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1. Introduction 

 
An increasing number of long-span bridges have been 

constructed with the rapid development of building material 
and engineering technology. However, these bridges in 
service may be seriously damaged and cause great 
economic loss under the strong earthquake. Therefore, the 
research of bridge structural damage identification 
technology has become an increasingly significant research 
topic (Fujino et al. 2005, Li et al. 2013, An et al. 2019, Tjen 
et al. 2020). In recent years, a large number of bridge 
structural damage identification methods based on dynamic 
characteristics have been proposed (Siringoringo and Fujino 
2006, Kaloop and Li 2011, An et al. 2015, Xu et al. 2018). 
Generally speaking, the current approaches used to identify 
structural damage can be divided into two categories. The 
first one is based on the known or measured excitation and 
dynamic responses of the structure (Maia et al. 2003, Liu et 
al. 2009). The other one is only based on the monitored 
responses data of the structure (Noori et al. 2018, Yan et al. 
2019). Compared to the first category of methods, the 
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methods based on the responses only do not need the 
information of excitations as external excitations maybe 
unknown and difficult to be measured, e.g., wind and 
seismic excitations. 

To eliminate the influence of unknown excitation, 
transmissibility function (TF) has attracted attentions and 
been utilized in damage identification of linear structural 
systems. TF-based methods can avoid the dependence on 
the system inputs, which are only used as the power sources 
and do not need to participate in the identification process. 
Maia et al. (2007) proposed the detection and relative 
damage quantification indicator (DRQ) as a reliable damage 
detection indicator, which was calculated through 
evaluating integral difference over a fixed frequency band 
between the intact transmissibility and damaged 
transmissibility. Maia et al. (2011) also developed a 
response vector assurance criterion (RVAC) for damage 
detection by considering the correlations of the TF. Chesné 
and Deraemaeker (2013) made a critical review of TF 
which highlighted the importance of the choice of the 
frequency bands and the dependency on the force location. 
Li et al. (2015) proposed a new method using the weighting 
factor to increase the weight of resonance. The proposed 
indicator had better performance than previous methods, but 
the frequency also needed to be chosen for each case. Zhu 
et al. (2015) proposed a decentralized structural damage 
detection procedure using TF. Zhou et al. (Zhou et al. 2015, 
2016, Zhou and Wahab 2016, 2017) suggested combining 
the TF with the distance measure such as Mahalanobis 
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distance to detect structural damage. Yan et al. (2019) 
recently presented a literature review that discussed existing 
studies on TF-based system identification. However, 
damage identification based on TF is greatly influenced by 
the choice of the frequency band, as inappropriate selection 
of frequency band may lead to wrong results. Besides, the 
TF-based indicator is not sensitive to minor local damage 
because Fourier transform is a global transformation (Fan et 
al. 2013). 

Wavelet packet transform (WPT) has advantage over the 
traditional Fourier analysis of signals because of the time-
frequency multi-resolution property, which makes WPT 
more sensitive to local damage (Noori et al. 2018). 
Therefore, WPT has been employed for structural damage 
identification and proved to be an effective method for 
obtaining damage features. Sun and Chang (2002) proved 
that the wavelet packet energy is sensitive to structural 
damage and can be used for damage assessment. Ren et al. 
(2008) studied a signal-based damage identification method 
using the wavelet packet energy changes to shear 
connectors as the damage feature. Based on wavelet 
transform, Young Noh et al. (2011) developed damage-
sensitive features and theoretically derived the relationship 
between the wavelet energies and structural parameters. 
Jiang and Chen (2012) proposed a WPT component energy 
index to establish the slope vector and the curvature vector 
for damage detection. Yan and Li (2012) developed a new 
damage detection algorithm named natural excitation 
technique based on wavelet packet energy for the 
continuous beam. Wang and Shi (2018) proposed the energy 
curvature difference (ECD) index based on WPT to identify 
the damage in structures. Moreover, the strain data were 
transformed into a modified wavelet packet energy rate 
index to identify the damage location and severity in Noori 
et al. (2018). However, the above methods assumed the 
impulse excitation acting on the structures, which is not 
applicable when excitations are different before and after 
the damage occurs. 

In this study, TF and WPT are fused to overcome their 
respective drawbacks. By using TF, the influence of 
external excitation is eliminated. Moreover, inverse Fourier 
transform of TF is conduced to obtain the virtual time 
domain signals, the frequency bands selection can be 
avoided. Besides, WPT is more sensitive to detailed local 
variation than global Fourier transform, so it is employed to 
decompose the virtual time domain signals to extract 
structural damage feature. 

