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1. Introduction 

 
The construction and maintenance of high-quality 

infrastructure, including bridges, dams, roads, and harbors, 
are essential factors for improving the quality of life in 
society. Among them, bridges are representative 
infrastructure and have been built simultaneously over the 
past few decades with the rapid economic development of 
modern society. In recent years, as bridges built intensively 
at that time are deteriorating, it causes various social 
problems such as collapse due to performance degradation. 
In general, the bridge inspection method requires a lot of 
experts and time, and additionally, various special 
equipment such as ladder truck, man-lift, or ground 
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inspection vehicle. However, in the case of bridges built on 
the ocean or with complex structures, access to inspection is 
limited and, even if approached by well-trained inspectors, 
it is difficult to diagnose damage in detail. In addition, the 
existing methods are inefficient because they are time-
consuming, labor-intensive, costly, confusing, and even 
unsafe for inspectors, and the inspection results include 
subjective interpretations (Jung et al. 2019). 

In recent years, the use of an unmanned aerial vehicle 
(UAV) has grown in the field of bridge inspection and 
health monitoring. The growth of UAV-based inspection 
technology is due to their characteristics like versatility, 
flexibility, low cost, and minimized operational risk. (Gao 
et al. 2018) In particular, the use of a UAV for bridge 
inspection is suitable in that the bridge structure is generally 
complex and inaccessible, and it can be expected to have a 
great effect in that high-performance imaging devices can 
be freely mounted. Due to these advantages, numerous 
studies have recently been conducted related to bridge 
inspection using UAV (Hallerman and Morgenthal 2014, 
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Abstract.  This paper proposes a new methodology to address the image quality problem encountered as the use of an 
unmanned aerial vehicle (UAV) in the field of bridge inspection increased. When inspecting a bridge, the image obtained from 
the UAV was degraded by various interference factors such as vibration, wind, and motion of UAV. Image quality degradation 
such as blur, noise, and low-resolution is a major obstacle in utilizing bridge inspection technology based on UAV. In particular, 
in the field of bridge inspection where damages must be accurately and quickly detected based on data obtained from UAV, these 
quality issues weaken the advantage of using UAVs by requiring re-take of images through re-flighting. Therefore, in this study, 
image quality assessment (IQA) based on local blur map (LBM) and image quality enhancement (IQE) using the variational 
Dirichlet (VD) kernel estimation were proposed as a solution to address the quality issues. First, image data was collected by 
setting different camera parameters for each bridge member. Second, a blur map was generated through discrete wavelet 
transform (DWT) and a new quality metric to measure the degree of blurriness was proposed. Third, for low-quality images with 
a large degree of blurriness, the blind kernel estimation and blind image deconvolution were performed to enhance the quality of 
images. In the validation tests, the proposed quality metric was applied to material image sets of bridge pier and deck taken from 
UAV, and its results were compared with those of other quality metrics based on singular value decomposition (SVD), sum of 
gray-intensity variance (SGV) and high-frequency multiscale fusion and sort transform (HiFST) methods. It was validated that 
the proposed IQA metric showed better classification performance on UAV images for bridge inspection through comparison 
with the classification results by human perception. In addition, by performing IQE, on average, 26% of blur was reduced, and 
the images with enhanced quality showed better damage detection performance through the deep learning model (i.e., mask and 
region-based convolutional neural network). 
 
Keywords:  Unmanned Aerial Vehicle (UAV); bridge inspection; Image Quality Assessment (IQA); Image Quality 
Enhancement (IQE); damage detection 
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Cunningham et al. 2015, Dorafshan et al. 2017, Seo et al. 
2018, Tomiczek et al. 2018, Salaan et al. 2018, Jordan et al. 
2018). 

As shown in these various application cases, the 
performance and effectiveness of bridge inspection using 
vision images obtained from UAV are obvious, but there are 
still some important issues to be addressed prior to site 
application. Jung et al. (2019) emphasized the flight 
performance within the GPS denied area in the inspection 
phase, the occurrence of the missing field of view and 
deterioration of the image quality in the post-inspection 
phase, and the method of damage detection as major 
challenges prior to the actual application of UAV. Among 
them, a representative challenging issue in the post-
inspection phase is the problem of image quality 
degradation due to internal factors (e.g., sensor 
performance, exposure times, motion modes, etc.) and 
external factors (e.g., rain, wind, movement, illumination, 
etc.), which lowers the accuracy of the damage detection, 
resulting in poor bridge assessment. Therefore, the selection 
and classification of high-quality images is the most 
important stage in the damage detection phase (Jeong et al. 
2020). In particular, the most prominent type of quality 
degradation in images acquired from UAV systems is 
motion blurs that reduces the sharpness of the images. The 
degradation of sharpness adversely affects the damage 
detection phase, which is conducted based on edge 
extraction. Therefore, quality issues of image data must be 
addressed for accurate damage identification. Damage 
detection based on degraded images lead to inadequate 
results, which can restrict UAV's extended application (Kim 
et al. 2018, Kim and Cho 2019). 

