemented with the capability to analyze 2048 

collected data points per channel, consuming 23 out of 28 block RAMs. The windowing procedure uses 

four windows of 1024-point length with 50% overlapping. 

4.1.4. Division or averaging

For the ease of implementation using an FPGA, it is desirable to handle divisions/averaging by a 

number that is a power of 2 (e.g. 2, 4, 8, 16 etc). For these numbers, the process of division in an FPGA 

is the most efficient by simply right-shifting the data bits (Roth 1998) rather than applying additional 

algorithms (e.g. Paschalakis and Lee 2003). 

4.2. Channel subtraction and windowing function

Following the scope illustrated in Fig. 4(b), the software design flow began with the acquisition of 

two channels of data from the analog sensors using the ADC interfacing algorithm. This logic, 

developed using VHDL, is limited to the collection of a total of 2048 points per channel as discussed 

above. The collected data with 16-bit resolution was directly passed from the ADCs into the channel 

subtraction algorithm, which subtracted Channel 0 from Channel 1 data with zero latency. The result 

was then stored in a 2048 point 16-bit block RAM. After channel subtraction, the data was passed onto a 

windowing algorithm. This design of these two last algorithms was carried out using a Matlab 

Simulink-based System Generator. 

To perform FFT on a non-periodic data set of finite length, it is imperative to first apply a windowing 

function on the incoming data from the ADC to avoid the Gibb’s phenomenon (Hamming 1989, 

Oppenheim, et al. 1999). Many windowing functions are available, here a Chebyshev windowing function

was selected due to its high relative side lobe attenuation and good main lobe width. Other windowing 

functions can be conveniently programmed into this software design under the Matlab Simulink-based 

System Generator.

Applying a windowing function to the subtracted data is the first situation in this study, where an 

FPGA manifests its superiority. In stead of using a serial execution as in microprocessor-based wireless 

sensing unit (see Fig. 3(a)), implementing such a function in an FPGA would only require the multiplication

of two block RAMs with one containing the data, and the other, the windowing coefficients (Hun 2003) 

as illustrated in Fig. 3(b). As presented in Section 4.1, an execution involving only partial level of 

parallelism was adopted in this study as a result of the limited resources of the selected low-cost FPGA 

development board. Even then, the computational efficiency was improved many times as compared to 

a sequentially implemented option. In detail, four block RAMs were created from the parent block 

RAM after the channel subtraction. Each of these 1024-point 16-bit block RAMs were filled with data 

from the parent RAM in a sequential manner to form four windows of 1024-point length with 50% 

overlapping, where the last segment was zero padded to make up the size of 1024-points. Four 

multipliers were then applied in a parallel fashion to these four data block RAMs. This implementation 

consumed only 1024 clock cycles to complete the windowing, instead of 4096 cycles required by a 

sequentially implemented option. 



Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products 81
4.3. Fast Fourier Transform (FFT) and calculating magnitude

The windowed data was then forwarded to an FFT algorithm, which performed FFT and subsequent 

squaring and addition of real and imaginary components on the four discrete windowed blocks using 

System Generator. This is the second situation in this study, where the option of FPGA manifests its 

superiority. One Xilinx System Generator block named “FFTx” was adopted in this design, which has 

been configured to use minimum FPGA resources by operating a 1024-point FFT Radix-2 at a block 

mode.

From Table 3, it can be seen that a single instantiation of this FFT block would consume about 40% 

of the available slices in the selected Xilinx XC2VP4 FPGA, therefore a parallel implementation of 

this block couldn’t be carried out in this study, rather this block had to be utilized sequentially on the 

four windowed block RAMs. The output of each FFTx block contained the real and imaginary parts, 

and they were stored in separate block RAMs. For the purpose of calculating the magnitude of these 

FFT data, these real and imaginary data were then squared (by multiplying with themselves) and then 

added with each other and averaged. The result was again stored in another block RAM for further 

processing.

4.4. Peak detection algorithm

As shown in Fig. 4(a1), a Single-Degree-of-Freedom (SDOF) building system was used for validating the 

developed FPGA-based smart sensing unit. A single strong peak in the frequency data of the relative 

acceleration was thus expected in this proof-of-concept study. To implement the peak detection algorithm,

a simple loop was implemented using a comparator. The loop cycled through the data block RAM and 

compared the current data value with a stored value. The stored value was updated to attain the maximum

Fig. 6 A sample Matlab Simulink-based System Generator model used to implement the proposed peak detection
algorithm. This Simulink block diagram was entirely constructed using Xilinx System Generator block 
sets. The data was feed through “Gateway In”, and a scope was used to take the outputs. The key 
component, the comparator, was placed right on the center line of the diagram to identify the maximum 
frequency magnitude
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data value as the loop progressed, meanwhile a register was used to store an integer (the location 

according to the maximum data value), which can be eventually translated into the frequency using the 

Nyquist frequency. For a 1024-point FFT and 100 Hz sampling rate adopted in this study, for example, 

a register of 512 is related to the Nyquist frequency of 50 Hz. The content of this frequency register was 

passed onto radio interface algorithm, and then transmitted to the base station and saved under the 

GUI. The initial value of the frequency register could be initialized as zero, however it was initialized 

as 19, corresponding to a frequency of ×19 = 1.86Hz to filter out the low-frequency noise for the 

specific building model used in this study. 