In recent years, data-driven and machine learning (ML) 
methods for structural health monitoring have received 
great research attentions. Bao et al. (2019) presented an 
excellent review on the state of the art of data science and 
engineering in structural health monitoring. Recently, Bao 
and Li (2020) have shared light on principles for machine 
learning (ML) paradigm for structural health monitoring 
with their pioneering methodologies and successful 
examples. Among the various ML approaches, support 
vector machine (SVM) has been widely accepted as 
effective tool for feature extraction and damage detection 
(Diao et al. 2018). SVM is a supervised learning technology 
based on Vapnik-Chervonenkis theory (Cortes and Vapnik 

1995), which could overcome the shortcomings of neural 
networks such as local minimization and insufficient 
statistical ability. Moreover, SVM is especially suitable for 
small size samples (Luts et al. 2012). Gui et al. (2017) 
proposed three optimization algorithms for damage 
detection using SVM, in which two feature extraction 
methods based on time series data were selected to obtain 
effective damage features. Dushyanth et al. (2016) 
proposed a two-step method based on SVM that can 
significantly improve the estimation accuracy of defect 
locations. This method required relatively fewer training 
samples compared with the artificial neural network 
method. Diao et al. (2018) proposed a damage identification 
method based on TF and SVM, and adopted the offshore 
platform under white noise excitation as an example to 
prove its efficiency. 

In this paper, a data-driven approach is proposed for 
detecting structural damage under unknown seismic 
excitations using SVM based on TF and wavelet packet 
energy. First, TF is used to remove the effects of different 
external excitations. Then, the inverse Fourier transform is 
implemented on the TFs to obtain the virtual time domain 
signal to further eliminate the influence of frequency bands. 
WPT, which has the ability to subtle damage information 
acquisition, is conducted on the virtual time domain signal 
to extract the features. Finally, the extracted features from 
structural responses under ambient excitations are used for 
training SVM, and the extracted features from structural 
responses under unknown seismic excitation are used for 
damage alarming and localization by the trained SMV. The 
numerical simulations of structural damaged identification 
of a beam-type bridge and a cable-stayed bridge under 
unknown seismic excitation are studied to validate the 
proposed approach. 

 
 

2. Wavelet packet energy based on transmissibility 
functions 
 
2.1 Transmissibility Function (TF) 
 
TF is defined as the ratio between the Fourier transform 

of responses from two measurement points. Herein, TF 
under seismic excitation is studied. As for an n-DOFs 
system under seismic excitation 𝑥 𝑡 , the motion equation 
can be described as: 

 𝐌𝐱 𝑡 𝑪𝒙 𝑡 𝑲𝒙 𝑡 = 𝑴𝑰𝑥 𝑡  (1)
 

where M, C, and K represent the mass, damping, and 
stiffness matrices of the system, respectively, 𝑥 𝑡  is the 
displacement response vector, 𝐈  denotes the influence 
vector of seismic input. When the structural initial condition 
is static, the motion equation could be transformed to the 
frequency domain 

 𝐌𝜔 𝐂𝜔 𝐊 𝒙 𝜔 = 𝐌𝐈𝑥 𝜔  (2)
 𝒙 𝜔 = 𝑯 𝜔 𝐌𝐈𝑥 𝜔 ; 𝑯 𝜔 = 𝐌𝜔 𝐂𝜔 𝐊  (3)
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Each line of the Eq. (3) in the frequency domain can be 
represented as 

 𝑥 = 𝐻 𝑚 𝐼 𝑚 𝐼 ⋯ 𝑚 𝐼 𝑥           𝐻 𝑚 𝐼 𝑚 𝐼 ⋯ 𝑚 𝐼 𝑥 ⋯          𝐻 𝑚 𝐼 𝑚 𝐼 ⋯ 𝑚 𝐼 𝑥      = 𝐻 , 𝜔 𝑚 , 𝐼 𝑥  

(4)

 
where 𝑚  is the (i,j)th element in matrix M, 𝐼  is i-th 
element in vector I. The TF 𝑇 , 𝜔  can be calculated as 

 𝑇 , 𝜔 = 𝑥 𝜔𝑥 𝜔 = ∑ 𝐻 , 𝜔 ∑ 𝑚 , 𝐼 𝑥∑ 𝐻 , 𝜔 ∑ 𝑚 , 𝐼 𝑥              = ∑ 𝐻 , 𝜔 ∑ 𝑚 , 𝐼∑ 𝐻 , 𝜔 ∑ 𝑚 , 𝐼  
(5)

 
where 𝑥 𝜔  and 𝑥 𝜔  are the outputs at DOF i and DOF 
j respectively; 𝐻 , 𝜔  and 𝐻 , 𝜔  are the frequency 
response functions at DOF i and DOF j when excitation at 
DOF p, respectively. 

