
Smart Structures and Systems, Vol. 27, No. 2 (2021) 241-256
DOI: https://doi.org/10.12989/sss.2021.27.2.241

Copyright © 2021 Techno-Press, Ltd.
http://www.techno-press.org/?journal=sss&subpage=7 ISSN: 1738-1584 (Print), 1738-1991 (Online)

1. Introduction

While highway transportation is essential for flow of

goods and people in a modern society, overloaded trucks
have become a growing concern in bridge infrastructure
maintenance (Fu and Hag-Elsafi 2000). Highway pavement
sustains the most direct consequences from overloaded
trucks, while occasionally bridge structures can be
endangered. Over the past four decades, many researchers
have proposed different methods for detecting illegally
overloaded trucks passing through a bridge from the bridge
response measurements. Among those techniques is bridge
weigh-in-motion (BWIM), which measures the dynamic
response of a bridge structure and uses the response data to
back derive the weight of vehicles driving over the bridge
(Lydon et al. 2016, Yu et al. 2016). The installation of
under-deck BWIM systems usually does not require traffic
closure and is relatively low cost. Compared with pavement
weigh-in-motion, another obvious benefit of BWIM is that
the bridge response data can also be utilized to monitor the
condition of the bridge structure itself (Skokandic et al.
2017).

Despite its advantages, the main challenge of BWIM
lies in the robust numerical algorithm that can accurately
estimate vehicle weight using dynamic bridge response

∗Corresponding author, Professor,
E-mail: yang.wang@ce.gatech.edu

a Graduate Student, E-mail: zcwang0201@gatech.edu

data. Such data often contains strain or acceleration
response of the bridge girders or deck (Zhu and Law 2015,
2016). To this end, Moses’ algorithm is acknowledged as
the first widely adopted BWIM algorithm (Moses 1979).
The algorithm uses static influence lines to predict the
response of a bridge girder and derives axle weights by
minimizing the difference between predicted and measured
girder responses. Despite its early popularity, the algorithm
has some major limitations because the statically derived
influence lines cannot consider bridge vibration dynamics.
In addition, the Moses’ algorithm omits the effect of
transverse position of a vehicle on the bridge deck.
Quilligan (2003) later proposed an influence area method to
include the effect of transverse position, though the
computational cost increased significantly, and the method
still cannot consider the bridge vibration dynamics.

In order to achieve more accurate truck weight
estimation using dynamic bridge response data, in the past
few decades, most BWIM efforts have been made toward
the consideration of bridge vibration dynamics. Relying on
either an analytical mechanics model of a girder, or a finite
element structural model of the bridge superstructure, many
of these methods attempt to identify the time history of the
contact force between a vehicle axle and the bridge deck;
these methods are collectively referred as MFI (moving
force identification) or MLI (moving load identification).
Among earlier examples of these methods, an analytical
model is needed to obtain bridge dynamic response. Then,
an optimization problem with the contact force as an
objective function variable is solved to minimize the
difference between the analytical response and sensor

Bridge weigh-in-motion through bidirectional Recurrent Neural Network
with long short-term memory and attention mechanism

Zhichao Wang 1a and Yang Wang∗1,2

1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

2 School of Electrical and Computing Engineering, Georgia Institute of Technology, Atlanta, GA, USA

(Received July 7, 2020, Revised September 15, 2020, Accepted October 10, 2020)

Abstract. In bridge weigh-in-motion (BWIM), dynamic bridge response is measured during traffic and used to identify
overloaded vehicles. Most past studies of BWIM use mechanics-based algorithms to estimate axle weights. This research instead
investigates deep learning, specifically the recurrent neural network (RNN), toward BWIM. In order to acquire the large data
volume to train a RNN network that uses bridge response to estimate axle weights, a finite element bridge model is built through
the commercial software package LS-DYNA. To mimic everyday traffic scenarios, tens of thousands of randomized vehicle
formations are simulated, with different combinations of vehicle types, spacings, speeds, axle weights, axle distances, etc.
Dynamic response from each of the randomized traffic scenarios is recorded for training the RNN. In this paper we propose a 3-
stage Bidirectional RNN toward BWIM. Long short-term memory (LSTM) and attention mechanism are embedded in the
BRNN to further improve the network performance. Additional test data indicates that the BRNN network achieves high
accuracy in estimating axle weights, in comparison with a conventional moving force identification (MFI) method.

Keywords: bridge weigh-in-motion; deep learning; bidirectional recurrent neural network; attention mechanism; long
short-term memory

241

Zhichao Wang and Yang Wang

measurement. Since the problems are often ill-posed,
Tikhonov regularization (Tikhonov and Arsenin 1977) is
usually adopted for this group of methods. For example,
Law et al. (1997) proposed a time domain method that
showed acceptable accuracy in numerical simulation and
experimental validation, though the method was sensitive to
modeling inaccuracy and sensor noise. The time domain
method was later extended into the frequency domain,
while experimental study found the method computationally
expensive and still sensitive to the measurement locations
(Law et al. 1999). In addition, an interpretive method was
put forward utilizing numerical simulation to “interpret” the
moving load; the method is less computationally demanding
while achieving lower accuracy (Chan et al. 1999).
Recently, a method for moving force identification in state
space with Hamilton’s principle and modal superposition
was formulated and validated using simulation and field test
(Zhu et al. 2006). Though adequate BWIM accuracy was
achieved with a large quantity of sensors deployed, the
performance was found to deteriorate quickly with the
reduction of sensors or with noisy data. Besides, all the
experimental validations only investigated the scenario of a
single two-axle vehicle on the bridge; no results were
provided for scenarios with either a multi-axle vehicle or
multiple vehicles passing through the bridge. These more
complex yet realistic scenarios present critical challenges
for the practical application of BWIM in the field.

Other examples in this group of MFI/MLI methods
require a finite element model of the bridge superstructure.
O’Connor and Chan (1988) put forward a method that
modeled the bridge superstructure with lumped masses by
connected by massless beam elements. The bridge response
was then predicted, and the dynamic load could be inferred
from measurement. Due to over simplification of the bridge
model, this method can result in low accuracy in practical
deployment. An optimal state estimation approach was then
proposed to reduce the fluctuations of identified forces at
the beginning and end of the time history, though the
identification errors were still large in general (Law and
Fang 2001). Wu and Shi (2006) approximated the structural
response and excitation by wavelets to reduce the
computation cost, but the method required many sensor
measurements, and the validation was only in simulation. In
summary, MFI/MLI problems are ill-conditioned inverse
problems that require careful regularization. When a more
complex and accurate structural model is used, the time
required for obtaining the moving force increases
dramatically for each identification process.

The BWIM literature summarized above can be
categorized into mechanics-based (or physics-based)
BWIM algorithms. Meanwhile, in the broad fields of
engineering and computer science, the past decade has seen
unprecedented interest in deep learning, a topic in artificial
intelligence that is data driven or based on data analytics.
Using artificial neural networks (ANN), deep learning has
particularly made significant strides in the past decade,
transforming a number of engineering fields including
image recognition and natural language p rocessing (LeCun
et al. 2015, Goodfellow et al. 2016). A classical deep
learning neural network usually has perceptrons as building

Fig. 1 A perceptron with three input and one output variable

blocks (Minsky and Papert 1969). A perceptron consists of
an (usually nonlinear) activation function that maps the sum
of a bias and the multiplication between weightings and
inputs to an output. The sigmoid function, 𝜎ሺ𝑥ሻ =𝑒௫ ሺ1 + 𝑒௫ሻ⁄ , is among the most widely used activation
functions. For example, 𝑦ො = 𝜎ሺ∑ 𝑤௜𝑥௜ଷ௜ୀଵ + 𝑏ሻ is a
perceptron that takes three input scalars (𝑥ଵ, 𝑥ଶ and 𝑥ଷ) and
generates one output 𝑦ො; the perceptron has three weightings
(𝑤ଵ, 𝑤ଶ and 𝑤ଷ) and one bias 𝑏 shown in Fig. 1.

For a neural network to accurately generate the
correct/desired output from certain input data, the
weightings and biases are the most important function
parameters whose values need to be fine-tuned. The process
of automatically fine-tuning these parameter values is called
the training of a neural network, which is usually performed
through supervised learning. Take image recognition for
example – to construct a neural network that can correctly
recognize images, supervised learning starts with a lot of
training data, which are essentially many pictures (input to
the network) with known labels (correct/desired output
from the network). Consisting of many layers of neural
network, with many function parameters to be trained, deep
learning techniques automatically find appropriate
parameter values through mathematical optimization. This
training process essentially identifies/learns the oftentimes
highly nonlinear relationship which maps input (an image)
to output (a label). To detect overfitting and choose
hyperparameters, performance of the trained network can be
simultaneously verified using (cross) validation data, which
are additional known input-output pairs that were not
among the training data. When the training process ends,
test data can be utilized to assess the performance of the
trained neural network. If overfitting occurs, techniques
such as dropout (Srivastava et al. 2014) and regularization
(Goodfellow et al. 2016) can be applied to reduce
overfitting and improve performance with the validation
and test sets.

