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1. Introduction 

 
While highway transportation is essential for flow of 

goods and people in a modern society, overloaded trucks 
have become a growing concern in bridge infrastructure 
maintenance (Fu and Hag-Elsafi 2000). Highway pavement 
sustains the most direct consequences from overloaded 
trucks, while occasionally bridge structures can be 
endangered. Over the past four decades, many researchers 
have proposed different methods for detecting illegally 
overloaded trucks passing through a bridge from the bridge 
response measurements. Among those techniques is bridge 
weigh-in-motion (BWIM), which measures the dynamic 
response of a bridge structure and uses the response data to 
back derive the weight of vehicles driving over the bridge 
(Lydon et al. 2016, Yu et al. 2016). The installation of 
under-deck BWIM systems usually does not require traffic 
closure and is relatively low cost. Compared with pavement 
weigh-in-motion, another obvious benefit of BWIM is that 
the bridge response data can also be utilized to monitor the 
condition of the bridge structure itself (Skokandic et al. 
2017). 

Despite its advantages, the main challenge of BWIM 
lies in the robust numerical algorithm that can accurately 
estimate vehicle weight using dynamic bridge response 
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data. Such data often contains strain or acceleration 
response of the bridge girders or deck (Zhu and Law 2015, 
2016). To this end, Moses’ algorithm is acknowledged as 
the first widely adopted BWIM algorithm (Moses 1979). 
The algorithm uses static influence lines to predict the 
response of a bridge girder and derives axle weights by 
minimizing the difference between predicted and measured 
girder responses. Despite its early popularity, the algorithm 
has some major limitations because the statically derived 
influence lines cannot consider bridge vibration dynamics. 
In addition, the Moses’ algorithm omits the effect of 
transverse position of a vehicle on the bridge deck. 
Quilligan (2003) later proposed an influence area method to 
include the effect of transverse position, though the 
computational cost increased significantly, and the method 
still cannot consider the bridge vibration dynamics. 

In order to achieve more accurate truck weight 
estimation using dynamic bridge response data, in the past 
few decades, most BWIM efforts have been made toward 
the consideration of bridge vibration dynamics. Relying on 
either an analytical mechanics model of a girder, or a finite 
element structural model of the bridge superstructure, many 
of these methods attempt to identify the time history of the 
contact force between a vehicle axle and the bridge deck; 
these methods are collectively referred as MFI (moving 
force identification) or MLI (moving load identification). 
Among earlier examples of these methods, an analytical 
model is needed to obtain bridge dynamic response. Then, 
an optimization problem with the contact force as an 
objective function variable is solved to minimize the 
difference between the analytical response and sensor 
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measurement. Since the problems are often ill-posed, 
Tikhonov regularization (Tikhonov and Arsenin 1977) is 
usually adopted for this group of methods. For example, 
Law et al. (1997) proposed a time domain method that 
showed acceptable accuracy in numerical simulation and 
experimental validation, though the method was sensitive to 
modeling inaccuracy and sensor noise. The time domain 
method was later extended into the frequency domain, 
while experimental study found the method computationally 
expensive and still sensitive to the measurement locations 
(Law et al. 1999). In addition, an interpretive method was 
put forward utilizing numerical simulation to “interpret” the 
moving load; the method is less computationally demanding 
while achieving lower accuracy (Chan et al. 1999). 
Recently, a method for moving force identification in state 
space with Hamilton’s principle and modal superposition 
was formulated and validated using simulation and field test 
(Zhu et al. 2006). Though adequate BWIM accuracy was 
achieved with a large quantity of sensors deployed, the 
performance was found to deteriorate quickly with the 
reduction of sensors or with noisy data. Besides, all the 
experimental validations only investigated the scenario of a 
single two-axle vehicle on the bridge; no results were 
provided for scenarios with either a multi-axle vehicle or 
multiple vehicles passing through the bridge. These more 
complex yet realistic scenarios present critical challenges 
for the practical application of BWIM in the field. 

Other examples in this group of MFI/MLI methods 
require a finite element model of the bridge superstructure. 
O’Connor and Chan (1988) put forward a method that 
modeled the bridge superstructure with lumped masses by 
connected by massless beam elements. The bridge response 
was then predicted, and the dynamic load could be inferred 
from measurement. Due to over simplification of the bridge 
model, this method can result in low accuracy in practical 
deployment. An optimal state estimation approach was then 
proposed to reduce the fluctuations of identified forces at 
the beginning and end of the time history, though the 
identification errors were still large in general (Law and 
Fang 2001). Wu and Shi (2006) approximated the structural 
response and excitation by wavelets to reduce the 
computation cost, but the method required many sensor 
measurements, and the validation was only in simulation. In 
summary, MFI/MLI problems are ill-conditioned inverse 
problems that require careful regularization. When a more 
complex and accurate structural model is used, the time 
required for obtaining the moving force increases 
dramatically for each identification process. 

The BWIM literature summarized above can be 
categorized into mechanics-based (or physics-based) 
BWIM algorithms. Meanwhile, in the broad fields of 
engineering and computer science, the past decade has seen 
unprecedented interest in deep learning, a topic in artificial 
intelligence that is data driven or based on data analytics. 
Using artificial neural networks (ANN), deep learning has 
particularly made significant strides in the past decade, 
transforming a number of engineering fields including 
image recognition and natural language p rocessing (LeCun 
et al. 2015, Goodfellow et al. 2016). A classical deep 
learning neural network usually has perceptrons as building 

Fig. 1 A perceptron with three input and one output variable
 
 

blocks (Minsky and Papert 1969). A perceptron consists of 
an (usually nonlinear) activation function that maps the sum 
of a bias and the multiplication between weightings and 
inputs to an output. The sigmoid function, 𝜎ሺ𝑥ሻ =𝑒௫ ሺ1 + 𝑒௫ሻ⁄ , is among the most widely used activation 
functions. For example, 𝑦ො = 𝜎ሺ∑ 𝑤௜𝑥௜ଷ௜ୀଵ + 𝑏ሻ  is a 
perceptron that takes three input scalars (𝑥ଵ, 𝑥ଶ and 𝑥ଷ) and 
generates one output 𝑦ො; the perceptron has three weightings 
(𝑤ଵ, 𝑤ଶ and 𝑤ଷ) and one bias 𝑏 shown in Fig. 1. 

For a neural network to accurately generate the 
correct/desired output from certain input data, the 
weightings and biases are the most important function 
parameters whose values need to be fine-tuned. The process 
of automatically fine-tuning these parameter values is called 
the training of a neural network, which is usually performed 
through supervised learning. Take image recognition for 
example – to construct a neural network that can correctly 
recognize images, supervised learning starts with a lot of 
training data, which are essentially many pictures (input to 
the network) with known labels (correct/desired output 
from the network). Consisting of many layers of neural 
network, with many function parameters to be trained, deep 
learning techniques automatically find appropriate 
parameter values through mathematical optimization. This 
training process essentially identifies/learns the oftentimes 
highly nonlinear relationship which maps input (an image) 
to output (a label). To detect overfitting and choose 
hyperparameters, performance of the trained network can be 
simultaneously verified using (cross) validation data, which 
are additional known input-output pairs that were not 
among the training data. When the training process ends, 
test data can be utilized to assess the performance of the 
trained neural network. If overfitting occurs, techniques 
such as dropout (Srivastava et al. 2014) and regularization 
(Goodfellow et al. 2016) can be applied to reduce 
overfitting and improve performance with the validation 
and test sets. 

Early research in multi-layer neural network training 
started in the1950’s (Rosenblatt 1957, Selfridge 1959). 
However, it was the past decade that has seen the most 
significant improvement in deep learning. These are mainly 
attributed to two reasons. The first reason is the recent 
development of innovative and sophisticated neural network 
architectures that can adapt to complex problems. The 
second reason is the increasing availability of data and the 
leap in computing power, which enables the training of 
much larger neural networks. Besides, the widespread 
availability of GPUs (graphics processing units) provides 
another significant boost to computing power by efficiently 
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distributing the computation load toward deep learning 
(Krizhevsky et al. 2012, Das and Deka 2016). In a typical 
deep learning application today, there can be tens of 
millions function parameters to be learned/trained in a 
sophisticated network, which would have been impossible 
only a decade ago. For example, convolutional neural 
networks (ConvNets or CNN) made the biggest 
breakthrough in image recognition, where the input data 
comes in the form of multiple arrays. In particular, a color 
image usually consists of three 2D arrays with picture 
intensities of three color channels (R/G/B). In a CNN, 
convolutional layers, pooling layers and fully-connected 
layers are frequently utilized. The convolutional layer plays 
the role of a feature detector/filter that slides through the 
pixel blocks in two dimensions, a process mathematically 
similar to discrete convolution (LeCun et al. 1998). Pooling 
layers then reduce the dimension of the intermediate feature 
results without introducing any new parameters to be 
learned (Yang et al. 2009). Finally, the fully-connected 
layers produce estimated outputs using the information 
extracted from the earlier convolutional layers or pooling 
layers (Krizhevsky et al. 2012). 