It can be noted that the 𝑇 , 𝜔  is not influenced by the 
seismic excitation 𝑥 𝜔 . Therefore, the TF can eliminate 
the influence of different seismic excitations and only 
depends on the structural characteristics. 

Moreover, the strain is more sensitive to the small 
deviation in the structural responses than displacement 
because it involves the second spatial derivative of 
displacement (Noori et al. 2018). Strain transmissibility 
which is defined as the ratio of strain response spectra has 
revealed a better performance compared to traditional 
transmissibility (Cheng et al. 2017). In this study, strain 
responses of two adjacent DOFs are used to calculate 
transmissibility. For beam element as shown in Fig. 1, the 
shape functions of the corresponding DOFs of beam 
element is 𝑁 = 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁  and 𝑥  is the corresponding displacements of element i. 𝑢, 𝑣  denotes the location of a strain gauge deployed in 
the beam element, 𝜀 is the measured strain. The strain 𝜀 is 
proportional to curvature, and the TF 𝑇 , 𝜔  of strain 
could be expressed as 

 𝑇 , 𝜔 = 𝜀 𝜔𝜀 𝜔 = 𝐹 𝜀 𝑡𝐹 𝜀 𝑡 = 𝐹 𝑣 ⋅ 𝜅 𝑡𝐹 𝑣 ⋅ 𝜅 𝑡  
              = 𝐹 𝑣 ⋅ 𝑁 𝑥 𝑡 ′′𝐹 𝑣 ⋅ 𝑁 𝑥 𝑡 ′′  
             = 𝑣 ⋅ 𝑁 ′′𝐹 𝑥 𝑡𝑣 ⋅ 𝑁 ′′𝐹 𝑥 𝑡 = 𝑁 ′′ 𝑥 𝜔𝑁 ′′ 𝑥 𝜔  

(6)

 
where 𝐹 ⋅  denotes the Fourier transform, 𝜅  is the 
curvature, which is also the second derivative of deflection, 𝑣 is the distance from the surface to the central axis as 
depicted in Fig. 1. Same as the TF of displacements in Eq. 
(5), 𝑇 , 𝜔  is not influenced by the seismic excitation 𝑥 𝜔 . Moreover, the TF 𝑇 , 𝜔  of strain is directly 
related to structural health state since = 𝑇 , 𝜔  is the 

Fig. 1 Strain in the beam element
 
 

function of frequency response functions as Eq. (5) 
represents. 

For a structure with n measurement points, a 1×(n-1) 
vector can be obtained 

 𝑻 𝜔= 𝑇 , 𝜔 , 𝑇 , 𝜔 , 𝑇 , 𝜔 , ⋯ , 𝑇 , -1 𝜔 , 𝑇 -1, 𝜔 (7)

 
After TF has been obtained, the inverse Fourier 

transform of TF is conducted to obtain the virtual time 
domain signal, namely 𝑻 𝑡 . 

 𝑻 𝑡 = 𝐹 𝑻 𝜔= 𝑇 , 𝑡 , 𝑇 , 𝑡 , ⋯ , 𝑇 , 𝑡 , ⋯ , 𝑇 , 𝑡 , 𝑇 , 𝑡  
(8)

 
2.2 Wavelet packet energy (WPE) 
 
WPT can be regarded as the extension of the wavelet 

transform, which can decompose a signal level-by-level. 
The essence of WPT is to pass the signal through a set of 
high and low frequency filters, and every time of 
decomposition divides the signal into low frequency and 
high frequency components. In this way, after j times of 
decomposition, the original signal will get 2  wavelet 
packet components, and the frequency of the signal is also 
divided into 2  segments. Thus, the WPE of different 
frequency bands can be obtained. The WPE of the vibration 
signal in each frequency band represents the vibration 
characteristic information of the original signal, and this 
energy is very sensitive to structural damage. Therefore, the 
WPE of each frequency band could be used as the damage 
sensitive feature. 

As mentioned before, due to the global nature of the 
Fourier transform, TF is not sensitive to slight local 
damage. But WPT can reflect the local characteristics of 
signals both in the time domain and frequency domain for 
the characteristic of multi-scale and adjustable window 
focus. To overcome the limitations of TF, WPE based on TF 
is proposed in this study, which could eliminate the 
influence of excitation and frequency band, and is sensitive 
to local damage. 