Early research in multi-layer neural network training
started in the1950’s (Rosenblatt 1957, Selfridge 1959).
However, it was the past decade that has seen the most
significant improvement in deep learning. These are mainly
attributed to two reasons. The first reason is the recent
development of innovative and sophisticated neural network
architectures that can adapt to complex problems. The
second reason is the increasing availability of data and the
leap in computing power, which enables the training of
much larger neural networks. Besides, the widespread
availability of GPUs (graphics processing units) provides
another significant boost to computing power by efficiently

242

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

distributing the computation load toward deep learning
(Krizhevsky et al. 2012, Das and Deka 2016). In a typical
deep learning application today, there can be tens of
millions function parameters to be learned/trained in a
sophisticated network, which would have been impossible
only a decade ago. For example, convolutional neural
networks (ConvNets or CNN) made the biggest
breakthrough in image recognition, where the input data
comes in the form of multiple arrays. In particular, a color
image usually consists of three 2D arrays with picture
intensities of three color channels (R/G/B). In a CNN,
convolutional layers, pooling layers and fully-connected
layers are frequently utilized. The convolutional layer plays
the role of a feature detector/filter that slides through the
pixel blocks in two dimensions, a process mathematically
similar to discrete convolution (LeCun et al. 1998). Pooling
layers then reduce the dimension of the intermediate feature
results without introducing any new parameters to be
learned (Yang et al. 2009). Finally, the fully-connected
layers produce estimated outputs using the information
extracted from the earlier convolutional layers or pooling
layers (Krizhevsky et al. 2012).

Toward BWIM applications, two-layered neural
networks were first proposed to output gross vehicle weight
and axle weight distribution factors, which were then
utilized to calculate each axle weight (Kim et al. 2009). The
network had a primitive architecture that is fully connected.
In addition, due to the limitation in computing power from a
decade ago, the network only accepted peak strain data
from a small number of strain sensors, instead of dynamic
time histories from heterogenous sensors. Input data size to
the network is around ten (whereas today, input data size of
tens of thousands are commonplace). As a result, the
network had mediocre performance; some test cases
showed more than ±20% errors, which are far from
acceptable for practical applications. Furthermore, the
network could only handle the situation when only one
vehicle travels over the bridge, which prevents its practical
adoption. In another BWIM study, a convolutional neural
network was constructed to estimate vehicle existence and
speed using strain data as input (Kawakatsu et al. 2019).
However, the vehicle weight estimation is still through
traditional Moses’ algorithm, which is subject to the same
inaccuracies of early conventional mechanics-based BWIM
algorithms summarized earlier. Zhang et al. (2010)
proposed a neural network approach for pavement weigh-
in-motion. The study used measurement from sensors
embedded in road pavement, instead of response from a
bridge structure.

Besides CNN, another category of deep learning has
made fascinating progress in natural language processing.
In natural language processing, a number of innovative
neural network architectures have been studied. The
recurrent neural network (RNN) was first proposed to deal
with time series data, a ubiquitous feature of natural
languages (Rumelhart et al. 1986). RNN was further
advanced to BRNN (bidirectional recurrent neural network)
by including both forward transformation and backward
transformation (Schuster and Paliwal 1997). Later, the
benefits brought by the increased depth of neural network

were discussed (Graves et al. 2013). Two other methods had
also been proposed, which greatly improved the
performance of natural language processing. The first one
made the process of training more robust, especially for a
long input sequence, using LSTM (long short-term
memory) (Hochreiter and Schmidhuber 1997) or GRU
(gated recurrent unit) (Chung et al. 2014). GRU can be
viewed as a simplified version of LSTM for dealing with
long input sequences, while LSTM’s robustness has been
more widely verified. Both GRU and LSTM techniques
create one more intermediate variable than RNN, which
changes slowly through the sequence and achieves the goal
of memorizing input information a long time ago. The other
method is the attention mechanism which could deal with
different lengths of inputs and outputs, and improve the
performance when the input consists of long sequences
(Chorowski et al. 2014). The attention mechanism is
embedded in an encoder-decoder architecture, where one
RNN encodes the raw data and another RNN decodes for
final output, and attention mechanism connects the encoder
RNN and decoder RNN through appropriate weightings.

To our best knowledge, the authors have not seen the
latest deep learning techniques, such as BRNN and LSTM
being adopted toward BWIM applications. For practical
application, significant challenge also exists in obtaining the
large amount (e.g., hundreds of thousands) of training data
sets from field measurements. Such training data should
contain not only bridge response, but also the true weights
of hundreds of thousands of various passing vehicles. The
latter can be hardly feasible to obtain in practice.
Nevertheless, it is envisioned that for an actual bridge
application, finite element model updating of the bridge can
be performed first to achieve high fidelity under different
environmental scenarios. The updating usually has
moderate demand in field measurement data, and the
calibrated model(s) can then be used to generate the
hundreds of thousands of training data sets. As a
preliminary study in the topic area, we use training data sets
generated from high-fidelity simulations. To simulate
dynamic bridge response with a moving vehicle load, a
commercial software package LS-DYNA is used to build
the bridge finite element model. For the relatively short
bridge span in consideration, three different scenarios are
considered, i.e., one truck, one truck and one car, and two
trucks. In each example, different axle numbers, axle
weights, axle distances, vehicle distances and vehicle
speeds are combined. The neural network takes strain
histories as input, and outputs the estimation for axle
weights. A sophisticated network architecture is proposed in
order to exploit both BRNN and RNN to extract useful
information concealed in the strain measurements. LSTM is
adopted to enhance the capability of the neural network in
dealing with long input sequences, i.e., multiple strain
measurements at a high sampling rate. As the final stage of
the proposed network architecture, the attention mechanism
is adopted to finally provide axle weights. In comparison
with MFI/MLI, the proposed method does not suffer from
ill conditioning. Besides, the neural network can deal with
high noise levels so long as it is trained with data that has
high noise levels. Lastly, after network training, the actual

243

Zhichao Wang and Yang Wang

process of deriving axle weights is instantaneous and
appropriate for practical applications.

The remainder of the paper is organized as follows. In
Section 2, classical RNN neural networks and the
architecture of a neural network model for BWIM are
reviewed. The section introduces the concepts of
bidirectional RNN, LSTM, and attention mechanism.
Section 3 discusses the randomized numerical simulation of
the bridge dynamic response, including the testbed bridge
information, measurement scheme, finite element modeling,
and combination of different scenarios. The BWIM
accuracy and comparison with previous MFI/MLI methods
are finally presented in Section 4.

2. Bidirectional recurrent neural network

This section describes the bidirectional recurrent neural

network (BRNN) developed for BWIM. Classical recurrent
neural network (RNN) is first summarized. Then, some
useful techniques for improving the network performance,
like BRNN are introduced. Lastly, the architecture of the
BRNN model for BWIM is described.

2.1 Recurrent neural network (RNN)

2.1.1 Traditional recurrent neural network with the

same length in input and output sequences
Both the input and the output of a neural network can be

viewed as a sequence of vectors. The length of input
sequence (i.e., the number of input vectors) is denoted as 𝑇௫, while the length of output sequence is denoted as 𝑇௬.
Let’s first consider the scenario where the length of the
input sequence equals the length of the output sequence,
i.e., 𝑇௫ = 𝑇௬ = 𝑇. At each sequence step, the dimension of
the input vector is denoted as 𝑛௫, while the dimension of
each output vector is denoted 𝑛௬. We do not require 𝑛௫
and 𝑛௬ to be equal. The input to a neural network at
sequence step 𝑡 is denoted as 𝐱ሺ𝑡ሻ ∈ ℝ௡ೣ, 𝑡 = 1, 2, … , 𝑇.
The network output at step 𝑡 is 𝐲ොሺ𝑡ሻ ∈ ℝ௡೤, where the hat
symbol carries the meaning that (after training) the network
attempts to estimate the output 𝐲 using the input 𝐱.

Fig. 2(a) shows a conventional fully-connected neural
network, where the computation of each output estimation 𝐲ොሺ𝑡ሻ requires input vectors at all steps. When estimating 𝐲ොሺ𝑡ሻ for a current step 𝑡, not only input from past time
steps 1,2, … , 𝑡 − 1, but also input from future steps 𝑡 + 1,

𝑡 + 2, … , 𝑇 are utilized. For an application with a large
number of input/output vectors at high dimensional space,
this conventional architecture requires a significant amount
of computational capability that is usually unaffordable
even with state-of-the-art of hardware. The network training
quickly becomes highly inefficient, if not impossible.

In comparison, Fig. 2(b) shows the architecture of a
recurrent neural network (RNN) that is particularly efficient
in dealing with time history data (of a long sequence).
Instead of using all 𝐱ሺ𝑡ሻ , 𝑡 = 1, 2, … , 𝑇 to decide the
output at one time step, intermediate vector variables 𝐚ሺ𝑡ሻ
are introduced. The intermediate variable recurrently
accumulates information from past input data and uses the
information toward estimating future output.

In the RNN demonstrated in Fig. 2(b), 𝐚ሺ𝑡ሻ ∈ ℝ௡ೌ is
an intermediate (hidden) vector variable at step 𝑡 . To
initiate the RNN process, 𝐚ሺ0ሻ is usually set as a zero
vector 𝟎௡ೌ. The value of the intermediate (hidden) variable
at step 𝑡, 𝐚ሺ𝑡ሻ, is calculated from the intermediate (hidden)
variable at previous step 𝑡 − 1, 𝐚ሺ𝑡 − 1ሻ ∈ ℝ௡ೌ, and the
input at step 𝑡, 𝐱ሺ𝑡ሻ ∈ ℝ௡ೣ. The mapping from 𝐚ሺ𝑡 − 1ሻ
and 𝐱ሺ𝑡ሻ to 𝐚ሺ𝑡ሻ is realized through a nonlinear activation
function. In this study, an entry-wise hyperbolic tangent
function tanhሺ𝑥ሻ = ሺ𝑒௫ − 𝑒ି௫ሻ ሺ𝑒௫ + 𝑒ି௫ሻ⁄ is adopted as
the activation function.