To showcase the convenience of using System Generator to create the DSP design flow specified in 

Fig. 4(b), Fig. 6 presents a Matlab simulink environment rather than a raw VHDL code to implement 

the proposed peak detection algorithm. 

5. Validation

5.1. Simulation

Throughout the software implementation, simulations were performed to validate the proper functioning

of each design algorithm (see Fig. 4(b)). In particular, Matlab Simulink-based Xilinx System Generator 

was used throughout to validate each proposed DSP algorithms (Kapoor 2005). A typical simulation 

performed to validate the implemented channel subtraction algorithm and windowing algorithm is 

presented in Fig. 7. This figure was originally generated by System Generator and then segmented into 

three stages column-wise, numbered and commented for legibility. 

50

512
---------

Fig. 7 Simulation for design related to channel subtraction, creation of windowing blocks and windowing. This 
plot was originally generated by System Generator, segmented and commented for legibility
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The simulation began by executing Stage I, channel subtraction. Data retrieved from the ADCs are 

referred to as Channels 0 and 1. Two sine waves at Row A and B with a phase difference of π /2 were 

used as test signals. The two channels of data were subtracted on-the-fly (i.e. at real-time) and were 

stored in a 2048-point block RAM as shown in Row C.

As previously discussed in Section 4.1, four 1024-point windows with 50% overlap were adopted 

in this design in a sequential manner. Stage II of this simulation shows an intermediate step in 

creating these four data blocks. Rows J, H, F, and D represent the contents of these four data blocks 

following the time sequence. Although this process was sequential, the routing of data from the 

parent block was implemented in a parallel fashion so as to consume less clock cycles. As a result, 

only 2048 clock cycles were consumed versus a minimum of 1024 × 3 + 512 = 3584 clock cycles in 

a fully sequential design. 

At Stage III shown in Fig. 7, Rows J, H, F, and D show the four 1024-point data blocks ready for 

windowing, while Rows K, I, G, and E show the corresponding four 1024-point windowed data blocks. 

The latter data blocks were then be stored for the subsequent FFT algorithm. As mentioned in Section 

4.2, four multipliers were used in the windowing algorithm to consume only 1024 clock cycles versus 

4096 clock cycles in a fully sequential design. 

5.2. Laboratory testing

Before laboratory testing, the “pass through” mode defined in Section 2.1 was conducted to validate 

the proper functioning of the hardware interfacing of the external ADCs to the FPGA and the radio to 

the FPGA (Kapoor 2005). After a completed design was veried by all the simulations, it was converted 

into an NGC-Black Box, which was later incorporated into the VHDL wrapper code. This wrapper 

code accomplished the task of communicating with the ADCs and the radio. The entire design was then 

converted into a bit stream, a proper format for direct programming the FPGA. According to the two 

targeted modes of operations, there were two sets of bit streams obtained in this study, one was for the 

“pass through” and the other, the “smart” mode. Laboratory testing was performed on these two modes 

respectively. 

The test setup is shown previously in Fig. 4(a1), where the height of the first floor mass can be 

adjusted through a simple clamping mechanism to conveniently vary the resonant frequency of the 

relative motion. Throughout this study, a periodic swept sine signal was used to drive the shaking table 

with a frequency varying from 100 mHz to 20 Hz linearly within 15 seconds; only the steady state 

signals were collected and the sampling rate was fixed as 100 Hz in the testing. A wall socket was used 

throughout this study to power the FPGA-based wireless sensing unit in this indoor testing validation 

for this proof-of-concept study.

Two testing configurations involving different heights of the floor mass were used to validate the 

developed FPGA-based smart wireless sensing unit. The floor mass was first fixed at the full height of 

the columns as shown in Fig. 4(a1). Under the “pass through” mode, the collected time histories are 

presented in Fig. 8(a). The power spectral density of the relative acceleration was plotted under Matlab 

using Welch’s method with four windows and 50% overlapping. This resonant frequency (i.e., the 

peak) was found to be 9.76 Hz as shown in Fig. 8(b). Immediately after the “pass through” mode, the 

FPGA was re-programmed to operate at the “smart” mode. Three consecutive readings of the frequency

register were identifically 100, which indicated a resonant frequency of ×100 = 9.76 Hz.