Then WPT is utilized to decompose the virtual time 
domain signal 𝑇 , 𝑡  to get wavelet packet energy as a 
damage feature. 2  wavelet packet components are 
obtained after j levels of decomposition 

 𝑇 , 𝑡 = 𝑇 ,, 𝑡  (9)
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where 𝑇 ,, 𝑡  is the wavelet packet component signal, 
the energy of each wavelet packet component can be 
expressed as 

 𝐸 ,, = 𝑇 ,, 𝑡∞

∞
𝑑𝑡 (10)

 
For time domain signal 𝑇 , 𝑡 , a 1 × 2  vector can 

be obtained 
 𝑬 , = 𝐸 ,, , 𝐸 ,, , 𝐸 ,, , ⋯ , 𝐸 , ,  (11)
 𝛿 , = 𝐄 , 𝐄 ,  (12)
 

where ‖ ‖ means the module of the vector, 𝐄 ,  is 
the WPE result of the intact structure. 

  Thus, the virtual time domain signal 𝑇 , 𝑡 , 
obtained by the inverse Fourier transform of TF between 
two adjacent strain responses in the structure, is 
decomposed by WPT to derive the WPE vector 𝑬 , . 
Then, 𝛿 ,  means the WPE differences between the 
structure to be identified and the intact structure. If 𝛿 ,  

is closed to zero, it means there is no damage between these 
two adjacent points of the structure. If 𝛿 ,  changes a 
lot, it means the existence of structural damage. 
Considering a structure with n measurement points, a 1 × (n 
‒ 1) vector can be acquired as follows 

 𝜹 = 𝛿 , , 𝛿 , , ⋯ , 𝛿 , , ⋯ , 𝛿 , , 𝛿 ,  (13)
 

in which 𝛿 represents the wavelet packet energy difference 
in the structure level. Therefore, when the energy 
differences of all adjacently measured points are close to 
zero, it indicates that the structure is undamaged. 
Otherwise, the structure is damaged. Herein, the vector 𝛿 
is employed as the input of SVM for damage alarming. 

As for the damage localization, a vector Δ ,  is 
defined as 

 

Δ , = 𝐄 , 𝐄 ,  (14)
 

Δ ,  in Eq. (14) reveals the difference of wavelet 
packet energy in the element level, between the structure to 
be identified and the intact structure. If this wavelet packet 
energy difference is very small, it indicates that the element 
is undamaged. Otherwise, the element is damaged. 
Therefore, the vector Δ ,  is used as the input of SVM 
for damage localization. 

 
 

3. Support vector machine (SVM) 
 
SVM was first used for classification and then 

successfully extended to regression analysis by Cherkassky 
(1997). The basic idea of SVM is to construct an optimal 
separating hyperplane by maximizing the boundary between 
two types of data in space and minimizing misclassification. 
This section briefly introduces the basics of SVM. 

The whole process of the SVM is illustrated in Fig. 2. 
Given the training sample set as 𝐷 = 𝒙 , 𝑦 , 𝒙 , 𝑦 ,  

Note. 𝒘: normal vector; 𝒃: displacement term; 𝛾: maximum 
margin; 𝑟: distance from the sample to the hyperplane

Fig. 2 Support vector and margin
 
 … , 𝒙 , 𝑦 , 𝑦 ∈ 1, 1 . 𝒙  represents the attributes 

contained in a sample, 𝑦  represents the corresponding 
category label. 

The basic idea of classification learning is to find a 
classification hyperplane in the sample space based on the 
training sample set, and separate different samples. 

SVM searches for the hyperplane which has the best 
generalization ability with the largest margin under the 
constraints of correct classification. The optimization of the 
solution can be expressed as 

 𝑚𝑖𝑛𝒘, 12 ‖𝒘‖ 𝐶 𝜉  (15a)

 Subject to y 𝒘 𝒙 b 1 , 𝜉 0,i=1,2,...,𝑚. (15b)
 

where 𝜉  is the slack variable and C is the penalty factor. 
By Lagrange multipliers algorithm to solve the dual 
optimization problem as shown in Eq. (14), the nonlinear 
decision function will be yielded 

 𝑓 𝑥 = 𝑠𝑖𝑔𝑛 𝛼 𝑦 𝐾 𝒙, 𝒙 𝑏 ,     𝛼 0 (16)

 
where 𝐾 𝒙, 𝒙  is defined as the kernel function. 𝑠𝑖𝑔𝑛 is 
a sign function, its function is to take the positive and 
negative in parentheses. 𝛼  is the Lagrange multiplier. By 
using this kernel function, it can analyze higher dimensional 
data. 