 𝐚ሺ𝑡ሻ = tanhሺ𝐖௔௔𝐚ሺ𝑡 − 1ሻ + 𝐖௔௫𝐱ሺ𝑡ሻ + 𝐛௔ሻ (1)

Here 𝐖௔௔ ∈ ℝ௡ೌ×௡ೌ and 𝐖௔௫ ∈ ℝ௡ೌ×௡ೣ are the

weighting matrices, and 𝐛௔ ∈ ℝ௡ೌ is the bias vector.
Consequently, 𝐚ሺ𝑡ሻ is used to generate output 𝐲ොሺ𝑡ሻ ∈ ℝ௡೤,
the estimation of 𝐲ሺ𝑡ሻ ∈ ℝ௡೤. The mapping from 𝐚ሺ𝑡ሻ to 𝐲ොሺ𝑡ሻ uses a weighting matrix 𝐖௬௔ ∈ ℝ௡೤×௡ೌ and a bias
vector 𝐛௬ ∈ ℝ௡೤.

 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔𝐚ሺ𝑡ሻ + 𝐛௬൯ (2)

In neural network jargon, label refers to the known

output 𝐲ሺ𝑡ሻ that corresponds to some known input 𝐱ሺ𝑡ሻ.
The labels, together with the corresponding inputs, are used
to train the network by finding the optimal values of the
constant variables, including the weighting matrices and
bias vectors. With 𝐖௔௔, 𝐖௔௫, 𝐛௔, 𝐖௬௔, and 𝐛௬ as the
optimization variables, the value of a non-negative cost
function 𝐽 ∈ ℝା can be defined based on the difference
between the known labels and estimated output. The
training of a neural network is essentially a mathematical

(a) Fully-connected neural network (b) Recurrent neural network (RNN)

Fig. 2 Flow diagram and architecture of neural networks

244

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

optimization process to find the best weighting matrixes and
bias vectors that can minimize the cost function 𝐽. Gradient
descent is frequently utilized to solve this often very large
optimization problem.

 𝐽 = ෍ ෍ ฮ𝐲௜ሺ𝑗ሻ − 𝐲ො௜ሺ𝑗ሻฮଶଶ೤்௝ୀଵ௠௜ୀଵ (3)

where 𝑚 ∈ ℝ represents the total number of training data
sets, 𝑇௬ is the length of output sequence, 𝐲௜ሺ𝑗ሻ ∈ ℝ௡೤ is
the label for the 𝑗-th step output of the 𝑖 -th data set, 𝐲ො௜ሺ𝑗ሻ ∈ ℝ௡೤ is the 𝑗-th step output of the 𝑖-th training
input data set, and ‖∙‖ଶ represents the vector ℒ2-norm.

 𝐖ሺ𝑘 + 1ሻ = 𝐖ሺ𝑘ሻ − 𝜆ሺ𝑘ሻ 𝜕𝐽𝜕𝐖 ൫𝐖ሺ𝑘ሻ, 𝐛ሺ𝑘ሻ൯ (4)

 𝐛ሺ𝑘 + 1ሻ = 𝐛ሺ𝑘ሻ − 𝜆ሺ𝑘ሻ 𝜕𝐽𝜕𝐛 ൫𝐖ሺ𝑘ሻ, 𝐛ሺ𝑘ሻ൯ (5)

where 𝑘 represents the 𝑘 -th iteration step in the
optimization process, 𝐖 represents all weighting matrices, 𝐛 represents all bias vectors and 𝜆ሺ𝑘ሻ ∈ ℝା is the
learning rate at the 𝑘-th step. The learning rate is one of the
most important parameters to be tuned in the network
training, and it can be set as a constant in most applications.

One mistake to avoid in network training is overfitting,
which means the trained neural network provides good
performance with the training set, while the performance
deteriorates with the validation set or test set. To prevent
overfitting, we use a regularization technique in this study
(Goodfellow et al. 2016). The technique adds a new penalty
term to Eq. (3), so that the weightings do not grow too
large. Here, 𝜇 is a parameter to be tuned, and ‖. ‖ி
represents the matrix Frobenius norm.

 𝐽 = ෍ ෍ ฮ𝐲௜ሺ𝑗ሻ − 𝐲ො௜ሺ𝑗ሻฮଶଶ೤்௝ୀଵ௠௜ୀଵ + 𝜇‖𝐖‖ிଶ (6)

2.1.2 LSTM (long short-term memory) unit
When network size is large, the performance of RNN

shown in Fig. 2(b) deteriorates with the increase of input
data volume. Besides, in the process of training a RNN with
a long input sequence, vanishing gradient and gradient
explosion are among the diff iculties commonly
encountered. Vanishing gradient means that the gradient 𝜕𝐽 𝜕𝐖⁄ or 𝜕𝐽 𝜕𝐛⁄ (in Eqs. (4) and (5)) approaches zero,

resulting in very slow convergence. Gradient explosion
means that the gradient becomes very large, leading to
failure in optimization. In practice, gradient explosion is
usually dealt with by setting a maximum threshold limit for
the gradient. A vanishing gradient is usually more difficult
to deal with. To this end, methods like LSTM (Hochreiter
and Schmidhuber 1997) and GRU (Chung et al. 2014) have
been proposed. In this study, LSTM is adopted due to its
widely accepted stability.

Recall from Eq. (1) that in a normal RNN unit, the
intermediate (hidden) variable at step 𝑡, 𝐚ሺ𝑡ሻ, is calculated
using the intermediate (hidden) variable at step 𝑡 − 1 , 𝐚ሺ𝑡 − 1ሻ, and the input at step 𝑡, 𝐱ሺ𝑡ሻ. After many steps of
propagation, 𝐚ሺ𝑡 − 1ሻ alone usually cannot contain input
information much earlier than current step 𝑡. To maintain a
longer term memory, Fig. 3 demonstrates an alternative
approach for calculating the intermediate variable 𝐚ሺ𝑡ሻ
that provides long short-term memory (LSTM).

Similar as a normal RNN unit, a candidate memory cell 𝐜෤ሺ𝑡ሻ ∈ ℝ௡ೌ is first calculated at step 𝑡
 𝐜෤ሺ𝑡ሻ = tanhሺ𝐖௖௔𝐚ሺ𝑡 − 1ሻ + 𝐖௖௫𝐱ሺ𝑡ሻ + 𝐛௖ሻ (7)

where 𝑡𝑎𝑛ℎሺ∙ሻ is the elementwise hyperbolic tangent
function, 𝐖௖௔ ∈ ℝ௡ೌ×௡ೌ and 𝐖௖௫ ∈ ℝ௡ೌ×௡ೣ are the
weighting matrices, and 𝐛௖ ∈ ℝ௡ೌ is the bias vector. In
addition, also using 𝐚ሺ𝑡 − 1ሻ and 𝐱ሺ𝑡ሻ , three new
intermediate variables are introduced: 𝚪௨ሺ𝑡ሻ ∈ ℝ௡ೌ as the
update gate, 𝚪௙ሺ𝑡ሻ ∈ ℝ௡ೌ as the forget gate, and 𝚪௢ሺ𝑡ሻ ∈ℝ௡ೌ as the output gate. Entries in these gate variables are
restricted to be in the interval ሾ0,1ሿ, in order to control the
percentage of information to forget or to remember.
Therefore, an entry-wise version of the sigmoid function, 𝜎ሺ𝑥ሻ = 𝑒௫ ሺ1 + 𝑒௫ሻ⁄ , is used to calculate all these gate
vectors.

 𝚪௨ሺ𝑡ሻ = σሺ𝐖௨௔𝐚ሺ𝑡 − 1ሻ + 𝐖௨௫𝐱ሺ𝑡ሻ + 𝐛௨ሻ (8)
 𝚪௙ሺ𝑡ሻ = σ൫𝐖௙௔𝐚ሺ𝑡 − 1ሻ + 𝐖௙௫𝐱ሺ𝑡ሻ + 𝐛௙൯ (9)
 𝚪௢ሺ𝑡ሻ = σሺ𝐖௢௔𝐚ሺ𝑡 − 1ሻ + 𝐖௢௫𝐱ሺ𝑡ሻ + 𝐛௢ሻ (10)

Here the weighting matrices are 𝐖௨௔ ∈ ℝ௡ೌ×௡ೌ , 𝐖௨௫ ∈ ℝ௡ೌ×௡ೣ , 𝐖௙௔ ∈ ℝ௡ೌ×௡ೌ , 𝐖௙௫ ∈ ℝ௡ೌ×௡ೣ , 𝐖௢௔ ∈ℝ௡ೌ×௡ೌ, and 𝐖௢௫ ∈ ℝ௡ೌ×௡ೣ; the bias vectors include 𝐛௨ ∈ℝ௡ೌ, 𝐛௙ ∈ ℝ௡ೌ, and 𝐛௢ ∈ ℝ௡ೌ.
The memory cell at step 𝑡, 𝐜ሺ𝑡ሻ ∈ ℝ௡ೌ, is calculated as

Fig. 3 Flow diagram providing LSTM (long short-term memory)

245

Zhichao Wang and Yang Wang

a weighted sum between the candidate memory cell 𝐜෤ሺ𝑡ሻ
and the memory cell at previous step 𝑡 − 1, 𝐜ሺ𝑡 − 1ሻ. The
two weightings are the update gate 𝚪௨ሺ𝑡ሻ and forget gate 𝚪௙ሺ𝑡ሻ, respectively. As a result, the memory cell achieves a
balance between the input information from the most recent
step and from past steps.

 𝐜ሺ𝑡ሻ = 𝚪௨ሺ𝑡ሻ ∗ 𝐜෤ሺ𝑡ሻ + 𝚪௙ሺ𝑡ሻ ∗ 𝐜ሺ𝑡 − 1ሻ (11)

Here, the star symbol “ ∗ ” means elementwise

multiplication between two vectors of the same shape. In
general, the update of 𝐜ሺ𝑡ሻ is slow in order to memorize
early information.