Toward BWIM applications, two-layered neural 
networks were first proposed to output gross vehicle weight 
and axle weight distribution factors, which were then 
utilized to calculate each axle weight (Kim et al. 2009). The 
network had a primitive architecture that is fully connected. 
In addition, due to the limitation in computing power from a 
decade ago, the network only accepted peak strain data 
from a small number of strain sensors, instead of dynamic 
time histories from heterogenous sensors. Input data size to 
the network is around ten (whereas today, input data size of 
tens of thousands are commonplace). As a result, the 
network had mediocre performance; some test cases 
showed more than ±20% errors, which are far from 
acceptable for practical applications. Furthermore, the 
network could only handle the situation when only one 
vehicle travels over the bridge, which prevents its practical 
adoption. In another BWIM study, a convolutional neural 
network was constructed to estimate vehicle existence and 
speed using strain data as input (Kawakatsu et al. 2019). 
However, the vehicle weight estimation is still through 
traditional Moses’ algorithm, which is subject to the same 
inaccuracies of early conventional mechanics-based BWIM 
algorithms summarized earlier. Zhang et al. (2010) 
proposed a neural network approach for pavement weigh-
in-motion.  The study used measurement from sensors 
embedded in road pavement, instead of response from a 
bridge structure. 

Besides CNN, another category of deep learning has 
made fascinating progress in natural language processing. 
In natural language processing, a number of innovative 
neural network architectures have been studied. The 
recurrent neural network (RNN) was first proposed to deal 
with time series data, a ubiquitous feature of natural 
languages (Rumelhart et al. 1986). RNN was further 
advanced to BRNN (bidirectional recurrent neural network) 
by including both forward transformation and backward 
transformation (Schuster and Paliwal 1997). Later, the 
benefits brought by the increased depth of neural network 

were discussed (Graves et al. 2013). Two other methods had 
also been proposed, which greatly improved the 
performance of natural language processing. The first one 
made the process of training more robust, especially for a 
long input sequence, using LSTM (long short-term 
memory) (Hochreiter and Schmidhuber 1997) or GRU 
(gated recurrent unit) (Chung et al. 2014). GRU can be 
viewed as a simplified version of LSTM for dealing with 
long input sequences, while LSTM’s robustness has been 
more widely verified. Both GRU and LSTM techniques 
create one more intermediate variable than RNN, which 
changes slowly through the sequence and achieves the goal 
of memorizing input information a long time ago. The other 
method is the attention mechanism which could deal with 
different lengths of inputs and outputs, and improve the 
performance when the input consists of long sequences 
(Chorowski et al. 2014). The attention mechanism is 
embedded in an encoder-decoder architecture, where one 
RNN encodes the raw data and another RNN decodes for 
final output, and attention mechanism connects the encoder 
RNN and decoder RNN through appropriate weightings. 

To our best knowledge, the authors have not seen the 
latest deep learning techniques, such as BRNN and LSTM 
being adopted toward BWIM applications. For practical 
application, significant challenge also exists in obtaining the 
large amount (e.g., hundreds of thousands) of training data 
sets from field measurements. Such training data should 
contain not only bridge response, but also the true weights 
of hundreds of thousands of various passing vehicles. The 
latter can be hardly feasible to obtain in practice. 
Nevertheless, it is envisioned that for an actual bridge 
application, finite element model updating of the bridge can 
be performed first to achieve high fidelity under different 
environmental scenarios. The updating usually has 
moderate demand in field measurement data, and the 
calibrated model(s) can then be used to generate the 
hundreds of thousands of training data sets. As a 
preliminary study in the topic area, we use training data sets 
generated from high-fidelity simulations. To simulate 
dynamic bridge response with a moving vehicle load, a 
commercial software package LS-DYNA is used to build 
the bridge finite element model. For the relatively short 
bridge span in consideration, three different scenarios are 
considered, i.e., one truck, one truck and one car, and two 
trucks. In each example, different axle numbers, axle 
weights, axle distances, vehicle distances and vehicle 
speeds are combined. The neural network takes strain 
histories as input, and outputs the estimation for axle 
weights. A sophisticated network architecture is proposed in 
order to exploit both BRNN and RNN to extract useful 
information concealed in the strain measurements. LSTM is 
adopted to enhance the capability of the neural network in 
dealing with long input sequences, i.e., multiple strain 
measurements at a high sampling rate. As the final stage of 
the proposed network architecture, the attention mechanism 
is adopted to finally provide axle weights. In comparison 
with MFI/MLI, the proposed method does not suffer from 
ill conditioning. Besides, the neural network can deal with 
high noise levels so long as it is trained with data that has 
high noise levels. Lastly, after network training, the actual 
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process of deriving axle weights is instantaneous and 
appropriate for practical applications. 

The remainder of the paper is organized as follows. In 
Section 2, classical RNN neural networks and the 
architecture of a neural network model for BWIM are 
reviewed. The section introduces the concepts of 
bidirectional RNN, LSTM, and attention mechanism. 
Section 3 discusses the randomized numerical simulation of 
the bridge dynamic response, including the testbed bridge 
information, measurement scheme, finite element modeling, 
and combination of different scenarios. The BWIM 
accuracy and comparison with previous MFI/MLI methods 
are finally presented in Section 4. 

 
 

2. Bidirectional recurrent neural network 
 
This section describes the bidirectional recurrent neural 

network (BRNN) developed for BWIM. Classical recurrent 
neural network (RNN) is first summarized. Then, some 
useful techniques for improving the network performance, 
like BRNN are introduced. Lastly, the architecture of the 
BRNN model for BWIM is described. 

 
2.1 Recurrent neural network (RNN) 
  
2.1.1 Traditional recurrent neural network with the 

same length in input and output sequences 
Both the input and the output of a neural network can be 

viewed as a sequence of vectors. The length of input 
sequence (i.e., the number of input vectors) is denoted as 𝑇௫, while the length of output sequence is denoted as 𝑇௬. 
Let’s first consider the scenario where the length of the 
input sequence equals the length of the output sequence, 
i.e., 𝑇௫ = 𝑇௬ = 𝑇. At each sequence step, the dimension of 
the input vector is denoted as 𝑛௫, while the dimension of 
each output vector is denoted 𝑛௬. We do not require 𝑛௫ 
and 𝑛௬  to be equal. The input to a neural network at 
sequence step 𝑡 is denoted as 𝐱ሺ𝑡ሻ ∈ ℝ௡ೣ, 𝑡 = 1, 2, … , 𝑇. 
The network output at step 𝑡 is 𝐲ොሺ𝑡ሻ ∈ ℝ௡೤, where the hat 
symbol carries the meaning that (after training) the network 
attempts to estimate the output 𝐲 using the input 𝐱. 

Fig. 2(a) shows a conventional fully-connected neural 
network, where the computation of each output estimation 𝐲ොሺ𝑡ሻ requires input vectors at all steps. When estimating 𝐲ොሺ𝑡ሻ for a current step 𝑡, not only input from past time 
steps 1,2, … , 𝑡 − 1, but also input from future steps 𝑡 + 1, 

 
 

𝑡 + 2, … , 𝑇 are utilized.  For an application with a large 
number of input/output vectors at high dimensional space, 
this conventional architecture requires a significant amount 
of computational capability that is usually unaffordable 
even with state-of-the-art of hardware. The network training 
quickly becomes highly inefficient, if not impossible. 

In comparison, Fig. 2(b) shows the architecture of a 
recurrent neural network (RNN) that is particularly efficient 
in dealing with time history data (of a long sequence). 
Instead of using all 𝐱ሺ𝑡ሻ , 𝑡 = 1, 2, … , 𝑇  to decide the 
output at one time step, intermediate vector variables 𝐚ሺ𝑡ሻ 
are introduced. The intermediate variable recurrently 
accumulates information from past input data and uses the 
information toward estimating future output. 

In the RNN demonstrated in Fig. 2(b), 𝐚ሺ𝑡ሻ ∈ ℝ௡ೌ is 
an intermediate (hidden) vector variable at step 𝑡 . To 
initiate the RNN process, 𝐚ሺ0ሻ is usually set as a zero 
vector 𝟎௡ೌ. The value of the intermediate (hidden) variable 
at step 𝑡, 𝐚ሺ𝑡ሻ, is calculated from the intermediate (hidden) 
variable at previous step 𝑡 − 1, 𝐚ሺ𝑡 − 1ሻ ∈ ℝ௡ೌ, and the 
input at step 𝑡, 𝐱ሺ𝑡ሻ ∈ ℝ௡ೣ. The mapping from 𝐚ሺ𝑡 − 1ሻ 
and 𝐱ሺ𝑡ሻ to 𝐚ሺ𝑡ሻ is realized through a nonlinear activation 
function. In this study, an entry-wise hyperbolic tangent 
function tanhሺ𝑥ሻ = ሺ𝑒௫ − 𝑒ି௫ሻ ሺ𝑒௫ + 𝑒ି௫ሻ⁄  is adopted as 
the activation function. 