Library for Support Vector Machines (LIBSVM) is a 
simple, fast and effective software package for SVM 
classification and regression developed by Professor Lin 
Chih-Jen of Taiwan University (Chang and Lin 2001). 
Selecting a suitable penalty factor and kernel function 
parameter for the SVM could enhance their accuracy for 
damage classification (Diao et al. 2018). 

Regarding the optimal selection of SVM parameters, 
there is no recognized best method in the world. The 
Gaussian radial basis function 𝐾 𝑥, 𝑥 =exp 𝑔𝑎𝑚𝑚𝑎‖𝑥 𝑥 ‖  is selected as the kernel 
function. Grid parameter optimization is used to find the 
penalty factor C and the kernel function parameter g 
(gamma) in the numerical example. To effectively estimate 
the accuracy of the models, the Cross-validation (CV) 
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procedure is adopted, which could also prevent the 
overfitting problem (Gui et al. 2017). 

In summary, the flow of the proposed approach is shown 
in Fig. 3. In the structural damage alarming stage, only 
structural responses of undamaged structure under the 
ambient excitation are needed in the training set. The 
measured strain responses are processed through the 
transmissibility function, inverse Fourier transform, and 
wavelet packet energy by Eqs. (7)-(8) and Eq. (11) and Eq. 
(13), subsequently. Then, the vector 𝛿 in Eq. (13) is used 
as the input of SVM model 1 for training. When the 
structure is subjected to the unknown seismic excitation, the 
measured strain responses are processed in the same way, 
and the damage alarming could be predicted by trained 
SMV model 1. In the damage localization stage, only 
structural ambient responses of undamaged structure and 
damaged structure with a single-level one element damaged 
are required in the training set. The measured strain 
responses are processed by Eqs. (7)-(8) and Eq. (11) and 
Eq. (14), subsequently and the vector Δ ,  is used as 
the inputs of SVM model 2 for training. When the structure 
is subjected to the unknown seismic excitation, the 
measured strain responses are processed in the same way, 
and the damage localization can be predicted by trained 
SMV model 2. 

It should be noted that if researchers know the 
suspicious area of damaged elements based on engineering 
experience, only the strains in the suspicious area should be 
measured. Otherwise, the strains of all elements should be 
measured to conduct damage localization. The recently 

 
 

developed distributed strain sensing such as long-gauge 
strain technology can solve the above problem (Huang and 
Wu 2017), and the application of long-gauge strain should 
be investigated in the future. 

 
 

4. Numerical simulations 
 
The structure simulations of a simply supported beam 

and a real bridge model are carried out to demonstrate and 
verify the proposed approach in this section. 

 
4.1 Numerical simulation of the simply supported 

beam 
 
First, a linear and statically determined beam under 

seismic excitation is taken as an example, as shown in Fig. 
4. The length of the beam is 2.8 m. The moment of inertia is 𝐼 = 1.4 × 10  𝑚 , Young’s modulus of elasticity is 𝐸 =206 𝐺𝑃𝑎 and the mass density is 𝜌 = 7800 𝑘𝑔/𝑚 . The 
beam is divided into 28 elements. The strain responses from 
element 9 to element 20 (the middle span of the beam, total 
12 elements) are measured while the sampling frequency is 
2000 Hz and the duration lasts 5 s. The strain was observed 
at 3/4 length on the upper surface of each element. 
Measurement noise is considered here. The Gaussian 
distributed noise with 5% standard deviation to the signals 
is added to the “measurement” data. Different damage 
levels simulation is achieved by reducing the stiffness of the 
beam element. Based on the experimental analysis, the 
strain responses are decomposed to level 3 with Db20 

 
 

 

 
Fig. 3 Flowchart of damage identification approach
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wavelet in this study, which has revealed a better 
performance, and 8 component energies are generated in 
total. 

 
4.1.1 Damage alarming 
For the training set, ambient excitations act on every 

vertical DOF of the undamaged beam. For a total of 12 
elements (element 9 to element 20), a 11-element vector δ 

 
 

 
 

 
 

can be obtained by Eq. (13). The entire training set includes 
only 50 structural ambient responses from the undamaged 
structure. The test set consists of three working conditions: 
undamaged, single- element damaged and multi- element 
damaged. Seismic excitations of El-Centro earthquake 
(1940, USA) and Kobe-Takatori earthquake (1995, Japan) 
are employed in the test set. It is assumed that the 
earthquake excitations act on every vertical DOF as the 
 
 

 
 