Finally, as shown in Fig. 3, the intermediate variable 𝐚ሺ𝑡ሻ ∈ ℝ௡ೌ is calculated using output gate 𝚪௢ሺ𝑡ሻ as the
weighting, and memory cell 𝐜ሺ𝑡ሻ is activated through the
elementwise hyperbolic tangent function.

 𝐚ሺ𝑡ሻ = 𝚪௢ሺ𝑡ሻ ∗ tanh൫𝐜ሺ𝑡ሻ൯ (12)

The mapping from 𝐚ሺ𝑡ሻ to 𝐲ොሺ𝑡ሻ uses a weighting

matrix 𝐖௬௔ ∈ ℝ௡೤×௡ೌ and a bias vector 𝐛௬ ∈ ℝ௡೤.
 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔𝐚ሺ𝑡ሻ + 𝐛௬൯ (13)

In summary, LSTM utilizes 𝐚ሺ𝑡 − 1ሻ , 𝐜ሺ𝑡 − 1ሻ and

input 𝐱ሺ𝑡ሻ to calculate 𝐚ሺ𝑡ሻ , 𝐜ሺ𝑡ሻ and output 𝐲ොሺ𝑡ሻ .
Memory cell 𝐜ሺ𝑡ሻ generally changes slower in comparison
with 𝐚ሺ𝑡ሻ. In this way, 𝐚ሺ𝑡ሻ can capture the rapid input
changes, while 𝐜ሺ𝑡ሻ can help retain more information from
past time steps. Lastly, similar to the general process
described in Eqs. (3)-(6), all the weighting matrices and
bias vectors in LSTM are to be determined through network
training. The training finds optimal matrices and vectors
such that an estimation error index, i.e., cost function J, is
minimized.

2.2 Bidirectional recurrent neural network (BRNN)

with the same length of inputs and outputs

One drawback of RNN is that when estimating 𝐲ොሺ𝑡ሻ,

the network only uses input data from previous steps
(before 𝑡ሻ and not any future steps (after 𝑡ሻ. Bidirectional
recurrent neural network (BRNN) is a recently developed
network architecture which uses input data both before and
after 𝑡. Again, for the scenario where the length of input
sequence equals the length of output sequence ሺ𝑇௫ = 𝑇௬ =𝑇ሻ, Fig. 4 shows the flow diagram of a BRNN.

Recall that at step 𝑡, RNN uses an intermediate (hidden)

variable 𝐚ሺ𝑡ሻ. In comparison, BRNN introduces a forward
intermediate variable 𝐚௙ሺ𝑡ሻ ∈ ℝ௡ೌ and a backward
intermediate variable 𝐚௕ሺ𝑡ሻ ∈ ℝ௡ೌ . The forward variable 𝐚௙ሺ𝑡ሻ depends on the input 𝐱ሺ𝑡ሻ and the forward variable
at previous step, 𝐚௙ሺ𝑡 − 1ሻ. This forward layer utilizes a
hyperbolic tangent activation function with two weighting
matrices 𝐖௔௔௙ ∈ ℝ௡ೌ×௡ೌ and 𝐖௔௫௙ ∈ ℝ௡ೌ×௡ೣ, as well as a
bias vector 𝐛௔௙ ∈ ℝ௡ೌ.

 𝐚௙ሺ𝑡ሻ = tanh൫𝐖௔௫௙ 𝐱ሺ𝑡ሻ + 𝐖௔௔௙ 𝐚௙ሺ𝑡 − 1ሻ + 𝐛௔௙൯ (14)

On the other hand, the backward intermediate (hidden)

variable 𝐚௕ሺ𝑡ሻ depends on the input 𝐱ሺ𝑡ሻ and the
backward intermediate (hidden) variable at the next step, 𝐚௕ሺ𝑡 + 1ሻ. This backward activation allows the use of input
from future steps through a hyperbolic tangent activation
function with weighting matrices 𝐖௔௔௕ ∈ ℝ௡ೌ×௡ೌ and 𝐖௔௫௕ ∈ ℝ௡ೌ×௡ೣ, as well as a bias vector 𝐛௔௕ ∈ ℝ௡ೌ.

 𝐚௕ሺ𝑡ሻ = tanhሺ𝐖௔௫௕ 𝐱ሺ𝑡ሻ + 𝐖௔௔௕ 𝐚௕ሺ𝑡 + 1ሻ + 𝐛௔௕ሻ (15)

As shown in Fig. 4, both 𝐚௙ሺ0ሻ and 𝐚௕ሺ 𝑇 + 1ሻ are

needed to initialize the bidirectional recurrent neural
network. They are set as zero vectors, i.e. 𝐚௙ሺ0ሻ =𝐚௕ሺ𝑇 + 1ሻ = 𝟎௡ೌ. The last step in the BRNN is to combine
the information of 𝐚௙ሺ𝑡ሻ and 𝐚௕ሺ𝑡ሻ to estimate 𝐲ොሺ𝑡ሻ ∈ℝ௡೤. The estimation is accomplished through the hyperbolic
tangent function with weighting matrices 𝐖௬௔௙ ∈ ℝ௡೤×௡ೌ
and 𝐖௬௔௕ ∈ ℝ௡೤×௡ೌ, and bias vector 𝐛௬ ∈ ℝ௡೤.

 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔௙ 𝐚௙ሺ𝑡ሻ + 𝐖௬௔௕ 𝐚௕ሺ𝑡ሻ + 𝐛௬൯ (16)

For clarity, the BRNN illustration in Fig. 4 does not

include LSTM shown in Fig. 3, while the combination of
BRNN and LSTM modules is frequently utilized. To this
end, at the 𝑡-th step in the forward RNN, the inputs to the
LSTM module include forward variable 𝐚௙ሺ𝑡 − 1ሻ, 𝐱ሺ𝑡ሻ
and forward memory cell 𝐜௙ሺ𝑡 − 1ሻ. Forward candidate
memory cell 𝐜෤௙ሺ𝑡ሻ is calculated using Eq. (7), and
different gates in the forward RNN, 𝚪௢௙ሺ𝑡ሻ , 𝚪௨௙ሺ𝑡ሻ and 𝚪௙௙ሺ𝑡ሻ, are calculated using Eqs. (8), (9) and (10). Finally, 𝐜௙ሺ𝑡ሻ and 𝐚௙ሺ𝑡ሻ are derived using Eq. (11) and (12),
respectively. Similarly, the backward RNN integrates
LSTM, using corresponding backward variables 𝐚௕ሺ𝑡 + 1ሻ, 𝐜௕ሺ𝑡 + 1ሻ, 𝐜෤௕ሺ𝑡ሻ, 𝚪௢௕ሺ𝑡ሻ, 𝚪௨௕ሺ𝑡ሻ, 𝚪௙௕ሺ𝑡ሻ, 𝐜௕ሺ𝑡ሻ and 𝐚௕ሺ𝑡ሻ.

Fig. 4 Flow diagram of a bidirectional recurrent neural network (BRNN)

246

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

2.3 Attention mechanism to deal with long input

sequence and with different lengths of inputs
and outputs

Both RNN and BRNN described above require the input

and output lengths to be the same: 𝑇௫ = 𝑇௬ = 𝑇. However,
in many applications, the lengths of input sequence and
output sequence are different, i.e., 𝑇௫ ് 𝑇௬. Taking BWIM
(bridge weigh-in-motion) for example, the length of input
sequence depends on data collection time and sampling
frequency, while the length of output sequence is simply the
number of truck axle weights to be estimated. To this end,
we can use an encoder-decoder architecture that contains an
encoder RNN to extract information from input and a
decoder RNN to generate the output (Sutskever et al. 2014).
However, the performance of such an architecture
deteriorates as the length of input sequence increases,
because it is challenging for the neural network to
memorize all the inputs when the length of input sequence
is large. In order to improve the performance when dealing
with long input sequence with a large 𝑇௫ , the attention
mechanism was recently proposed (Chorowski et al. 2014).

When 𝑇௫ ് 𝑇௬ , suppose 𝑡௬ represents the sequence
step in the output (𝑡௬ = 1, 2, ⋯ , 𝑇௬), and 𝑡௫ represents the
sequence step in the input (𝑡௫ = 1, 2, ⋯ , 𝑇௫). Fig. 5 shows

the proposed neural network that incorporates attention
mechanism and can be used for BWIM. The network
contains three main stages: (1) pre-attention BRNN with
LSTM, (2) attention mechanism and (3) post-attention RNN
with LSTM. For clarity, LSTM is not illustrated in the
figure.

In detail, the pre-attention BRNN outputs intermediate
variable 𝐚ሺ𝑡௫ሻ ∈ ℝଶ௡ೌ. Together with intermediate variable 𝐬൫𝑡௬ − 1൯ from the post-attention RNN, 𝐚ሺ𝑡௫ሻ can be
used to decide the attention factors 𝛼൫𝑡௬, 𝑡௫൯ ∈ ሺ0,1ሻ
through a fully-connected network. With a value between 0
and 1, the attention factor determines how much each pre-
attention BRNN output 𝐚ሺ𝑡௫ሻ contributes into context
variable 𝐠ሺ𝑡௬ሻ ∈ ℝଶ௡ೌ, which is among the inputs to the
post-attention RNN finally generating 𝐲ො൫𝑡௬൯.