 𝐚ሺ𝑡ሻ = tanhሺ𝐖௔௔𝐚ሺ𝑡 − 1ሻ + 𝐖௔௫𝐱ሺ𝑡ሻ + 𝐛௔ሻ (1)
 
Here 𝐖௔௔ ∈ ℝ௡ೌ×௡ೌ  and 𝐖௔௫ ∈ ℝ௡ೌ×௡ೣ  are the 

weighting matrices, and 𝐛௔ ∈ ℝ௡ೌ  is the bias vector. 
Consequently, 𝐚ሺ𝑡ሻ is used to generate output 𝐲ොሺ𝑡ሻ ∈ ℝ௡೤, 
the estimation of 𝐲ሺ𝑡ሻ ∈ ℝ௡೤. The mapping from 𝐚ሺ𝑡ሻ to 𝐲ොሺ𝑡ሻ uses a weighting matrix 𝐖௬௔ ∈ ℝ௡೤×௡ೌ and a bias 
vector 𝐛௬ ∈ ℝ௡೤. 

 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔𝐚ሺ𝑡ሻ + 𝐛௬൯ (2)
 
In neural network jargon, label refers to the known 

output 𝐲ሺ𝑡ሻ that corresponds to some known input 𝐱ሺ𝑡ሻ. 
The labels, together with the corresponding inputs, are used 
to train the network by finding the optimal values of the 
constant variables, including the weighting matrices and 
bias vectors. With 𝐖௔௔, 𝐖௔௫, 𝐛௔, 𝐖௬௔, and 𝐛௬ as the 
optimization variables, the value of a non-negative cost 
function 𝐽 ∈ ℝା can be defined based on the difference 
between the known labels and estimated output. The 
training of a neural network is essentially a mathematical 

 
 

(a) Fully-connected neural network (b) Recurrent neural network (RNN) 

Fig. 2 Flow diagram and architecture of neural networks
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optimization process to find the best weighting matrixes and 
bias vectors that can minimize the cost function 𝐽. Gradient 
descent is frequently utilized to solve this often very large 
optimization problem. 

 𝐽 = ෍ ෍ ฮ𝐲௜ሺ𝑗ሻ − 𝐲ො௜ሺ𝑗ሻฮଶଶ೤்௝ୀଵ௠௜ୀଵ  (3)

 
where 𝑚 ∈ ℝ represents the total number of training data 
sets, 𝑇௬ is the length of output sequence, 𝐲௜ሺ𝑗ሻ ∈ ℝ௡೤ is 
the label for the 𝑗-th step output of the 𝑖 -th data set, 𝐲ො௜ሺ𝑗ሻ ∈ ℝ௡೤  is the 𝑗-th step output of the 𝑖-th training 
input data set, and ‖∙‖ଶ represents the vector ℒ2-norm. 

 𝐖ሺ𝑘 + 1ሻ = 𝐖ሺ𝑘ሻ − 𝜆ሺ𝑘ሻ 𝜕𝐽𝜕𝐖 ൫𝐖ሺ𝑘ሻ, 𝐛ሺ𝑘ሻ൯ (4)

 𝐛ሺ𝑘 + 1ሻ = 𝐛ሺ𝑘ሻ − 𝜆ሺ𝑘ሻ 𝜕𝐽𝜕𝐛 ൫𝐖ሺ𝑘ሻ, 𝐛ሺ𝑘ሻ൯ (5)
 

where 𝑘  represents the 𝑘 -th iteration step in the 
optimization process, 𝐖 represents all weighting matrices, 𝐛  represents all bias vectors and 𝜆ሺ𝑘ሻ ∈ ℝା  is the 
learning rate at the 𝑘-th step. The learning rate is one of the 
most important parameters to be tuned in the network 
training, and it can be set as a constant in most applications. 

One mistake to avoid in network training is overfitting, 
which means the trained neural network provides good 
performance with the training set, while the performance 
deteriorates with the validation set or test set. To prevent 
overfitting, we use a regularization technique in this study 
(Goodfellow et al. 2016). The technique adds a new penalty 
term to Eq. (3), so that the weightings do not grow too 
large. Here, 𝜇  is a parameter to be tuned, and ‖. ‖ி 
represents the matrix Frobenius norm. 

 𝐽 = ෍ ෍ ฮ𝐲௜ሺ𝑗ሻ − 𝐲ො௜ሺ𝑗ሻฮଶଶ೤்௝ୀଵ௠௜ୀଵ + 𝜇‖𝐖‖ிଶ  (6)

 
2.1.2 LSTM (long short-term memory) unit 
When network size is large, the performance of RNN 

shown in Fig. 2(b) deteriorates with the increase of input 
data volume. Besides, in the process of training a RNN with 
a long input sequence, vanishing gradient and gradient 
explosion are among the diff iculties commonly 
encountered. Vanishing gradient means that the gradient 𝜕𝐽 𝜕𝐖⁄  or 𝜕𝐽 𝜕𝐛⁄  (in Eqs. (4) and (5)) approaches zero, 

 
 

resulting in very slow convergence. Gradient explosion 
means that the gradient becomes very large, leading to 
failure in optimization. In practice, gradient explosion is 
usually dealt with by setting a maximum threshold limit for 
the gradient. A vanishing gradient is usually more difficult 
to deal with. To this end, methods like LSTM (Hochreiter 
and Schmidhuber 1997) and GRU (Chung et al. 2014) have 
been proposed. In this study, LSTM is adopted due to its 
widely accepted stability. 

Recall from Eq. (1) that in a normal RNN unit, the 
intermediate (hidden) variable at step 𝑡, 𝐚ሺ𝑡ሻ, is calculated 
using the intermediate (hidden) variable at step 𝑡 − 1 , 𝐚ሺ𝑡 − 1ሻ, and the input at step 𝑡, 𝐱ሺ𝑡ሻ. After many steps of 
propagation, 𝐚ሺ𝑡 − 1ሻ alone usually cannot contain input 
information much earlier than current step 𝑡. To maintain a 
longer term memory, Fig. 3 demonstrates an alternative 
approach for calculating the intermediate variable 𝐚ሺ𝑡ሻ 
that provides long short-term memory (LSTM). 

Similar as a normal RNN unit, a candidate memory cell 𝐜෤ሺ𝑡ሻ ∈ ℝ௡ೌ is first calculated at step 𝑡 
 𝐜෤ሺ𝑡ሻ = tanhሺ𝐖௖௔𝐚ሺ𝑡 − 1ሻ + 𝐖௖௫𝐱ሺ𝑡ሻ + 𝐛௖ሻ (7)
 

where 𝑡𝑎𝑛ℎሺ∙ሻ  is the elementwise hyperbolic tangent 
function, 𝐖௖௔ ∈ ℝ௡ೌ×௡ೌ  and 𝐖௖௫ ∈ ℝ௡ೌ×௡ೣ  are the 
weighting matrices, and 𝐛௖ ∈ ℝ௡ೌ  is the bias vector. In 
addition, also using 𝐚ሺ𝑡 − 1ሻ  and 𝐱ሺ𝑡ሻ , three new 
intermediate variables are introduced: 𝚪௨ሺ𝑡ሻ ∈ ℝ௡ೌ as the 
update gate, 𝚪௙ሺ𝑡ሻ ∈ ℝ௡ೌ as the forget gate, and 𝚪௢ሺ𝑡ሻ ∈ℝ௡ೌ as the output gate. Entries in these gate variables are 
restricted to be in the interval ሾ0,1ሿ, in order to control the 
percentage of information to forget or to remember. 
Therefore, an entry-wise version of the sigmoid function, 𝜎ሺ𝑥ሻ = 𝑒௫ ሺ1 + 𝑒௫ሻ⁄ , is used to calculate all these gate 
vectors. 