Fig. 4 The finite element model of the simply supported beam 

Table 1 Damage conditions and predicted results of damage alarming (testing set) 
Test number 1 2 3 4 5 6 7 8 9 10 11 12 

DE - 11 12 13 14 15 16 10,12 10,13 10,14 10,15 10,16
DL (%) - 15 15 20 20 25 25 20,25 20,25 20,25 20,25 20,25

El-Centro 1 1* 1* -1 -1 -1 -1 -1 -1 -1 -1 -1 
Kobe-Takatori 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

Note. DE: damage element; DL: damage level; 1: undamaged; -1: damaged; *misclassification 

Table 2 Damage conditions and predicted results of damage location 
 DE DL (%) Δ9,10 Δ10,11 Δ11,12 Δ12,13 Δ13,14 Δ14,15 Δ15,16 Δ16,17 Δ17,18 Δ18,19 Δ19,20

El-
Centro 

- - 1 1 1 1 1 1 1 1 1 1 1 
11 15 1 1* -1 1 1 1 1 1 1 1 1 
12 15 -1* 1 1* -1 1 1 1 1 1 1 1 
13 20 1 1 1 1* -1 1 1 1 1 1 1 
14 20 1 1 1 1 1* -1 1 1 1 1 1 
15 25 -1* 1 1 1 1 -1 -1 1 1 1 1 
16 25 1 1 1 1 1 1 -1 -1 1 1 1 

10,12 20,25 -1 -1 -1 -1 1 1 1 1 1 1 1 
10,13 20,25 -1 -1 1 -1 -1 1 1 1 1 1 1 
10,14 20,25 -1 -1 1 1 -1 -1 1 1 1 1 1 
10,15 20,25 -1 -1 1 1 1 -1 -1 1 1 1 1 
10,16 20,25 -1 -1 1 1 1 1 -1 -1 1 1 -1* 

Kobe-
Takatori

- - 1 1 1 1 1 1 1 1 1 1 1 
11 15 1 1* -1 1 1 1 1 1 1 1 1 
12 15 1 1 1* -1 1 1 1 1 1 1 1 
13 20 1 1 1 1* -1 1 1 1 1 1 1 
14 20 1 1 1 1 1* -1 1 1 1 1 1 
15 25 1 1 1 1 1 -1 -1 1 1 1 1 
16 25 1 1 1 1 1 1 -1 -1 1 1 1 

10,12 20,25 -1 -1 -1 -1 1 1 1 1 1 1 1 
10,13 20,25 -1 -1 -1* -1 -1 1 1 1 1 1 1 
10,14 20,25 -1 -1 1 1 -1 -1 1 1 1 1 1 
10,15 20,25 -1 -1 1 1 1 -1 -1 1 1 1 1 
10,16 20,25 -1 -1 1 1 -1* 1 -1 -1 1 1 1 

 

Note. DE: damage element; DL: damage level; 1: undamaged; -1: damaged; *misclassification; Δ: obtained 
based on Eq. (14)
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ambient excitations in the training set. The single-element 
damage includes damage locations at elements 11-16, with 
damage degree of 15%, 20% and 25%, respectively. The 
multi-element damaged condition includes damage location 
at elements (10,12), (10,13), (10,14), (10,15) and (10,16), 
with damage degree of 20% and 25%, respectively. There 
are 24 damage scenarios in total. 

 Table 1 displays the damage scenarios and predicted 
the results of the test set. Classification accuracy is used as 
the evaluation index. The one-class SVM module in 
LIBSVM is used for damage alarming when the training set 
contains only one type of label. The comparison between 
the predicted results and the real values under different 
earthquakes shows that the accuracy on the test set is 
91.67% (22/24). Most of the classifications are accurate 
even if the training set only include response samples from 
the undamaged beam. 

 
4.1.2 Damage localization 
For each element, a 1 × 8 vector Δ in Eq. (14) can be 

acquired as the sample. The training set in the damage 
localization includes the undamaged condition and single-
element damaged condition. Fifty ambient responses of the 
undamaged structure and five ambient responses of single-
element damaged structure are used. Herein, it is assumed 
that only element 11 is damaged and the damage level is 
25%, the percentage refers to stiffness reduction. Thus, the 
entire training set includes 50 + 5 = 55 samples. 

Seismic excitations of El-Centro earthquake and Kobe-
Takatori earthquake are employed in the test set. The test set 
includes the undamaged, single-element damaged and 
multi-element damaged conditions. In the single-element 
damaged condition, it is assumed that there is a total of 6 
damaged locations (element 11 ‒ element 16) with 3 
damage levels (15%, 20% and 25%). In the multi-element 
damaged condition, it is assumed that there are total of 5 
damaged elements combinations ((10, 12), (10, 13), (10, 
14), (10, 15), (10, 16)) with damage degree of 20% and 
25%, respectively. There are 24 damage conditions in total 
and 264 samples are used as the test set. 