The floor mass was then lowered to increase the stiffness of the system, which in turns led to a 

higher resonant frequency. Fig. 9(a) presents the collected time histories under the “pass through” 

50

512
---------
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mode, while Fig. 9(b) shows the resonance frequency of 13.18 Hz calculated with Matlab Welch’s 

method as before. Under the “smart” mode, three consecutively collected readings were 135, 135, 

and 134, which corresponded to 13.18 Hz, 13.18 Hz and 13.08 Hz, respectively, to make an average 

value of 13.15 Hz.

The consistency between Matlab and the FPGA processed results validated the proper functioning of 

the developed FPGA-based smart sensing unit. Also, these frequencies values compare favorably with 

those obtained from the same building models but using a 16-bit “wired” National Instrument data 

acquisition card and another 16-bit microprocessor-based wireless sensing unit developed by the authors

and their coauthors in another study (Pei, et al. 2006b).

Fig. 8 (a) Collected time histories from Channels 0 and 1 under a “pass through” mode from the SDOF model 
at the full height of the first floor mass, and (b) power spectral density plot of Part (a) processed with 
Matlab Welch’s method

Fig. 9 (a) Collected time histories from Channels 0 and 1 under a “pass through” mode from the SDOF model 
at a shortened height of the first floor mass, and (b) power spectral density plot of Part (a) processed 
with Matlab Welch’s method. 
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6. Discussion

For the FPGA-based smart wireless sensing unit developed in this study, the major limitations were 

imposed by the limited resources in the selected FPGA to maintain a low cost for a practical application. 

Longer data length (i.e. longer sampling time), higher sampling rate, and the implementation of frequency

response function through a quotient function and even an autocorrelation function for handling real-

world data (especially those with noise) are a few among the future extensions of this proof-of-concept 

design. It is envisioned that higher-end FPGAs and their development boards at a reduced cost will be 

available following the fast growing FPGA technology, thus these improved functions will be achieved 

still at a low cost. 

Even though a low-cost and non-high-end FPGA off-the-shelf product has been adopted in this study 

to match the hardware cost of microprocessor-based off-the-shelf products used for structural health 

monitoring, overall computational efficiency has been greatly improved as compared with its 

sequentially implemented option in a microprocessor. These improvements when performing 1024-point 

FFT with 50% overlapping on a data set of 2048 points are mainly from, as presented previously, (1) the 

faster routing of the data from the ADC to the windowing algorithm (from 3584 to 2048), (2) the reduced 

number of clock cycles when implementing windowing (from 4096 to 1024), and (3) adopting the Xilinx 

FPGA-based “FFTx” algorithm, which is expected to be a huge gain (Xil 2004d). Fig. 2 gives a very 

simplied conceptional comparison of computational efficiency between a microprocessor- and an 

FPGA-based execution in terms of a fully sequential vs parallel execution mode. Other evidence is also 

available to show the improvement that commercially available FPGAs can bring in versus the fastest 

commercially available microprocessors in performing typical DSP algorithms (e.g. Xil 2004d) and 

certain bit-level communication processing (Wentzlaff and Agarwal 2004). The advantage in    

computational efficiency demonstrated in this study validates that these trends are true even in a non-

high-end FPGA.

As a proof-of-concept study focusing on the hardware and software implementation related to FPGA-

based smart wireless sensing for structural health monitoring, this study did not consider a mechanism 

to identify and/or address possible data loss. Since the reliability issue related to wireless data transmission is 

critical as studied by the authors and their co-authors (Pei, et al. 2006a), future versions of this FPGA-

based wireless sensing unit or FPGA-based wireless sensor network should implement packetization 

protocols to make the data delivery performance robust to better serve the practical needs in structural 

health monitoring. 

Many other topics for future improvement and exploration that can be built on this proof-of-concept 

study. FPGA related technologies are rapidly growing and power efficiency has been a topic that is 

drawing considerable attention and research efforts. The state-of-the-art low power FPGA products and 

power-aware design should also be explored for structural health monitoring.

7. Conclusion

An FPGA-based smart wireless sensing unit with the ability to perform onboard several FFT-related 

DSP algorithms has been developed at a cost comparable to a microprocessor-based counterpart. Hardware 

and software implementations related to the unit have been presented in this paper; in particular a 

Matlab Simulink-based high-abstraction tool for programming FPGAs has been explored and proved to 

be effective. Simulations and laboratory shaking table tests were carried out to validate the proper 
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functioning of the sensing unit in both “pass-through” and “smart” modes. Even though a low-cost 

and non-high-end FPGA off-the-shelf product has been adopted in this study, overall computational 

efficiency has been improved many times in comparison with a sequentially implemented option as 

in a microprocessor. The proof-of-concept study showcases the authors’ vision that the rapidly 

growing FPGA technology in off-the-shelf products represents an invaluable opportunity to 

implement a wide range of system identification and damage detection algorithms for local data 

interrogation and smart sensing at drastically improved computational efficiency (and flexibility, and 

possibly, power efficiency).
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