 𝐠൫𝑡௬൯ = ෍ 𝛼൫𝑡௬, 𝑡௫൯ ∙ 𝐚ሺ𝑡௫ሻ்ೣ௧ೣୀଵ (17)

The attention factor 𝛼൫𝑡௬, 𝑡௫൯ is calculated from

intermediate variable 𝐚ሺ𝑡௫ሻ from the pre-attention BRNN,
and intermediate variable 𝐬൫𝑡௬ − 1൯ fed backward from
the post-attention RNN. The inclusion of 𝐬൫𝑡௬ − 1൯ allows
the decision for later output to consider previous

Fig. 5 Proposed 3-stage neural network architecture for BWIM

Fig. 6 Attention mechanism

247

Zhichao Wang and Yang Wang

information. The details of the attention mechanism are
omitted in Fig. 5 for clarity, and provided in Fig. 6 instead.
In the attention mechanism, intermediate variables 𝐚ሺ𝑡௫ሻ
and 𝐬൫𝑡௬ − 1൯ are fed into a sigmoid function to first
calculate energy score 𝑒൫𝑡௬, 𝑡௫൯ ∈ ℝ with weightings 𝐰௘௦ ∈ ℝ௡ೞ and 𝐰௘௔ ∈ ℝଶ௡ೌ and 𝑏௘ ∈ ℝ.

 𝑒൫𝑡௬, 𝑡௫൯ = 𝜎൫𝐰௘௦்𝐬൫𝑡௬ − 1൯ + 𝐰௘௔் ∙ 𝐚ሺ𝑡௫ሻ + 𝑏௘൯,𝑡௫ = 1, 2, ⋯ , 𝑇௫
(18)

From the energy scores 𝑒൫𝑡௬, 𝑡௫൯ , a softmax
classification finds the attention factors 𝛼൫𝑡௬, 𝑡௫൯, which is
now the normalized weighting of 𝐚ሺ𝑡௫ሻ contributing into
context variable 𝐠൫𝑡௬൯ (see Eq. (17)). Note the sum of 𝛼൫𝑡௬, 𝑡௫൯ over 𝑡௫ = 1, 2, ⋯ , 𝑇௫ equals one, i.e., ∑ 𝛼൫𝑡௬, 𝑡௫൯ = 1்ೣ௧ೣୀଵ .

 𝛼൫𝑡௬, 𝑡௫൯ = exp ቀ𝑒൫𝑡௬, 𝑡௫൯ቁ∑ exp ቀ𝑒൫𝑡௬, 𝑡௫൯ቁ்ೣ௧ೣୀଵ (19)

Thus far, the complete architecture of our proposed

BWIM neural network has been introduced. By the three
stages in Fig. 5, we can count the total number of
parameters for an example network with 𝑇௫ = 100, 𝑛௫ =60 , 𝑛௔ = 1,000 , 𝑛௦ = 2,000 and 𝑛௬ = 1 . Here, 𝑛௔ is
the dimension of both 𝐚௙ሺ𝑡௫ሻ and 𝐚௕ሺ𝑡௫ሻ in Stage-1. In
total, the number of parameters from all three stages in this
example BWIM network is 40,502,002. This amount of
parameters, over 40 million, could be impossible to
efficiently train from only a decade ago, but fairly common
in today’s AI applications (Zhang et al. 2019).

3. Numerical simulation

Section 3.1 introduces the highway bridge based on

which this study is developed, as well as the corresponding
finite element model. Section 3.2 describes the randomized
vehicle parameters for bridge response simulation which
will be used toward the training, validation, and testing data
sets for the neural network.

3.1 Bridge modeling

Fig. 7 shows the testbed bridge on which this study is

performed. The two-lane bridge is located in LaGrange,
GA. The skewed bridge consists of four spans and supports
two lanes of traffic in one direction. This work focuses on
the simply supported span #1 where traffic enters; the
simply supported span is expected to have the least
interaction with the other spans (Fig. 8). Also, because the
span is fairly short, less interaction in bridge dynamics is
expected between preceding vehicles and later vehicles. The
concrete bridge deck is supported by six I-shaped steel
girders, denoted as G1 ~ G6. The simply supported girders
are spaced 7 feet and 10 inches away from one another,
connected by lateral diaphragms. Cross section view of the
bridge deck is shown in Fig. 9.

Using a commercial software package LS-DYNA, a
finite element model of bridge span #1 is constructed. In the
modeling process, barriers, girders, endbeam, endwall and
lateral diaphragms are all modeled with beam elements,
while the concrete deck is modeled with shell elements. As
shown in Fig. 8, a pin support is provided at the endwall,
and a roller at the endbeam. Except for the six steel girders
and diaphragms, all other bridge components are made of

Fig. 7 Photo of the steel-girder bridge under study

Fig. 8 Plan view of the LS-DYNA model for span #1

248

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

Table 1 Nominal material property

Components Density
(𝜌: lb/in3)

Young’s modulus
(𝐸: ksi)

Poisson’s ratio
(𝜈)

Steel 𝐸௦ 0.283 30,000 0.29
Concrete 𝐸௖ 0.0868 3,605 0.2

Fig. 10 Mode shape and frequency for the first four modes

concrete. The nominal material properties are listed in Table
1.

The first four simulated vibration modes of the span are
shown in Fig. 10. Because of the relatively short span
length, the resonance frequencies are relatively high, with
first mode at 8.17 Hz. As expected, the first mode shape
shows single-curvature bending, while the higher modes are
more complex. Rayleigh damping is set at 2% for the first
two resonance frequencies.

3.2 Simulated traffic scenarios

When only one vehicle passes through the bridge, it is

relatively easy to estimate the vehicle weight through
BWIM. However, when multiple vehicles pass through the
bridge at the same time, the problem becomes more
challenging. Considering the size of the short bridge span,

we focus on three different vehicle scenarios shown in Fig.
11. Because the objective is to identify overloaded large
trucks, scenarios with only smaller vehicles (simply named
as cars for brevity) are not necessary and thus not
considered.

Scenario 1: Only one truck traveling in any one of the

two lanes.
Scenario 2: One truck in one lane and one car in another

lane.
Scenario 3: One truck in one lane and another truck in

another lane.

For Scenarios 2 and 3, either one of the two vehicles

may enter the bridge first, and in any of the two lanes. For
all three scenarios, vibration data collection is assumed to
start when a vehicle first enters the bridge. In order to
mimic realistic traffic, different combinations of axle
numbers, axle weights, axle distances, vehicle distances,
vehicle speeds and vehicle lateral positions need to be
considered. In addition, spring-mass-damper models are
used to describe vehicle dynamics (Fig. 12), with
randomized combinations of stiffness values and damping
values associated with each axle mass. In order to improve
the performance of deep learning, uniform distributions are
assigned for all parameter randomizations.

Fig. 12 Spring (axle stiffness) and damper (axle damping)

associated with axle mass

Fig. 9 Cross section view of the bridge deck (looking along the traffic direction)

Fig. 11 Different scenarios being considered

249

Zhichao Wang and Yang Wang

(i) Axle number: The limit for a standalone single axle
weight is specified as 9.05 tons or 20,340 lbf, while
the limit for tandem axle weight is specified as 18.1
tons or 40,680 lbf in the State of Georgia, USA
(GDOT 2020). Here, a tandem axle refers to a group
of two or more closely-spaced axles, all within 96
inches and combined together. The official limit of
40,680 lbf is specified for the entire tandem, instead
of for every single axle in the tandem. Therefore,
toward BWIM, a group of closely-spaced axles
within 96 inches is regarded as one tandem axle; we
identify their total weight together instead of the
weights of individual actual/physical axles. In this
study, a car is assumed to have 2 or 3 standalone
single axles (the latter allowing a trailer), and no
tandem axle. A truck can have 2 ~ 5 axles; each
being either a standalone single axle or a tandem
axle. For brevity, if not specified, hereinafter the
word “axle” by default may refer to either a
standalone single axle (not belonging to a tandem),
or a tandem axle (a group of two or more closely-
spaced axles within 96 inches).

(ii) Axle weight: Similar to the word “axle”, we use the
phrase “axle weight” to refer to either the weight of
a standalone single axle, or the weight of a tandem
axle (containing multiple closely-spaced axles).
Recall that we assume a car has two or three
standalone single axles and does not have any
tandem axles. The axle weight in a car can vary
from 0.5 to 2.0 tons (1,125 ~ 4,500 lbf). On the
other hand, a truck can have 2 ~ 5 standalone single
axles and/or tandem axles. In this study, the axle
weight in for truck is set as a uniform distribution
from 2.0 to 30.0 tons (4,500~67,550 lbf), which can
be much heavier than a car axle. Note that the
maximum axle weight of 67,550 lbf is set around
66% overweight of the GDOT limit of 40,680 lbf.

(iii) Axle distance: The phrase “axle distance” represents
the distance between the center of two axles, where
each axle can be either a standalone single axle or a
tandem axle. Depending on vehicle speed, an axle
distance is related to the corresponding time gap
between the entrances of two axles. The axle
distance of a car is randomized from 0.05 to 0.35
seconds; the axle distance of a truck can vary from
0.1 to 0.7 seconds.

(iv) Axle stiffness and damping: As shown in Fig. 12, a
mass-spring-damper model describes each axle. The
axle resonance frequency 𝜔௡ is modeled as a uniform

a uniform distribution from 1 to 6 Hz (6.28~37.70
rad/s), while the damping ratio 𝜁 is uniformly
distributed from 0% to 20%. Consequently, the
stiffness and damping parameters are calculated as 𝑘 = 𝑚𝜔௡ଶ and 𝑐 = 2𝑚𝜔௡𝜁.

(v) Vehicle distance: As shown in Fig. 11, Scenarios 2
and 3 both have two vehicles involved. The distance
between the two vehicles is also randomized for
neural network training. Similar as axle distance,
vehicle distance is modeled by the time gap
between the entrance times of two vehicles. The
corresponding random variable has a uniform
distribution in the interval 0~1 second.