Table 2 displays the damage conditions and predicted 
the results of the test set. Samples containing damaged 
elements should be identified as damage (-1). For example, 
when element 15 is damaged with a degree of 25%, the 

 
 

vector Δ ,  and Δ ,  should be identified as damage (-
1) and others Δ under the same damaged condition should 
be identified as undamaged (1). The comparison between 
the predicted results and the real values under different 
earthquakes shows the accuracy on the test set is 95.08% 
(251/264). Classification accuracy is used as the evaluation 
index. The most of the classifications are accurate even if 
the damage element and damage level of the training set 
and test set are different. 

 
4.2 Numerical simulation example of a cable-

stayed bridge 
 
To further prove the robustness and effectiveness of the 

proposed method, the benchmark model of Haiwen bridge 
is used for numerical verification, which is a single tower 
cable-stayed bridge and located in Hainan province of 
China. The 2D benchmark model shown in Fig. 5 is 
provided by Tongji University, China. Only the main bridge 
section is considered, and the length of the girder is 460 m 
(230 m + 230 m). The structural parameters are set as: the 
moment of inertia is 𝐼 = 2.326 𝑚 , Young’s modulus of 
elasticity is 𝐸 = 210 𝐺𝑃𝑎, and the mass of unit length is �̄� = 17555 𝑘𝑔/𝑚. The girder is divided into 236 elements. 
The sampling frequency is 2000 Hz and the duration is 10 s. 
The strain was observed at 3/4 length on the upper surface 
of each element. Only the linear behavior range of the 
structure is studied here. The connection between the bridge 
tower and the foundation is regarded as consolidation, 
which restricts all degrees of freedom. The two ends of the 
main beam are regarded as hinged joints which restricts the 
degrees of freedom of vertical and horizontal degrees of 
freedom. The connection of the main beam and the bridge 
tower is achieved by coupling the degrees of freedom of 
corresponding joints. The effects of asynchronous seismic 
excitation, soil-structure interaction and the nonlinear 
behavior of cables or bridge on damage detection have been 
neglected. It is assumed that both the seismic and ambient 
excitation acts on every vertical DOF of the structure. The 
linear analysis is run for calculation. The modal response 
history analysis is conducted to obtain the response. 
Gaussian noise with 5% standard deviation to the signals is 
added to the “measurement” data. Different damage levels 
are achieved by reducing the stiffness of the girder element. 

 
 

 
Fig. 5 The 2D model of the cable-stayed bridge
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Based on the experimental analysis, the strain responses are 
decomposed to level 3 with Db20 wavelet in this study, 
which has revealed a better performance, and 8 component 
energies are generated in total. 

 
4.2.1 Damage alarming 
The partial strain responses (from element 50 to element 

80) are measured in this bridge. For a total of 31 elements, a 
30-element vector δ can be obtained by Eq. (13). The entire 
training set includes only 50 structural ambient responses 
from the undamaged structure. The test set also consists of 
three working conditions similar to example 1. Seismic 
excitations of the El-Centro earthquake and Kobe-Takatori 
earthquake are employed in the test set. It is assumed that 
the earthquake excitations and the ambient excitations both 
act on every vertical DOF. The single-element damage 
includes damage locations at elements 56-59, with damage 
degrees of 15%, 18%, 22% and 25%, respectively. The 

 
 

 
 

multi-element damaged condition includes damage 
locations at elements (51,55), (51,56), (51,57), (51,58), 
(51,59), with damage degrees of 18% and 22%, 
respectively. There are 20 damage scenarios in total. 

Table 3 displays the damage scenarios and predicted the 
results of the test set. The comparison between the predicted 
results and the real values under different earthquakes 
shows the accuracy on the test set is 91.67% (22/24). It can 
be seen that most of the classifications are accurate even if 
the training set only included response samples from the 
undamaged beam. 