 𝚪௨ሺ𝑡ሻ = σሺ𝐖௨௔𝐚ሺ𝑡 − 1ሻ + 𝐖௨௫𝐱ሺ𝑡ሻ + 𝐛௨ሻ (8)
 𝚪௙ሺ𝑡ሻ = σ൫𝐖௙௔𝐚ሺ𝑡 − 1ሻ + 𝐖௙௫𝐱ሺ𝑡ሻ + 𝐛௙൯ (9)
 𝚪௢ሺ𝑡ሻ = σሺ𝐖௢௔𝐚ሺ𝑡 − 1ሻ + 𝐖௢௫𝐱ሺ𝑡ሻ + 𝐛௢ሻ (10)
 
Here the weighting matrices are 𝐖௨௔ ∈ ℝ௡ೌ×௡ೌ , 𝐖௨௫ ∈ ℝ௡ೌ×௡ೣ , 𝐖௙௔ ∈ ℝ௡ೌ×௡ೌ , 𝐖௙௫ ∈ ℝ௡ೌ×௡ೣ , 𝐖௢௔ ∈ℝ௡ೌ×௡ೌ, and 𝐖௢௫ ∈ ℝ௡ೌ×௡ೣ; the bias vectors include 𝐛௨ ∈ℝ௡ೌ, 𝐛௙ ∈ ℝ௡ೌ, and 𝐛௢ ∈ ℝ௡ೌ. 
The memory cell at step 𝑡, 𝐜ሺ𝑡ሻ ∈ ℝ௡ೌ, is calculated as 
 
 

 
Fig. 3 Flow diagram providing LSTM (long short-term memory) 
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a weighted sum between the candidate memory cell 𝐜෤ሺ𝑡ሻ 
and the memory cell at previous step 𝑡 − 1, 𝐜ሺ𝑡 − 1ሻ. The 
two weightings are the update gate 𝚪௨ሺ𝑡ሻ and forget gate 𝚪௙ሺ𝑡ሻ, respectively. As a result, the memory cell achieves a 
balance between the input information from the most recent 
step and from past steps. 

 𝐜ሺ𝑡ሻ = 𝚪௨ሺ𝑡ሻ ∗ 𝐜෤ሺ𝑡ሻ + 𝚪௙ሺ𝑡ሻ ∗ 𝐜ሺ𝑡 − 1ሻ (11)
 
Here, the star symbol “ ∗ ” means elementwise 

multiplication between two vectors of the same shape. In 
general, the update of 𝐜ሺ𝑡ሻ is slow in order to memorize 
early information. 

Finally, as shown in Fig. 3, the intermediate variable 𝐚ሺ𝑡ሻ ∈ ℝ௡ೌ  is calculated using output gate 𝚪௢ሺ𝑡ሻ as the 
weighting, and memory cell 𝐜ሺ𝑡ሻ is activated through the 
elementwise hyperbolic tangent function. 

 𝐚ሺ𝑡ሻ = 𝚪௢ሺ𝑡ሻ ∗ tanh൫𝐜ሺ𝑡ሻ൯ (12)
 
The mapping from 𝐚ሺ𝑡ሻ  to 𝐲ොሺ𝑡ሻ  uses a weighting 

matrix 𝐖௬௔ ∈ ℝ௡೤×௡ೌ and a bias vector 𝐛௬ ∈ ℝ௡೤. 
 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔𝐚ሺ𝑡ሻ + 𝐛௬൯ (13)
 
In summary, LSTM utilizes 𝐚ሺ𝑡 − 1ሻ , 𝐜ሺ𝑡 − 1ሻ  and 

input 𝐱ሺ𝑡ሻ  to calculate 𝐚ሺ𝑡ሻ , 𝐜ሺ𝑡ሻ  and output 𝐲ොሺ𝑡ሻ . 
Memory cell 𝐜ሺ𝑡ሻ generally changes slower in comparison 
with 𝐚ሺ𝑡ሻ. In this way, 𝐚ሺ𝑡ሻ can capture the rapid input 
changes, while 𝐜ሺ𝑡ሻ can help retain more information from 
past time steps.  Lastly, similar to the general process 
described in Eqs. (3)-(6), all the weighting matrices and 
bias vectors in LSTM are to be determined through network 
training.  The training finds optimal matrices and vectors 
such that an estimation error index, i.e., cost function J, is 
minimized. 

 
2.2 Bidirectional recurrent neural network (BRNN) 

with the same length of inputs and outputs 
 
One drawback of RNN is that when estimating 𝐲ොሺ𝑡ሻ, 

the network only uses input data from previous steps 
(before 𝑡ሻ and not any future steps (after 𝑡ሻ. Bidirectional 
recurrent neural network (BRNN) is a recently developed 
network architecture which uses input data both before and 
after 𝑡. Again, for the scenario where the length of input 
sequence equals the length of output sequence ሺ𝑇௫ = 𝑇௬ =𝑇ሻ, Fig. 4 shows the flow diagram of a BRNN. 

 
 
Recall that at step 𝑡, RNN uses an intermediate (hidden) 

variable 𝐚ሺ𝑡ሻ. In comparison, BRNN introduces a forward 
intermediate variable 𝐚௙ሺ𝑡ሻ ∈ ℝ௡ೌ  and a backward 
intermediate variable 𝐚௕ሺ𝑡ሻ ∈ ℝ௡ೌ . The forward variable 𝐚௙ሺ𝑡ሻ depends on the input 𝐱ሺ𝑡ሻ and the forward variable 
at previous step, 𝐚௙ሺ𝑡 − 1ሻ. This forward layer utilizes a 
hyperbolic tangent activation function with two weighting 
matrices 𝐖௔௔௙ ∈ ℝ௡ೌ×௡ೌ and 𝐖௔௫௙ ∈ ℝ௡ೌ×௡ೣ, as well as a 
bias vector 𝐛௔௙ ∈ ℝ௡ೌ. 

 𝐚௙ሺ𝑡ሻ = tanh൫𝐖௔௫௙ 𝐱ሺ𝑡ሻ + 𝐖௔௔௙ 𝐚௙ሺ𝑡 − 1ሻ + 𝐛௔௙൯ (14)
 
On the other hand, the backward intermediate (hidden) 

variable 𝐚௕ሺ𝑡ሻ  depends on the input 𝐱ሺ𝑡ሻ  and the 
backward intermediate (hidden) variable at the next step, 𝐚௕ሺ𝑡 + 1ሻ. This backward activation allows the use of input 
from future steps through a hyperbolic tangent activation 
function with weighting matrices 𝐖௔௔௕ ∈ ℝ௡ೌ×௡ೌ  and 𝐖௔௫௕ ∈ ℝ௡ೌ×௡ೣ, as well as a bias vector 𝐛௔௕ ∈ ℝ௡ೌ. 

 𝐚௕ሺ𝑡ሻ = tanhሺ𝐖௔௫௕ 𝐱ሺ𝑡ሻ + 𝐖௔௔௕ 𝐚௕ሺ𝑡 + 1ሻ + 𝐛௔௕ሻ (15)
 
As shown in Fig. 4, both 𝐚௙ሺ0ሻ and 𝐚௕ሺ 𝑇 + 1ሻ are 

needed to initialize the bidirectional recurrent neural 
network. They are set as zero vectors, i.e. 𝐚௙ሺ0ሻ =𝐚௕ሺ𝑇 + 1ሻ = 𝟎௡ೌ. The last step in the BRNN is to combine 
the information of 𝐚௙ሺ𝑡ሻ and 𝐚௕ሺ𝑡ሻ to estimate 𝐲ොሺ𝑡ሻ ∈ℝ௡೤. The estimation is accomplished through the hyperbolic 
tangent function with weighting matrices 𝐖௬௔௙ ∈ ℝ௡೤×௡ೌ 
and 𝐖௬௔௕ ∈ ℝ௡೤×௡ೌ, and bias vector 𝐛௬ ∈ ℝ௡೤. 

 𝐲ොሺ𝑡ሻ = tanh൫𝐖௬௔௙ 𝐚௙ሺ𝑡ሻ + 𝐖௬௔௕ 𝐚௕ሺ𝑡ሻ + 𝐛௬൯ (16)
 
For clarity, the BRNN illustration in Fig. 4 does not 

include LSTM shown in Fig. 3, while the combination of 
BRNN and LSTM modules is frequently utilized. To this 
end, at the 𝑡-th step in the forward RNN, the inputs to the 
LSTM module include forward variable 𝐚௙ሺ𝑡 − 1ሻ, 𝐱ሺ𝑡ሻ 
and forward memory cell 𝐜௙ሺ𝑡 − 1ሻ. Forward candidate 
memory cell 𝐜෤௙ሺ𝑡ሻ  is calculated using Eq. (7), and 
different gates in the forward RNN, 𝚪௢௙ሺ𝑡ሻ , 𝚪௨௙ሺ𝑡ሻ  and 𝚪௙௙ሺ𝑡ሻ, are calculated using Eqs. (8), (9) and (10). Finally, 𝐜௙ሺ𝑡ሻ  and 𝐚௙ሺ𝑡ሻ  are derived using Eq. (11) and (12), 
respectively. Similarly, the backward RNN integrates 
LSTM, using corresponding backward variables 𝐚௕ሺ𝑡 + 1ሻ, 𝐜௕ሺ𝑡 + 1ሻ, 𝐜෤௕ሺ𝑡ሻ, 𝚪௢௕ሺ𝑡ሻ, 𝚪௨௕ሺ𝑡ሻ, 𝚪௙௕ሺ𝑡ሻ, 𝐜௕ሺ𝑡ሻ and 𝐚௕ሺ𝑡ሻ. 