(vi) Vehicle speed: For efficient data generation and
training, the speed of the truck is modeled as a
uniform distribution in the interval 30~80 mph
(13.33~35.56 m/s), while the speed of car is
modeled as a uniform distribution in the interval
30~90 mph (13.33~40 m/s).

(vii) Transverse vehicle position: As summarized in the
literature review, many conventional methods
provide inaccurate BWIM results when the
transverse vehicle position changes. To avoid this
issue, transverse position of a vehicle within the 3.4
meter-wide lane is also randomized in the training
data generation. As shown in Fig. 13, the distance
from centerline of a car to the lane center is
modeled in a uniform distribution -0.6~0.6 m. In
addition, the track width (distance between left and
right wheels) of a car is randomized between 1.5~2
m. Similarly, the distance from the centerline of a
truck to the lane center can be -0.4~0.4 m; the track
width of a truck is randomized at 2~2.6 m.

During the simulation, the bridge vibration data starts to

be recorded when the first vehicle enters the bridge. The
recording ends after the last vehicle leaves the bridge. The
longest measurement recording duration is set as 5 seconds,
which is sufficient for the worst-case scenario with long and
slow vehicles.

4. Recurrent neural network for bridge weigh-in-
motion

Section 4.1 details the how the proposed 3-stage BRNN

network is applied on the BWIM application, including the
input and output data structures. Section 4.2 describes the
performance of the proposed network and compares it with

Fig. 13 Transverse wheel positions (plan view)

250

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

the conventional MFI method.

4.1 Input and output data structures for the

proposed neural network

4.1.1 Strain history simulation as input
While performing simulation with each randomized

parameter set, strain response at selected locations is
recorded as the sensor measurement data for BWIM. As
shown in Fig. 14, six “virtual” strain gages are allocated for
the entire bridge span, one on each girder. Every strain gage
is installed on the bottom flange of a girder. The sampling
frequency is set as 200 Hz. A low-pass Butterworth filter is
applied to the strain data, with cutoff frequency at 30 Hz.
As a result, six strain histories at 200 Hz for five seconds
provide a 6-by-1,000 matrix (1,000 samples in every strain
history).

For each of the three traffic scenarios in Fig. 11,
simulations are performed by randomizing the parameters
described in Section 3.2. Fig. 15 plots 2.5 seconds of
example strain data for simulating a Scenario 3 with two
trucks driving through. The truck on the left lane enters the
bridge first, while the truck on the right lane enters the
bridge later. As a result, the peaks appear first in strain
gages SG2 and SG3 (under the left lane), and later in SG4
(under the right lane). Since no vehicle traveled in the

emergency lane, SG6 is farthest away from traffic and
shows lowest amplitude as expected.

In total, LS-DYNA performed 10,000 randomized
simulations of Scenario 1, 15,000 randomized simulations
of Scenario 2, and 20,000 randomized simulations of
Scenario 3. Towards deep learning, these original
simulation data sets are then divided into training,
validation and test sets. For each of the three scenarios, 80%
of the original data sets are used for training, another 10%
are used for validation, and the final 10% are used for
testing. For each scenario, these data set numbers from
original LS-DYNA simulation are summarized in the first
half of Table 2.

4.1.2 Input and output data of the BWIM neural

network
To mimic practical application, Gaussian noise is added

to the original data. For each sensor time history 𝐱෤ ∈ ℝଵ,଴଴଴
(recall 200 Hz for 5 secs), the standard deviation is first
evaluated as s. The corresponding noise vector 𝐧 ∈ ℝଵ,଴଴଴
is formed with a standard normal distribution where 𝑛௜~𝒩ሺ0,1ሻ. To adjust the noise level, we use variable 𝜂
with ten different percentage values, at 1%, 2%, ⋯ , 10%.
The corresponding noisy history 𝐱 ∈ ℝଵ,଴଴଴ produced from
original simulated history 𝐱෤ is thus

Fig. 14 Six strain measurement locations

Fig. 15 Strain response for two trucks driving through

251

Zhichao Wang and Yang Wang

Table 2 The number of original data sets and augmented
data sets

Different cases Scenario 1 Scenario 2 Scenario 3
Original simulation data
sets 𝐱෤ (total number) 10,000 15,000 20,000

Training set (80%) 8,000 12,000 16,000
Validation set (10%) 1,000 1,500 2,000

Test set (10%) 1,000 1,500 2,000
Augmented data sets 𝐱

(total number) 100,000 150,000 200,000

Training set (80%) 80,000 120,000 160,000
Validation set (10%) 10,000 15,000 20,000

Test set (10%) 10,000 15,000 20,000

 𝐱 = 𝐱෤ + 𝜂 ∙ 𝑠 ∙ 𝐧 (20)

Since the noise level 𝜂 has ten different values, each

original data set 𝐱෤ provides ten augmented data sets 𝐱. As
a result, taking Scenario 1 for example, the 8,000 training
data sets from the original simulation is augmented into
80,000 data sets for the actual network training. As shown
in Table 2, similar augmentation took place for the
validation and test sets of Scenario 1, and for the data sets
of other two scenarios. The augmentation has two benefits.
First, ten times more data sets become immediately
available for training the neural network, without entailing
computationally expensive dynamic time history simulation
of the highly detailed FEM model in LS-DYNA. Second,
training the network with varied sensor noise levels makes
the network more robust against sensor noises. Standard
normalization is performed on the augmented strain history
prior to feeding into the neural network.

As described earlier, five seconds of six strain measure-
ments at 200 Hz provide 6,000 data points. As input to the
neural network, a natural choice would be setting 𝑛௫ = 6

and 𝑇௫ = 1000, i.e., each 𝐱ሺ𝑡௫ሻ ∈ ℝ଺ with the sequence
step number 𝑡௫ = 1,2, … ,1000 . However, despite the
ability of LSTM modules handling longer input sequences, 𝑇௫ = 1000 still proves to be impractical if not infeasible
given current hardware limitations (Cho et al. 2014). Thus,
reshaping is performed to the input data and illustrated in
Fig. 16. The entire sequence of 1,000 sampling steps is
divided into 𝑇௫ =100 pieces of 10 steps (the corresponding
time length for each piece of 10 sampling steps is 0.05
seconds = 10 × 1 / 200 Hz). Ten samples from six strain
sensors together are taken as input at one time step 𝑡௫ to
the network. Therefore, the length of each input vector 𝐱ሺ𝑡௫ሻ is 𝑛௫ = 6 × 10 = 60 . Fig. 16 illustrates how to
transform the original 1,000 samples at six strain gages into
new shapes, data from the first two sampling steps at
stacked as the beginning part of 𝐱ሺ1ሻ ∈ ℝ଺଴, and similarly
data from the final two sampling steps are stacked as the
ending part of 𝐱ሺ100ሻ ∈ ℝ଺଴. In summary, this reshaping
uses hyperparameters 𝑛௫ = 60 and 𝑇௫ = 100.

It’s obvious that different reshaping of the strain gage
data could have been performed toward input into the
network. To investigate the effect of different dimension
hyperparameters, the following sections will also study a
different case of 𝑛௫ = 30 and 𝑇௫ = 200. In other words,
0.025 seconds (i.e., 5 sampling steps) of six strain gage data
are used as one input sequence.

The output of a BWIM neural network contains axle
weights. As introduced earlier, a known output used for
training a neural network is termed a label. As shown in
Fig. 11, the test span has 2 vehicles traveling at most. Also
recall that the weight of a tandem axle is considered
altogether, and we assume that the maximum number of
axles (either standalone or tandem) per vehicle is 5 axles on
a truck. Thus, maximum number of axle weights on the test
span is 5 + 5 = 10. This is set as the length of output
sequence, 𝑇௬ = 10, and the output at each step is a scalar 𝑦ො൫𝑡௬൯ ∈ ℝ that represents one out of the 10 axle weights.
The first five numbers represent the axle weights in the left

Fig. 16 Input for recurrent neural network when 10×6 samples are lumped as one input sequence step

252

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

Fig. 17 A truck with one standalone front axle and one
tandem axle that includes two closely-spaced rear
axles

lane, while the last five numbers represent the axle weights
in the right lane. If there is no vehicle in one lane, all the
five corresponding values should be zero for an output
label. If the number of axles is smaller than five, then the
remaining output entries should be zero. Taking Fig. 17 for
example, suppose that the truck is in the left lane. Then, the
output label should have 𝑦ሺ1ሻ = 15.5 kip , 𝑦ሺ2ሻ =21.3 kip for the tandem axle, and yሺ3ሻ = ⋯ = yሺ10ሻ = 0.

4.2 BRNN performance and comparison with MFI

4.2.1 BRNN results
As described in Section 4.1.2, we study two sets of

dimension hyperparameters for the input data: (i) 𝑇௫ =100, i.e., 𝑛௫ = 60; (ii) 𝑇௫ = 200, i.e., 𝑛௫ = 30. For both
input reshaping cases, the length of output sequence is 𝑇௬ = 10 and the output at each step is scalar 𝑦൫𝑡௬൯ ∈ ℝ. In
addition, two other major dimension hyperparameters are
listed as follows.

(i) As shown in Stage-1 of Fig. 5, the pre-attention
BRNN with LSTM, both forward and backward
intermediate variables 𝐚୤ሺ𝑡௫ሻ and 𝐚ୠሺ𝑡௫ሻ have
dimension 𝑛௔ . After some trial-and-error, 𝑛௔ is
chosen to be 1,000 in this study.