 
4.2.2 Damage localization 
Similarly, for each element, a 1 × 8 vector Δ in Eq. 

(14) can be acquired as the sample. The training set in the 
damage localization includes the undamaged and single-
element damaged conditions. Fifty ambient responses of the 
undamaged structure and five ambient responses of single-

Table 3 Damage conditions and predicted results of damage alarming 
Test number 1 2 3 4 5 6 7 8 9 10 

DE - 56 57 58 59 51,55 51,56 51,57 51,58 51,59
DL (%) - 15 18 22 25 18,22 18,22 18,22 18,22 18,22

El-Centro 1 1* -1 -1 -1 -1 -1 -1 -1 -1 
Kobe-Takatori 1 -1 -1 1* -1 -1 -1 -1 -1 -1 

 

Note. DE: damage element; DL: damage level; 1: undamaged; -1: damaged; *misclassification 

Table 4 Damage conditions and predicted results of damage location 
 DE DL (%) Δ50,51 Δ51,52 Δ52,53 Δ53,54 Δ54,55 Δ55,56 Δ56,57 Δ57,58 Δ58,59 Δ59,60

El-
Centro 

- - 1 1 1 1 1 1 1 1 1 1 
56 15 1 1 1 1 1 -1 1* 1 1 1 
57 18 1 1 1 1 1 1 -1 -1 1 1 
58 22 1 1 1 1 1 1 1 -1 -1 1 
59 25 1 1 1 1 1 1 1 1 -1 -1 

51,55 20,25 -1 -1 1 1 -1 -1 1 1 1 1 
51,56 20,25 -1 -1 1 1 1 -1 -1 1 1 1 
51,57 20,25 -1 -1 1 1 1 1 -1 -1 1 1 
51,58 20,25 -1 -1 1 1 1 1 1 -1 -1 1 
51,59 20,25 -1 -1 1 1 1 1 1 1 -1 -1 

Kobe-
Takatori 

- - 1 1 1 1 1 1 1 1 1 1 
56 15 1 1 1 1 1 -1 1* 1 1 1 
57 18 1 1 1 1 1 1 -1 -1 1 1 
58 22 1 1 1 1 1 1 1 -1 -1 1 
59 25 1 1 1 1 1 1 1 1 -1 -1 

51,55 20,25 -1 -1 1 1 -1 -1 1 1 1 1 
51,56 20,25 -1 -1 1 1 1 -1 -1 1 1 1 
51,57 20,25 -1 -1 1 1 1 1 -1 -1 1 1 
51,58 20,25 -1 -1 1 1 1 1 1 -1 -1 1 
51,59 20,25 -1 -1 1 1 1 1 1 1 -1 -1 

 

Note. DE: damage element; DL: damage level; 1: undamaged; -1: damaged; *misclassification; Δ: obtained 
based on Eq. (14)
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element damaged structure are used. It is assumed that only 
element 50 is damaged with the damage level 25%. Thus, 
the entire training set includes 55 samples. 

Seismic excitations El-Centro and Kobe-Takatori 
earthquake are employed in the test set. Three working 
conditions of the test set in damage localization are similar 
to the one in damage alarming. So, there are 20 damage 
conditions and 200 samples are used as the test set. 

Table 4 displays the damage conditions and predicted 
the results of the test set. The comparison between the 
predicted results and the real values under different 
earthquakes shows that the accuracy on the test set is 99% 
(198/200). 

 
 

5. Conclusions 
 
In this paper, a novel data-driven approach is proposed 

for detecting bridge damage under unknown seismic 
excitation. TF and WPT are fused to extract damage 
features effectively. Since only the liner behavior of the 
structure is investigated here, the utilization of TF based on 
structural responses can eliminate the effects of different 
seismic excitations on structural responses. Then, the 
inverse Fourier transform of the TF is implemented to 
obtain the virtual time domain signals, so the frequency 
bands selection in previous TF based damage detection is 
avoided. Moreover, WPT is adopted to decompose the 
virtual time domain signal to acquire the wavelet packet 
energy. The wavelet packet energy difference compared to 
the intact structure are taken as the inputs of two support 
vector machines to accomplish damage alarming and 
localization, respectively. The numerical simulation of 
damage identification of bridge under unknown seismic 
excitations have proved that the proposed approach can 
accomplish damage alarming and localize the single or 
multiple element damage in structure with satisfaction. 

It is noted that only ambient responses of the 
undamaged structure are needed to train SVM for damage 
alarming. For damage localization, only ambient responses 
of undamaged structure and a single-element damaged 
structure with just one damage level are required to train 
SVM. Therefore, the proposed approach is suitable for 
engineering applications. 

However, for the damage quantification, it is still 
required to use structural responses from structures with 
different damaged elements and various damage degrees to 
train the SVM. Such data are hard to acquire in practice. 
Therefore, it needs further investigation for damage 
quantification using SVM. Furthermore, the detection of 
nonlinear behaviors should be studied since the bridge 
structure tends to reveal nonlinear behaviors under strong 
seismic excitations. 
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