 
Fig. 4 Flow diagram of a bidirectional recurrent neural network (BRNN) 
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2.3 Attention mechanism to deal with long input 

sequence and with different lengths of inputs 
and outputs 

 
Both RNN and BRNN described above require the input 

and output lengths to be the same: 𝑇௫ = 𝑇௬ = 𝑇. However, 
in many applications, the lengths of input sequence and 
output sequence are different, i.e., 𝑇௫ ് 𝑇௬. Taking BWIM 
(bridge weigh-in-motion) for example, the length of input 
sequence depends on data collection time and sampling 
frequency, while the length of output sequence is simply the 
number of truck axle weights to be estimated. To this end, 
we can use an encoder-decoder architecture that contains an 
encoder RNN to extract information from input and a 
decoder RNN to generate the output (Sutskever et al. 2014). 
However, the performance of such an architecture 
deteriorates as the length of input sequence increases, 
because it is challenging for the neural network to 
memorize all the inputs when the length of input sequence 
is large. In order to improve the performance when dealing 
with long input sequence with a large 𝑇௫ , the attention 
mechanism was recently proposed (Chorowski et al. 2014). 

When 𝑇௫ ് 𝑇௬ , suppose 𝑡௬  represents the sequence 
step in the output (𝑡௬ = 1, 2, ⋯ , 𝑇௬), and 𝑡௫ represents the 
sequence step in the input (𝑡௫ = 1, 2, ⋯ , 𝑇௫). Fig. 5 shows 

 
 

 
 

the proposed neural network that incorporates attention 
mechanism and can be used for BWIM. The network 
contains three main stages: (1) pre-attention BRNN with 
LSTM, (2) attention mechanism and (3) post-attention RNN 
with LSTM. For clarity, LSTM is not illustrated in the 
figure. 

In detail, the pre-attention BRNN outputs intermediate 
variable 𝐚ሺ𝑡௫ሻ ∈ ℝଶ௡ೌ. Together with intermediate variable 𝐬൫𝑡௬ − 1൯  from the post-attention RNN, 𝐚ሺ𝑡௫ሻ  can be 
used to decide the attention factors 𝛼൫𝑡௬, 𝑡௫൯ ∈ ሺ0,1ሻ 
through a fully-connected network. With a value between 0 
and 1, the attention factor determines how much each pre-
attention BRNN output 𝐚ሺ𝑡௫ሻ  contributes into context 
variable 𝐠ሺ𝑡௬ሻ ∈ ℝଶ௡ೌ, which is among the inputs to the 
post-attention RNN finally generating 𝐲ො൫𝑡௬൯. 

 𝐠൫𝑡௬൯ = ෍ 𝛼൫𝑡௬, 𝑡௫൯ ∙ 𝐚ሺ𝑡௫ሻ்ೣ௧ೣୀଵ  (17)

 
The attention factor 𝛼൫𝑡௬, 𝑡௫൯  is calculated from 

intermediate variable 𝐚ሺ𝑡௫ሻ from the pre-attention BRNN, 
and intermediate variable 𝐬൫𝑡௬ − 1൯ fed backward from 
the post-attention RNN. The inclusion of 𝐬൫𝑡௬ − 1൯ allows 
the decision for later output to consider previous 

 
Fig. 5 Proposed 3-stage neural network architecture for BWIM 

 
Fig. 6 Attention mechanism
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information. The details of the attention mechanism are 
omitted in Fig. 5 for clarity, and provided in Fig. 6 instead. 
In the attention mechanism, intermediate variables 𝐚ሺ𝑡௫ሻ 
and 𝐬൫𝑡௬ − 1൯  are fed into a sigmoid function to first 
calculate energy score 𝑒൫𝑡௬, 𝑡௫൯ ∈ ℝ  with weightings 𝐰௘௦ ∈ ℝ௡ೞ and 𝐰௘௔ ∈ ℝଶ௡ೌ and 𝑏௘ ∈ ℝ. 

 𝑒൫𝑡௬, 𝑡௫൯ = 𝜎൫𝐰௘௦்𝐬൫𝑡௬ − 1൯ + 𝐰௘௔் ∙ 𝐚ሺ𝑡௫ሻ + 𝑏௘൯,𝑡௫ = 1, 2, ⋯ , 𝑇௫ 
(18)

 

From the energy scores 𝑒൫𝑡௬, 𝑡௫൯ , a softmax 
classification finds the attention factors 𝛼൫𝑡௬, 𝑡௫൯, which is 
now the normalized weighting of 𝐚ሺ𝑡௫ሻ contributing into 
context variable 𝐠൫𝑡௬൯ (see Eq. (17)). Note the sum of 𝛼൫𝑡௬, 𝑡௫൯  over 𝑡௫ = 1, 2, ⋯ , 𝑇௫  equals one, i.e., ∑ 𝛼൫𝑡௬, 𝑡௫൯ = 1்ೣ௧ೣୀଵ . 

 𝛼൫𝑡௬, 𝑡௫൯ = exp ቀ𝑒൫𝑡௬, 𝑡௫൯ቁ∑ exp ቀ𝑒൫𝑡௬, 𝑡௫൯ቁ்ೣ௧ೣୀଵ  (19)

 
Thus far, the complete architecture of our proposed 

BWIM neural network has been introduced. By the three 
stages in Fig. 5, we can count the total number of 
parameters for an example network with 𝑇௫ = 100, 𝑛௫ =60 , 𝑛௔ = 1,000 , 𝑛௦ = 2,000  and 𝑛௬ = 1 . Here, 𝑛௔  is 
the dimension of both 𝐚௙ሺ𝑡௫ሻ and 𝐚௕ሺ𝑡௫ሻ in Stage-1. In 
total, the number of parameters from all three stages in this 
example BWIM network is 40,502,002. This amount of 
parameters, over 40 million, could be impossible to 
efficiently train from only a decade ago, but fairly common 
in today’s AI applications (Zhang et al. 2019). 

 
 

 
 

3. Numerical simulation 
 
Section 3.1 introduces the highway bridge based on 

which this study is developed, as well as the corresponding 
finite element model. Section 3.2 describes the randomized 
vehicle parameters for bridge response simulation which 
will be used toward the training, validation, and testing data 
sets for the neural network. 

 
3.1 Bridge modeling 
 
Fig. 7 shows the testbed bridge on which this study is 

performed. The two-lane bridge is located in LaGrange, 
GA. The skewed bridge consists of four spans and supports 
two lanes of traffic in one direction. This work focuses on 
the simply supported span #1 where traffic enters; the 
simply supported span is expected to have the least 
interaction with the other spans (Fig. 8). Also, because the 
span is fairly short, less interaction in bridge dynamics is 
expected between preceding vehicles and later vehicles. The 
concrete bridge deck is supported by six I-shaped steel 
girders, denoted as G1 ~ G6. The simply supported girders 
are spaced 7 feet and 10 inches away from one another, 
connected by lateral diaphragms. Cross section view of the 
bridge deck is shown in Fig. 9. 

Using a commercial software package LS-DYNA, a 
finite element model of bridge span #1 is constructed. In the 
modeling process, barriers, girders, endbeam, endwall and 
lateral diaphragms are all modeled with beam elements, 
while the concrete deck is modeled with shell elements. As 
shown in Fig. 8, a pin support is provided at the endwall, 
and a roller at the endbeam. Except for the six steel girders 
and diaphragms, all other bridge components are made of 

 
 

 
 

 
Fig. 7 Photo of the steel-girder bridge under study

 
Fig. 8 Plan view of the LS-DYNA model for span #1
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Table 1 Nominal material property 

Components Density 
(𝜌: lb/in3) 

Young’s modulus 
(𝐸: ksi) 

Poisson’s ratio
(𝜈) 

Steel 𝐸௦ 0.283 30,000 0.29 
Concrete 𝐸௖ 0.0868 3,605 0.2 

 

 
 

Fig. 10 Mode shape and frequency for the first four modes
 
 

concrete. The nominal material properties are listed in Table 
1. 

The first four simulated vibration modes of the span are 
shown in Fig. 10. Because of the relatively short span 
length, the resonance frequencies are relatively high, with 
first mode at 8.17 Hz. As expected, the first mode shape 
shows single-curvature bending, while the higher modes are 
more complex. Rayleigh damping is set at 2% for the first 
two resonance frequencies. 