(ii) Both Stage-2 and Stage-3 involve another post-
attention BRNN intermediate variable 𝐬൫𝑡௬൯ ∈ ℝ௡ೞ,
whose dimension is denoted as 𝑛௦ and chosen as
2,000.

The proposed BRNN is trained using the augmented
simulation data from all three scenarios (Table 2). With 𝑛௔
and 𝑛௦ fixed above, the network performance is studied for
two cases of input hyperparameters: (i) 𝑇௫ = 100 ; (ii) 𝑇௫ = 200. In this BWIM application, we adopt a simple
performance index that quantifies the relative error of truck
weight identification, averaged between all trucks in the
simulation.

 𝑒 = 1𝑚 ෍ ห𝑊ሺ𝑖ሻ − 𝑊෡ ሺ𝑖ሻห𝑊ሺ𝑖ሻ௠௜ୀଵ (21)

Here 𝑊ሺ𝑖ሻ ∈ ℝ is the actual weight of the 𝑖-th truck, 𝑊෡ ሺ𝑖ሻ ∈ ℝ is the identified whole weight of the 𝑖-th truck

and 𝑚 represents the total number of trucks. Since cars are
much lighter in BWIM, they are neglected in this index.
Table 3 shows the error index e for the training set,
validation set and test set. The time required to train the
neural network doubles as the number of input 𝑇௫

Table 3 BRNN performance evaluated by error index e 𝑇௫ Training time
(hour)

Training error 𝑒
Validation

error 𝑒
Test error𝑒

100 67.73 1.54% 2.65% 2.38%

200 116.37 1.39% 2.32% 1.88%

increases from 100 to 200. The increase in computation
time brings about better network performance across all
three data sets. The BRNN parameters trained from 𝑇௫ =200 are used next for comparison with MFI.

4.2.2 Comparison with MFI method
This section compares the performance of the proposed

BRNN approach with the traditional moving force
identification (MFI) method, which identifies the time
history of contact forces between the bridge deck and
vehicle axles using a finite element model. The time history
of contact forces is then used to derive the axle weights of a
vehicle. In particular, the comparison is performed with
MFI with dynamic programming (Law and Fang 2001,
Gonzalez et al. 2008). The basic formulation of the MFI
method starts with the bridge dynamics equation for an N-
DOF model

 𝐌𝐪ሷ ሺ𝑡ሻ + 𝐂𝐪ሶ ሺ𝑡ሻ + 𝐊𝐪ሺ𝑡ሻ = 𝐋ሺ𝑡ሻ𝐩ሺ𝑡ሻ (22)

where 𝐪ሺ𝑡ሻ ∈ ℝே is the displacement vector; 𝐌 ∈ ℝே×ே, 𝐂 ∈ ℝே×ே , and 𝐊 ∈ ℝே×ே are the time invariant mass,
Rayleigh damping, and stiffness matrices of the bridge
model; 𝐩 ∈ ℝ௡ೠ is the external force vector, containing
axle weights in BWIM application, and 𝑛௨ represents the
number of forces to be identified, which varies from two to
ten in the three traffic scenarios under study. Finally, 𝐋ሺ𝑡ሻ ∈ ℝே×௡ೠ is the time-varying force location matrix
that represents the time-changing locations of vehicles.
Thus, the MFI approach requires accurate vehicle positions
traveling through the bridge.

Since the total DOFs of the bridge is large, model
reduction is necessary for computational efficiency. The
total number of DOFs after model reduction is 𝑛௭ ∈ ℝ.

 𝐪ሺ𝑡ሻ ൎ 𝚽𝐳ሺ𝑡ሻ (23)

where 𝚽 ∈ ℝே×௡೥ is a matrix with the first 𝑛௭
normalized eigenvector; 𝐳ሺ𝑡ሻ ∈ ℝ௡೥ is the modal
coordinates. We use 𝛼 ∈ ℝ and 𝛽 ∈ ℝ to denote the
Rayleigh damping coefficients, and 𝛀 ∈ ℝ௡೥×௡೥ to denote
a diagonal matrix whose diagonal entries contain the first 𝑛௭ number of resonance frequenices.

 𝐳ሷሺ𝑡ሻ + ൫𝛼𝐈௡೥×௡೥ + 𝛽𝛀൯𝐳ሶሺ𝑡ሻ + 𝛀𝐳ሺ𝑡ሻ = 𝚽୘𝐋ሺ𝑡ሻ𝐩ሺ𝑡ሻ (24)

In this numerical example, we keep the first fifty modes,

i.e., 𝑛௭ = 50. The corresponding frequencies range from
8.17 Hz to 140.24 Hz, which should be sufficient for the
MFI method to capture the bridge dynamics. From modal
coordinates 𝐳ሺ𝑡ሻ , standard state-space formulation is
introduced.

253

Zhichao Wang and Yang Wang

 𝐗ሶ ሺ𝑡ሻ = 𝐀𝐗ሺ𝑡ሻ + 𝐁ሺ𝑡ሻ𝐩ሺ𝑡ሻ (25)

where 𝐗ሺ𝑡ሻ = ൤𝐳ሺ𝑡ሻ𝐳ሶሺ𝑡ሻ൨ ∈ ℝଶ௡೥ , 𝐀 = ൤ 𝟎 𝐈−𝛀 −ሺ𝛼𝐈 + 𝛽𝛀ሻ൨ ∈ℝଶ௡೥×ଶ௡೥ and 𝐁ሺ𝑡ሻ = ൤ 𝟎௡೥×௡ೠ𝚽୘𝐋ሺ𝑡ሻ൨ ∈ ℝଶ௡೥×௡ೠ . The

continuous-time state-space formulation is then converted
to discrete-time domain using standard zero-order hold,
with certain sampling time period. Using discrete-time
index j, the state and input vectors are denoted as 𝐗௝ and 𝐩௝, respectively. Suppose there are 𝑛௠ number of sensor
measurements. We use 𝛆௝ୱ୧୫ ∈ ℝ௡೘ to denote the
simulated strain vector at the 𝑗-th time step. The vector can
be obtained by a simple linear transformation from state
vector 𝐗௝ that contains displacements information. In the
sense that once the structural model is chosen, strain history
is determined by the excitation history = ൛𝐩଴, 𝐩ଵ, … , 𝐩௡೟ൟ ,
we can denote the simulated strain 𝛆௝ୱ୧୫ሺ𝓟ሻ as a function
of the input 𝓟.

 While MFI attempts to minimize the difference
between simulated and measured strain, early researchers
found first-order Tikhonov regularization significantly
improves MFI performance (Gonzalez et al. 2008). The
regularization takes 𝓟 as the optimization variable and
minimizes not only the difference between simulated 𝛆௝ୱ୧୫
and measured strain 𝛆௝୫ୣୟୱ , but also the input change
between two neighboring time steps.

 minimize𝓟ୀ൛𝐩బ,,…,𝐩೙೟ൟ ෍ ൤ቀ𝛆௝୫ୣୟୱ − 𝛆௝ୱ୧୫ሺ𝓟ሻቁ் 𝐖 ቀ𝛆௝୫ୣୟୱ௡೟ିଵ௝ୀ଴− 𝛆௝ୱ୧୫ሺ𝓟ሻቁ+ ൫𝐩௝ାଵ − 𝐩௝൯்𝐑൫𝐩௝ାଵ − 𝐩௝൯൨

(26)

Here 𝐖 ∈ ℝ௡೘×௡೘ is the weighting matrix (usually

chosen as identity); 𝐑 ∈ ℝ௡ೠ×௡ೠ is the regularization
matrix and is required to be tuned.

As mentioned earlier, the application of moving force
identification requires information including axle number,
axle distance, vehicle distance, vehicle speed and transverse
vehicle position, etc. (Meanwhile, it is worth noting that
when estimating vehicle weight the trained BRNN does not
require any such vehicle information; all that’s required by
BRNN is strain history). While these data can be measured
through certa in instruments on the bridge, the
measurements inevitably come with errors. For example, in
practice the number of vehicle axles can be difficult to

capture by sensors, and a mistaken number of axles can
cause significant error in the MFI results. When comparing
with BRNN, we assume the axle number is captured
correctly so that MFI can provide better (and more
comparable) performance. Instead, we consider the effects
of more commonly occurring errors to MFI, by introducing
from 0% to 10% errors to vehicle information including
axle distance, vehicle distance, vehicle speed and transverse
vehicle position.

In the comparison between MFI and the proposed
BRNN approach, four examples are chosen randomly from
the three traffic scenarios (two examples from Scenario 1,
and one each from Scenarios 2 and 3). Table 4 shows the
truck weight estimation error by BRNN and MFI, for the
trucks in different examples. Among all the five trucks from
four examples, the BRNN provides the lowest error of 0.1%
and highest error of 2.00%. When the “correct” vehicle
information is available to MFI, a largest error of 6.34% is
observed. In addition, when the vehicle information with
“error” is used by MFI, all estimation errors are highly
unacceptable. The fact that the trained BRNN does not
require any such vehicle information for estimating vehicle
weight is shown to be a significant advantage.

5. Conclusions

This paper proposes a novel 3-stage BRNN network for

bridge weigh-in-motion. The proposed neural network
incorporates both long short-term memory (LSTM) and
attention mechanism to improve the network performance.
The neural network is trained with strain measurements as
input and axle weights as output. In order to acquire the
large data volume to train the network, a finite element
bridge model is built through the commercial software
package LS-DYNA. To mimic everyday traffic scenarios,
tens of thousands of randomized vehicle formations are
simulated, with different combinations of vehicle types,
spacings, speeds, axle weights, axle distances, etc. Dynamic
response from each of the randomized traffic scenarios is
recorded for training the BRNN.