 
3.2 Simulated traffic scenarios 
 
When only one vehicle passes through the bridge, it is 

relatively easy to estimate the vehicle weight through 
BWIM. However, when multiple vehicles pass through the 
bridge at the same time, the problem becomes more 
challenging. Considering the size of the short bridge span, 

 
 

 
 

we focus on three different vehicle scenarios shown in Fig. 
11. Because the objective is to identify overloaded large 
trucks, scenarios with only smaller vehicles (simply named 
as cars for brevity) are not necessary and thus not 
considered. 

 
Scenario 1: Only one truck traveling in any one of the 

two lanes. 
Scenario 2: One truck in one lane and one car in another 

lane. 
Scenario 3: One truck in one lane and another truck in 

another lane. 
 
For Scenarios 2 and 3, either one of the two vehicles 

may enter the bridge first, and in any of the two lanes. For 
all three scenarios, vibration data collection is assumed to 
start when a vehicle first enters the bridge. In order to 
mimic realistic traffic, different combinations of axle 
numbers, axle weights, axle distances, vehicle distances, 
vehicle speeds and vehicle lateral positions need to be 
considered. In addition, spring-mass-damper models are 
used to describe vehicle dynamics (Fig. 12), with 
randomized combinations of stiffness values and damping 
values associated with each axle mass. In order to improve 
the performance of deep learning, uniform distributions are 
assigned for all parameter randomizations. 

 
 

 
Fig. 12 Spring (axle stiffness) and damper (axle damping) 

associated with axle mass 
 
 

 
Fig. 9 Cross section view of the bridge deck (looking along the traffic direction) 

 
Fig. 11 Different scenarios being considered
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(i) Axle number: The limit for a standalone single axle 
weight is specified as 9.05 tons or 20,340 lbf, while 
the limit for tandem axle weight is specified as 18.1 
tons or 40,680 lbf in the State of Georgia, USA 
(GDOT 2020). Here, a tandem axle refers to a group 
of two or more closely-spaced axles, all within 96 
inches and combined together. The official limit of 
40,680 lbf is specified for the entire tandem, instead 
of for every single axle in the tandem. Therefore, 
toward BWIM, a group of closely-spaced axles 
within 96 inches is regarded as one tandem axle; we 
identify their total weight together instead of the 
weights of individual actual/physical axles. In this 
study, a car is assumed to have 2 or 3 standalone 
single axles (the latter allowing a trailer), and no 
tandem axle. A truck can have 2 ~ 5 axles; each 
being either a standalone single axle or a tandem 
axle. For brevity, if not specified, hereinafter the 
word “axle” by default may refer to either a 
standalone single axle (not belonging to a tandem), 
or a tandem axle (a group of two or more closely-
spaced axles within 96 inches). 

(ii) Axle weight: Similar to the word “axle”, we use the 
phrase “axle weight” to refer to either the weight of 
a standalone single axle, or the weight of a tandem 
axle (containing multiple closely-spaced axles). 
Recall that we assume a car has two or three 
standalone single axles and does not have any 
tandem axles. The axle weight in a car can vary 
from 0.5 to 2.0 tons (1,125 ~ 4,500 lbf). On the 
other hand, a truck can have 2 ~ 5 standalone single 
axles and/or tandem axles. In this study, the axle 
weight in for truck is set as a uniform distribution 
from 2.0 to 30.0 tons (4,500~67,550 lbf), which can 
be much heavier than a car axle. Note that the 
maximum axle weight of 67,550 lbf is set around 
66% overweight of the GDOT limit of 40,680 lbf. 

(iii) Axle distance: The phrase “axle distance” represents 
the distance between the center of two axles, where 
each axle can be either a standalone single axle or a 
tandem axle. Depending on vehicle speed, an axle 
distance is related to the corresponding time gap 
between the entrances of two axles. The axle 
distance of a car is randomized from 0.05 to 0.35 
seconds; the axle distance of a truck can vary from 
0.1 to 0.7 seconds. 

(iv) Axle stiffness and damping: As shown in Fig. 12, a 
mass-spring-damper model describes each axle. The 
axle resonance frequency 𝜔௡ is modeled as a uniform 
 
 

a uniform distribution from 1 to 6 Hz (6.28~37.70 
rad/s), while the damping ratio 𝜁  is uniformly 
distributed from 0% to 20%. Consequently, the 
stiffness and damping parameters are calculated as 𝑘 = 𝑚𝜔௡ଶ and 𝑐 = 2𝑚𝜔௡𝜁. 

(v) Vehicle distance: As shown in Fig. 11, Scenarios 2 
and 3 both have two vehicles involved. The distance 
between the two vehicles is also randomized for 
neural network training. Similar as axle distance, 
vehicle distance is modeled by the time gap 
between the entrance times of two vehicles. The 
corresponding random variable has a uniform 
distribution in the interval 0~1 second. 

(vi) Vehicle speed: For efficient data generation and 
training, the speed of the truck is modeled as a 
uniform distribution in the interval 30~80 mph 
(13.33~35.56 m/s), while the speed of car is 
modeled as a uniform distribution in the interval 
30~90 mph (13.33~40 m/s). 

(vii) Transverse vehicle position: As summarized in the 
literature review, many conventional methods 
provide inaccurate BWIM results when the 
transverse vehicle position changes. To avoid this 
issue, transverse position of a vehicle within the 3.4 
meter-wide lane is also randomized in the training 
data generation. As shown in Fig. 13, the distance 
from centerline of a car to the lane center is 
modeled in a uniform distribution -0.6~0.6 m. In 
addition, the track width (distance between left and 
right wheels) of a car is randomized between 1.5~2 
m. Similarly, the distance from the centerline of a 
truck to the lane center can be -0.4~0.4 m; the track 
width of a truck is randomized at 2~2.6 m. 

 
During the simulation, the bridge vibration data starts to 

be recorded when the first vehicle enters the bridge. The 
recording ends after the last vehicle leaves the bridge. The 
longest measurement recording duration is set as 5 seconds, 
which is sufficient for the worst-case scenario with long and 
slow vehicles. 

 
 

4. Recurrent neural network for bridge weigh-in-
motion 
 
Section 4.1 details the how the proposed 3-stage BRNN 

network is applied on the BWIM application, including the 
input and output data structures. Section 4.2 describes the 
performance of the proposed network and compares it with 

 
 
 

 
Fig. 13 Transverse wheel positions (plan view)
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the conventional MFI method. 
 
4.1 Input and output data structures for the 

proposed neural network 
 
4.1.1 Strain history simulation as input 
While performing simulation with each randomized 

parameter set, strain response at selected locations is 
recorded as the sensor measurement data for BWIM. As 
shown in Fig. 14, six “virtual” strain gages are allocated for 
the entire bridge span, one on each girder. Every strain gage 
is installed on the bottom flange of a girder. The sampling 
frequency is set as 200 Hz. A low-pass Butterworth filter is 
applied to the strain data, with cutoff frequency at 30 Hz. 
As a result, six strain histories at 200 Hz for five seconds 
provide a 6-by-1,000 matrix (1,000 samples in every strain 
history). 

For each of the three traffic scenarios in Fig. 11, 
simulations are performed by randomizing the parameters 
described in Section 3.2. Fig. 15 plots 2.5 seconds of 
example strain data for simulating a Scenario 3 with two 
trucks driving through. The truck on the left lane enters the 
bridge first, while the truck on the right lane enters the 
bridge later. As a result, the peaks appear first in strain 
gages SG2 and SG3 (under the left lane), and later in SG4 
(under the right lane). Since no vehicle traveled in the 

 
 

 
 

emergency lane, SG6 is farthest away from traffic and 
shows lowest amplitude as expected. 

In total, LS-DYNA performed 10,000 randomized 
simulations of Scenario 1, 15,000 randomized simulations 
of Scenario 2, and 20,000 randomized simulations of 
Scenario 3. Towards deep learning, these original 
simulation data sets are then divided into training, 
validation and test sets. For each of the three scenarios, 80% 
of the original data sets are used for training, another 10% 
are used for validation, and the final 10% are used for 
testing. For each scenario, these data set numbers from 
original LS-DYNA simulation are summarized in the first 
half of Table 2. 

 
4.1.2 Input and output data of the BWIM neural 

network 
To mimic practical application, Gaussian noise is added 

to the original data. For each sensor time history 𝐱෤ ∈ ℝଵ,଴଴଴ 
(recall 200 Hz for 5 secs), the standard deviation is first 
evaluated as s. The corresponding noise vector 𝐧 ∈ ℝଵ,଴଴଴ 
is formed with a standard normal distribution where 𝑛௜~𝒩ሺ0,1ሻ. To adjust the noise level, we use variable 𝜂 
with ten different percentage values, at 1%, 2%, ⋯ , 10%. 
The corresponding noisy history 𝐱 ∈ ℝଵ,଴଴଴ produced from 
original simulated history 𝐱෤ is thus 

 
Fig. 14 Six strain measurement locations

 
Fig. 15 Strain response for two trucks driving through
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Table 2 The number of original data sets and augmented 
data sets 

Different cases Scenario 1 Scenario 2 Scenario 3
Original simulation data 
sets 𝐱෤ (total number) 10,000 15,000 20,000 

Training set (80%) 8,000 12,000 16,000 
Validation set (10%) 1,000 1,500 2,000 

Test set (10%) 1,000 1,500 2,000 
Augmented data sets 𝐱 

(total number) 100,000 150,000 200,000

Training set (80%) 80,000 120,000 160,000
Validation set (10%) 10,000 15,000 20,000 

Test set (10%) 10,000 15,000 20,000 
 

 
 𝐱 = 𝐱෤ + 𝜂 ∙ 𝑠 ∙ 𝐧 (20)
 
Since the noise level 𝜂 has ten different values, each 

original data set 𝐱෤ provides ten augmented data sets 𝐱. As 
a result, taking Scenario 1 for example, the 8,000 training 
data sets from the original simulation is augmented into 
80,000 data sets for the actual network training. As shown 
in Table 2, similar augmentation took place for the 
validation and test sets of Scenario 1, and for the data sets 
of other two scenarios. The augmentation has two benefits. 
First, ten times more data sets become immediately 
available for training the neural network, without entailing 
computationally expensive dynamic time history simulation 
of the highly detailed FEM model in LS-DYNA. Second, 
training the network with varied sensor noise levels makes 
the network more robust against sensor noises. Standard 
normalization is performed on the augmented strain history 
prior to feeding into the neural network. 

As described earlier, five seconds of six strain measure-
ments at 200 Hz provide 6,000 data points. As input to the 
neural network, a natural choice would be setting 𝑛௫ = 6 

 
 

and 𝑇௫ = 1000, i.e., each 𝐱ሺ𝑡௫ሻ ∈ ℝ଺ with the sequence 
step number 𝑡௫ = 1,2, … ,1000 . However, despite the 
ability of LSTM modules handling longer input sequences, 𝑇௫ = 1000 still proves to be impractical if not infeasible 
given current hardware limitations (Cho et al. 2014). Thus, 
reshaping is performed to the input data and illustrated in 
Fig. 16. The entire sequence of 1,000 sampling steps is 
divided into 𝑇௫ =100 pieces of 10 steps (the corresponding 
time length for each piece of 10 sampling steps is 0.05 
seconds = 10 × 1 / 200 Hz). Ten samples from six strain 
sensors together are taken as input at one time step 𝑡௫ to 
the network. Therefore, the length of each input vector 𝐱ሺ𝑡௫ሻ  is 𝑛௫ = 6 × 10 = 60 . Fig. 16 illustrates how to 
transform the original 1,000 samples at six strain gages into 
new shapes, data from the first two sampling steps at 
stacked as the beginning part of 𝐱ሺ1ሻ ∈ ℝ଺଴, and similarly 
data from the final two sampling steps are stacked as the 
ending part of 𝐱ሺ100ሻ ∈ ℝ଺଴. In summary, this reshaping 
uses hyperparameters 𝑛௫ = 60 and 𝑇௫ = 100. 

It’s obvious that different reshaping of the strain gage 
data could have been performed toward input into the 
network. To investigate the effect of different dimension 
hyperparameters, the following sections will also study a 
different case of 𝑛௫ = 30 and 𝑇௫ = 200. In other words, 
0.025 seconds (i.e., 5 sampling steps) of six strain gage data 
are used as one input sequence. 

The output of a BWIM neural network contains axle 
weights. As introduced earlier, a known output used for 
training a neural network is termed a label. As shown in 
Fig. 11, the test span has 2 vehicles traveling at most. Also 
recall that the weight of a tandem axle is considered 
altogether, and we assume that the maximum number of 
axles (either standalone or tandem) per vehicle is 5 axles on 
a truck. Thus, maximum number of axle weights on the test 
span is 5 + 5 = 10. This is set as the length of output 
sequence, 𝑇௬ = 10, and the output at each step is a scalar 𝑦ො൫𝑡௬൯ ∈ ℝ that represents one out of the 10 axle weights. 
The first five numbers represent the axle weights in the left 

 
 

 
Fig. 16 Input for recurrent neural network when 10×6 samples are lumped as one input sequence step
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Fig. 17 A truck with one standalone front axle and one 
tandem axle that includes two closely-spaced rear 
axles 

 
 

lane, while the last five numbers represent the axle weights 
in the right lane. If there is no vehicle in one lane, all the 
five corresponding values should be zero for an output 
label. If the number of axles is smaller than five, then the 
remaining output entries should be zero. Taking Fig. 17 for 
example, suppose that the truck is in the left lane. Then, the 
output label should have 𝑦ሺ1ሻ = 15.5 kip , 𝑦ሺ2ሻ =21.3 kip for the tandem axle, and yሺ3ሻ = ⋯ = yሺ10ሻ = 0. 

 
4.2 BRNN performance and comparison with MFI 
 
4.2.1 BRNN results 
As described in Section 4.1.2, we study two sets of 

dimension hyperparameters for the input data: (i) 𝑇௫ =100, i.e., 𝑛௫ = 60; (ii) 𝑇௫ = 200, i.e., 𝑛௫ = 30. For both 
input reshaping cases, the length of output sequence is 𝑇௬ = 10 and the output at each step is scalar 𝑦൫𝑡௬൯ ∈ ℝ. In 
addition, two other major dimension hyperparameters are 
listed as follows. 

 

(i) As shown in Stage-1 of Fig. 5, the pre-attention 
BRNN with LSTM, both forward and backward 
intermediate variables 𝐚୤ሺ𝑡௫ሻ  and 𝐚ୠሺ𝑡௫ሻ  have 
dimension 𝑛௔ . After some trial-and-error, 𝑛௔  is 
chosen to be 1,000 in this study. 

(ii) Both Stage-2 and Stage-3 involve another post-
attention BRNN intermediate variable 𝐬൫𝑡௬൯ ∈ ℝ௡ೞ, 
whose dimension is denoted as 𝑛௦ and chosen as 
2,000. 

 

The proposed BRNN is trained using the augmented 
simulation data from all three scenarios (Table 2). With 𝑛௔ 
and 𝑛௦ fixed above, the network performance is studied for 
two cases of input hyperparameters: (i) 𝑇௫ = 100 ; (ii) 𝑇௫ = 200. In this BWIM application, we adopt a simple 
performance index that quantifies the relative error of truck 
weight identification, averaged between all trucks in the 
simulation. 

 𝑒 = 1𝑚 ෍ ห𝑊ሺ𝑖ሻ − 𝑊෡ ሺ𝑖ሻห𝑊ሺ𝑖ሻ௠௜ୀଵ  (21)

 
Here 𝑊ሺ𝑖ሻ ∈ ℝ is the actual weight of the 𝑖-th truck, 𝑊෡ ሺ𝑖ሻ ∈ ℝ is the identified whole weight of the 𝑖-th truck 

and 𝑚 represents the total number of trucks. Since cars are 
much lighter in BWIM, they are neglected in this index. 
Table 3 shows the error index e for the training set, 
validation set and test set. The time required to train the 
neural network doubles as the number of input 𝑇௫ 

Table 3 BRNN performance evaluated by error index e 𝑇௫ Training time 
(hour) 

Training error 𝑒 
Validation 

error 𝑒 
Test error𝑒 

100 67.73 1.54% 2.65% 2.38% 

200 116.37 1.39% 2.32% 1.88% 
 
 

increases from 100 to 200. The increase in computation 
time brings about better network performance across all 
three data sets. The BRNN parameters trained from 𝑇௫ =200 are used next for comparison with MFI. 

 
4.2.2 Comparison with MFI method 
This section compares the performance of the proposed 

BRNN approach with the traditional moving force 
identification (MFI) method, which identifies the time 
history of contact forces between the bridge deck and 
vehicle axles using a finite element model. The time history 
of contact forces is then used to derive the axle weights of a 
vehicle. In particular, the comparison is performed with 
MFI with dynamic programming (Law and Fang 2001, 
Gonzalez et al. 2008). The basic formulation of the MFI 
method starts with the bridge dynamics equation for an N-
DOF model 

 𝐌𝐪ሷ ሺ𝑡ሻ + 𝐂𝐪ሶ ሺ𝑡ሻ + 𝐊𝐪ሺ𝑡ሻ = 𝐋ሺ𝑡ሻ𝐩ሺ𝑡ሻ (22)
 

where 𝐪ሺ𝑡ሻ ∈ ℝே is the displacement vector; 𝐌 ∈ ℝே×ே, 𝐂 ∈ ℝே×ே , and 𝐊 ∈ ℝே×ே  are the time invariant mass, 
Rayleigh damping, and stiffness matrices of the bridge 
model; 𝐩 ∈ ℝ௡ೠ  is the external force vector, containing 
axle weights in BWIM application, and 𝑛௨ represents the 
number of forces to be identified, which varies from two to 
ten in the three traffic scenarios under study. Finally, 𝐋ሺ𝑡ሻ ∈ ℝே×௡ೠ  is the time-varying force location matrix 
that represents the time-changing locations of vehicles. 
Thus, the MFI approach requires accurate vehicle positions 
traveling through the bridge. 