Numerical results demonstrate that the BRNN network
achieves high accuracy in estimating vehicle weights, in
comparison with a conventional moving force identification
(MFI) method. Furthermore, the MFI estimation
performance is shown to deteriorate rapidly with errors in
the vehicle information such as speed, transverse position,
vehicle interval and axle distances. The fact that the trained
BRNN does not require such information for estimating

Table 4 Relative error of truck weight estimation for four examples by BRNN and MFI

Examples Truck weight
(lbf) BRNN MFI - “correct”

vehicle info
MFI - vehicle info

with “error”

Ex. 1 – 2-axle truck (Scenario 1) 75,825.8 0.83% 4.09% 16.90%
Ex. 2 – 3-axle truck (Scenario 1) 60,988.0 2.00% 1.19% 18.42%

Ex. 3 – 3-axle car and 2-axle truck (Scenario 2) 49,574.0 0.10% 6.34% 38.68%

Ex. 4 – two trucks
(Scenario 3)

Truck A (4 axles) 91,173.2 1.46% 3.33% 28.99%
Truck B (3 axles) 79,647.2 1.48% 1.76% 25.22%

254

Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism

vehicle weight proves to be a significant advantage.
While the proposed BRNN method is shown to

accurately identify vehicle weight using simulated bridge
data, future research is needed to validate the performance
in field experiments. Though we have modeled 10%
Gaussian error in strain measurements, there can still be
other sources of uncertainties in practice. Secondly, future
simplification of the neural network can help speed up the
training process and reduce the demand for training data
sets.

References

Chan, T.H.T., Law, S.S., Yung, T.H. and Yuan, X.R. (1999), “An

interpretive method for moving force identification”, J. Sound
Vib., 219(3), 503-524. https://doi.org/10.1006/jsvi.1998.1904

Cho, K., Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014),
“On the properties of neural machine translation: encoder-
decoder approaches”, Proceedings of SSST-8, Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation,
Doha, Qatar, October.

Chorowski, J., Bahdanau, D., Cho, K. and Bengio, Y. (2014),
“End-to-end continuous speech recognition using attention-
based recurrent NN: first results”, Deep Learning and
Representation Learning Workshop: NIPS 2014, Montreal, QC,
Canada, December.

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014),
“Empirical evaluation of gated recurrent neural networks on
sequence modeling”, Deep Learning and Representation
Learning Workshop: NIPS 2014, Montreal, QC, Canada.

Das, P. and Deka, G. (2016), History and Evolution of GPU
Architecture, IGI Global, Hershey, PA, USA.

Fu, G. and Hag-Elsafi, O. (2000), “Vehicular overloads: load
model, bridge safety, and permit checking”, J. Bridge Eng.
ASCE, 5(1), 49-57.
https://doi.org/10.1061/(ASCE)1084-0702(2000)5:1(49)

GDOT (2020), Highways, bridges and ferries, in Government of
Georgia (ed.), Official Code of Georgia.

Gonzalez, A., Rowley, C. and OBrien, E. (2008), “A general
solution to the identification of moving vehicle forces on a
bridge”, Int. J. Numer. Methods Eng., 75, 335-354.
https://doi.org/10.1002/nme.2262

Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep
Learning, MIT Press, Cambridge, MA, USA.

Graves, A., Mohamed, A. and Hinton, G. (2013), “Speech
recognition with deep recurrent neural networks”, Proceedings
of 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, Vancouver, BC, Canada, May.

Hochreiter, S. and Schmidhuber, J. (1997), “Long short-term
memory”, Neural Computat., 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Kawakatsu, T., Aihara, K., Takasu, A. and Adachi, J. (2019),
“Deep sensing approach to single-sensor vehicle weighing
system on bridges”, IEEE Sensors J., 19(1), 243-256.
https://doi.org/10.1109/JSEN.2018.2872839

Kim, S., Lee, J., Park, M.-S. and Jo, B.-W. (2009), “Vehicle signal
analysis using artificial neural networks for a bridge weigh-in-
motion system”, IEEE Sensors J., 9(10), 7943-7956.
https://doi.org/10.3390/s91007943

Krizhevsky, A., Sutskever, I. and Hinton, G. (2012), “ImageNet
classification with deep convolutional neural networks”,
Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386

Law, S.S. and Fang, Y.L. (2001), “Moving force identification:
optimal state estimation approach”, J. Sound Vib., 239(2), 233-
254. https://doi.org/10.1006/jsvi.2000.3118

Law, S.S., Chan, T.H.T. and Zeng, Q.H. (1997), “Moving force
identification: a time domain method”, J. Sound Vib., 201(1), 1-
22. https://doi.org/10.1006/jsvi.1996.0774

Law, S.S., Chan, T.H.T. and Zeng, Q.H. (1999), “Moving force
identification—a frequency and time domains analysis”, J. Dyn.
Syst. Measure. Control ASME, 121(3), 394-401.
https://doi.org/10.1115/1.2802487

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998),
“Gradient-based learning applied to document recognition”,
Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791

LeCun, Y., Bengio, Y. and Hinton, G. (2015), “Deep learning”,
Nature, 521(7553), 436-444.
https://doi.org/10.1038/nature14539

Lydon, M., Taylor, S.E., Robinson, D., Mufti, A. and Brien, E.J.O.
(2016), “Recent developments in bridge weigh in motion (B-
Wim)”, J. Civil Struct. Health Monitor., 6(1), 69-81.
https://doi.org/10.1007/s13349-015-0119-6

Minsky, M. and Papert, S. (1969), Perceptrons: An Introduction to
Computational Geometry, MIT Press, Cambridge, MA, USA.

Moses, F. (1979), “Weigh-in-motion system using instrumented
bridges”, J. Transport. Eng., 105(3), 233-249.

O’Connor, C. and Chan, T.H.T. (1988), “Dynamic wheel loads
from bridge strains”, J. Struct. Eng. ASCE, 114(8), 1703-1723.
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1703)

Quilligan, M. (2003), “Bridge weigh-in motion : development of a
2-D multi-vehicle algorithm”, Trita-BKN. Bulletin, 69, pp. viii,
144, Byggvetenskap, Stockholm, Sweden.

Rosenblatt, F. (1957), The Perceptron — a Perceiving and
Recognizing Automaton, Cornell Aeronautical Laboratory.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986),
“Learning representations by back-propagating errors”, Nature,
323, 533-536. https://doi.org/10.1038/323533a0

Schuster, M. and Paliwal, K.K. (1997), “Bidirectional recurrent
neural networks”, IEEE Transact. Signal Process., 45(11),
2673-2681. https://doi.org/10.1109/78.650093

Selfridge, O.G. (1959), “Pandemonium: a paradigm for learning”,
In: Neurocomputing: Foundations of Research, pp. 115-122.

Skokandic, D., Znidaric, A., Mandic-Ivankovic, A. and Kreslin, M.
(2017), “Application of bridge weigh-in-motion measurements
in assessment of existing road bridges”, Proceedings of the
Value of Structural Health Monitoring for the Reliable Bridge
Management, Zagreb, Croatia, March.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R. (2014), “Dropout: a simple way to prevent
neural networks from overfitting”, J. Mach. Learn. Res., 15(56),
1929-1958.

Sutskever, I., Vinyals, O. and Le, Q.V. (2014), “Sequence to
sequence learning with neural networks”, Proceedings of 2014
Advances in Neural Information Processing Systems, Montreal,
QC, Canada, December.

Tikhonov, A.N. and Arsenin, V.Y. (1977), Solutions of Ill-Posed
Problems, Kluwer Academic Publishers.

Wu, S. and Shi, Z. (2006), “Identification of vehicle axle loads
based on FEM-Wavelet-Galerkin method”, J. Vib. Eng., 19(4),
494-498.

Yang, J.C., Yu, K., Gong, Y.H. and Huang, T. (2009), “Linear
spatial pyramid matching using sparse coding for image
classification”, Proceedings of 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA,
June. https://doi.org/10.1109/CVPR.2009.5206757

Yu, Y., Cai, C.S. and Deng, L. (2016), “State-of-the-art review on
bridge weigh-in-motion technology”, Adv. Struct. Eng. SAGE,
19(9), 1514-1530. https://doi.org/10.1177/1369433216655922

Zhang, R., Lv, W. and Guo, Y. (2010), “A vehicle weigh-in-motion
system based on Hopfield neural network adaptive filter”,
Proceedings of 2010 International Conference on

255

Zhichao Wang and Yang Wang

Communications and Mobile Computing, Shenzhen,
Guangdong, China, April.
https://doi.org/10.1109/CMC.2010.11

Zhang, Q.R., Zhang, M., Chen, T.H., Sun, Z.F., Ma, Y.Z. and Yu,
B. (2019), “Recent advances in convolutional neural network
acceleration”, Neurocomputing, 323, 37-51.
https://doi.org/10.1016/j.neucom.2018.09.038

Zhu, X.Q. and Law, S.S. (2015), “Structural health monitoring
based on vehicle-bridge interaction: accomplishments and
challenges”, Adv. Struct. Eng. SAGE, 18(12), 1999-2015.
https://doi.org/10.1260/1369-4332.18.12.1999

Zhu, X.Q. and Law, S.S. (2016), “Recent developments in inverse
problems of vehicle–bridge interaction dynamics”, J. Civil
Struct. Health Monitor., 6(1), 107-128.
https://doi.org/10.1007/s13349-016-0155-x

Zhu, X.Q., Law, S.S. and Bu, J.Q. (2006), “A state space
formulation for moving loads identification”, J. Vib. Acoust.
ASME, 128(4), 509-520. https://doi.org/10.1115/1.2202149

256