Since the total DOFs of the bridge is large, model 
reduction is necessary for computational efficiency. The 
total number of DOFs after model reduction is 𝑛௭ ∈ ℝ. 

 𝐪ሺ𝑡ሻ ൎ 𝚽𝐳ሺ𝑡ሻ (23)
 

where 𝚽 ∈ ℝே×௡೥  is a matrix with the first 𝑛௭ 
normalized eigenvector; 𝐳ሺ𝑡ሻ ∈ ℝ௡೥  is the modal 
coordinates. We use 𝛼 ∈ ℝ  and 𝛽 ∈ ℝ  to denote the 
Rayleigh damping coefficients, and 𝛀 ∈ ℝ௡೥×௡೥ to denote 
a diagonal matrix whose diagonal entries contain the first 𝑛௭ number of resonance frequenices. 

 𝐳ሷሺ𝑡ሻ + ൫𝛼𝐈௡೥×௡೥ + 𝛽𝛀൯𝐳ሶሺ𝑡ሻ + 𝛀𝐳ሺ𝑡ሻ = 𝚽୘𝐋ሺ𝑡ሻ𝐩ሺ𝑡ሻ (24)
 
In this numerical example, we keep the first fifty modes, 

i.e., 𝑛௭ = 50. The corresponding frequencies range from 
8.17 Hz to 140.24 Hz, which should be sufficient for the 
MFI method to capture the bridge dynamics. From modal 
coordinates 𝐳ሺ𝑡ሻ , standard state-space formulation is 
introduced. 
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 𝐗ሶ ሺ𝑡ሻ = 𝐀𝐗ሺ𝑡ሻ + 𝐁ሺ𝑡ሻ𝐩ሺ𝑡ሻ (25)
 

where 𝐗ሺ𝑡ሻ = ൤𝐳ሺ𝑡ሻ𝐳ሶሺ𝑡ሻ൨ ∈ ℝଶ௡೥ , 𝐀 = ൤ 𝟎 𝐈−𝛀 −ሺ𝛼𝐈 + 𝛽𝛀ሻ൨ ∈ℝଶ௡೥×ଶ௡೥  and 𝐁ሺ𝑡ሻ = ൤ 𝟎௡೥×௡ೠ𝚽୘𝐋ሺ𝑡ሻ൨ ∈ ℝଶ௡೥×௡ೠ . The 

continuous-time state-space formulation is then converted 
to discrete-time domain using standard zero-order hold, 
with certain sampling time period. Using discrete-time 
index j, the state and input vectors are denoted as 𝐗௝ and 𝐩௝, respectively. Suppose there are 𝑛௠ number of sensor 
measurements. We use 𝛆௝ୱ୧୫ ∈ ℝ௡೘  to denote the 
simulated strain vector at the 𝑗-th time step. The vector can 
be obtained by a simple linear transformation from state 
vector 𝐗௝ that contains displacements information. In the 
sense that once the structural model is chosen, strain history 
is determined by the excitation history = ൛𝐩଴, 𝐩ଵ, … , 𝐩௡೟ൟ , 
we can denote the simulated strain 𝛆௝ୱ୧୫ሺ𝓟ሻ as a function 
of the input 𝓟. 

 While MFI attempts to minimize the difference 
between simulated and measured strain, early researchers 
found first-order Tikhonov regularization significantly 
improves MFI performance (Gonzalez et al. 2008). The 
regularization takes 𝓟 as the optimization variable and 
minimizes not only the difference between simulated 𝛆௝ୱ୧୫ 
and measured strain 𝛆௝୫ୣୟୱ , but also the input change 
between two neighboring time steps. 

 minimize𝓟ୀ൛𝐩బ,,…,𝐩೙೟ൟ ෍ ൤ቀ𝛆௝୫ୣୟୱ − 𝛆௝ୱ୧୫ሺ𝓟ሻቁ் 𝐖 ቀ𝛆௝୫ୣୟୱ௡೟ିଵ௝ୀ଴− 𝛆௝ୱ୧୫ሺ𝓟ሻቁ+ ൫𝐩௝ାଵ − 𝐩௝൯்𝐑൫𝐩௝ାଵ − 𝐩௝൯൨ 

(26)

 
Here 𝐖 ∈ ℝ௡೘×௡೘  is the weighting matrix (usually 

chosen as identity); 𝐑 ∈ ℝ௡ೠ×௡ೠ  is the regularization 
matrix and is required to be tuned. 

As mentioned earlier, the application of moving force 
identification requires information including axle number, 
axle distance, vehicle distance, vehicle speed and transverse 
vehicle position, etc. (Meanwhile, it is worth noting that 
when estimating vehicle weight the trained BRNN does not 
require any such vehicle information; all that’s required by 
BRNN is strain history). While these data can be measured 
through certa in instruments on the bridge,  the 
measurements inevitably come with errors. For example, in 
practice the number of vehicle axles can be difficult to 

 
 

capture by sensors, and a mistaken number of axles can 
cause significant error in the MFI results. When comparing 
with BRNN, we assume the axle number is captured 
correctly so that MFI can provide better (and more 
comparable) performance. Instead, we consider the effects 
of more commonly occurring errors to MFI, by introducing 
from 0% to 10% errors to vehicle information including 
axle distance, vehicle distance, vehicle speed and transverse 
vehicle position. 

In the comparison between MFI and the proposed 
BRNN approach, four examples are chosen randomly from 
the three traffic scenarios (two examples from Scenario 1, 
and one each from Scenarios 2 and 3). Table 4 shows the 
truck weight estimation error by BRNN and MFI, for the 
trucks in different examples. Among all the five trucks from 
four examples, the BRNN provides the lowest error of 0.1% 
and highest error of 2.00%. When the “correct” vehicle 
information is available to MFI, a largest error of 6.34% is 
observed. In addition, when the vehicle information with 
“error” is used by MFI, all estimation errors are highly 
unacceptable. The fact that the trained BRNN does not 
require any such vehicle information for estimating vehicle 
weight is shown to be a significant advantage. 

 
 

5. Conclusions 
 
This paper proposes a novel 3-stage BRNN network for 

bridge weigh-in-motion. The proposed neural network 
incorporates both long short-term memory (LSTM) and 
attention mechanism to improve the network performance. 
The neural network is trained with strain measurements as 
input and axle weights as output. In order to acquire the 
large data volume to train the network, a finite element 
bridge model is built through the commercial software 
package LS-DYNA. To mimic everyday traffic scenarios, 
tens of thousands of randomized vehicle formations are 
simulated, with different combinations of vehicle types, 
spacings, speeds, axle weights, axle distances, etc. Dynamic 
response from each of the randomized traffic scenarios is 
recorded for training the BRNN. 

Numerical results demonstrate that the BRNN network 
achieves high accuracy in estimating vehicle weights, in 
comparison with a conventional moving force identification 
(MFI) method. Furthermore, the MFI estimation 
performance is shown to deteriorate rapidly with errors in 
the vehicle information such as speed, transverse position, 
vehicle interval and axle distances. The fact that the trained 
BRNN does not require such information for estimating 

Table 4 Relative error of truck weight estimation for four examples by BRNN and MFI 

Examples Truck weight
(lbf) BRNN MFI - “correct” 

vehicle info 
MFI - vehicle info

with “error” 

Ex. 1 – 2-axle truck (Scenario 1) 75,825.8 0.83% 4.09% 16.90% 
Ex. 2 – 3-axle truck (Scenario 1) 60,988.0 2.00% 1.19% 18.42% 

Ex. 3 – 3-axle car and 2-axle truck (Scenario 2) 49,574.0 0.10% 6.34% 38.68% 

Ex. 4 – two trucks 
(Scenario 3) 

Truck A (4 axles) 91,173.2 1.46% 3.33% 28.99% 
Truck B (3 axles) 79,647.2 1.48% 1.76% 25.22% 
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vehicle weight proves to be a significant advantage. 
While the proposed BRNN method is shown to 

accurately identify vehicle weight using simulated bridge 
data, future research is needed to validate the performance 
in field experiments. Though we have modeled 10% 
Gaussian error in strain measurements, there can still be 
other sources of uncertainties in practice. Secondly, future 
simplification of the neural network can help speed up the 
training process and reduce the demand for training data 
sets. 
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