There are two ways to solve the quality problems 
mentioned above. The first is the use of image quality 
assessment (IQA) metrics to evaluate and select images that 
can be used for damage detection from a vast amount of 
image data sets. In general, if the damage within the bridge 
is clearly present and its location is known, the bridge 
inspection can be performed by taking a single image. 
However, if the existing inspection records for the target 
bridge are not secured or new damage appears, the bridge 
inspection should be performed by using multiple images of 
the entire bridge. In this case, numerous images are 
acquired through multiple flights, and it is very inefficient 
to classify and evaluate these data by the subjectivity of the 
inspector. To objectively and accurately assess the image 
quality, therefore, an objective method (i.e., IQA metric) 
that reflects the characteristics of the quality degradation 
caused by the motion blur of the UAV is required. Various 
conventional IQA metrics such as mean square error 
(MSE), peak signal-to-noise ratio (PSNR), or structural 
similarity (SSIM) evaluate the quality by comparing factors 
that affect quality based on distortion-free images. 
However, since the images obtained from UAV for bridge 
inspection cannot secure a distortion-free image, it is 
generally appropriate to apply the no-reference IQA metric 
to assess quality based on the characteristics of high-quality 
images. 

Several researchers to identify high-quality images have 
applied many no reference (NR) IQA metric algorithms. 

Morgenthal and Hallermann (2014) and Sieberth et al. 
(2015) confirmed that blurs are generated through 
displacement between image frames caused by UAV's 
motion or wind effect, and emphasized that images 
degraded by blurs cause inaccuracies in damage detection. 
Duque et al. (2018) applied the combined entropy and 
sharpness algorithms for determining the high-quality 
images in the bridge inspection. They used the average 
entropy and sharpness values of the benchmark images to 
evaluate the quality through changes in the entropy and 
sharpness of each image obtained from the UAV. In 
addition, Jung et al. (2019) proposed a quality metric, 
noting that the quality deterioration due to the blur of the 
UAV image decreases the gradient of gray intensity 
between neighboring pixels. 

Sieberth et al. (2016) proposed an automated image-
filtering framework using saturation image edge difference 
(SIEDS) blur values. According to their proposed method, 
the blurred image included in the image set captured by 
UAV could be detected through a short processing time, and 
the detection speed and reliability were verified through two 
UAV datasets. However, while it was possible to filter blur 
images through relative image quality assessment using 
SIEDS value for independent image sets, there was no 
comparison for absolute image evaluation. Also, in the case 
of filtering for close range images, only the blur caused by 
linear camera displacement was considered, so it was not 
possible to determine the effect of various blur factors 
including dynamic motion that may occur in the close-range 
image set acquired based on UAV. 

These processes of quality assessments may select 
images with high quality, but this may not be a fundamental 
solution. For example, if the quality of certain image frames 
essential for bridge inspection was degraded by motion blur 
or other reasons, additional work will be required, such as 
re-flight to re-acquire images of that area. At this time, if it 
is not possible to accurately know the shooting point of the 
image where the quality deterioration occurred, a more 
complex problem may be encountered. Therefore, 
numerous researchers have studied quality enhancement 
techniques for low-quality images to utilize the advantages 
of UAV-based bridge inspection technology in terms of 
time efficiency. Methods to improve the quality of images 
can be subdivided into a super resolution (SR) enhancement 
technique that improves low resolution and de-blur 
technique that reduces the degree of blurriness (Lei et al. 
2018, Kim et al. 2016, Dong et al. 2016). The loss of image 
resolution is mainly caused by increasing the altitude of the 
UAV when capturing a wide geographical area, whereas a 
low- resolution problem rarely occurs when capturing a 
bridge from a distance of 2 to 3m. Rather, the 
deconvolution technique (deblurring) that recovers blurred 
images caused by UAV speed or unstable flight, wind, etc. 
is more important in the field of bridge inspection. 

With the development of GPU and vision processing 
technology, the study of image de-blurring using deep 
learning was carried out (Wang et al. 2018, Burdziakowski 
2020). In the field of civil engineering, Liu et al. (2020) 
proposed the deblur model based on the Generative 
Adversarial Network (GAN) for crack images. The 
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proposed model consisted of localized skip layers to 
demonstrate the correlation between the sharpened and the 
blurred crack image. That showed excellent de-blurring 
performance in feature restore and image sharpness, 
compared with various state-of-the-art deblur models. 
However, the performance of their method using GAN 
depends on the image characteristics and labeled training 
data. In addition, there is also a limitation that it takes a lot 
of time because of a lot of computation. These preliminary 
study cases are shown that the main issue facing UAV-
based inspection technology is to obtain high-quality image 
data and that the quality of the data acquired initially is 
directly related to the final inspection results. In bridge 
inspection using UAV, it is necessary to judge the quality of 
the image through short processing time at the site and to 
enhance the quality or retake the image for low-quality 
imag8s. 

In this paper, therefore, the proposed methodology is 
aimed to evaluate the quality of images acquired in bridge 
inspection using UAV and enhance the images with quality 
degradation such as blur, lack of exposure, etc. by using the 
de-blur algorithm. The image data set taken in the actual 
UAV was built and the quality was assessed using the blur 
operator and no-reference quality metric. In addition, image 
enhancement has been carried out using an optical flow-
based kernel estimation method by classifying low-quality 
images. Based on the high-quality image data sets obtained 
through a series process of quality evaluation and 
enhancement, the deep learning technology and image 
processing technology were applied to detect the damage on 
the bridge. The reliability of quality assessment and 
enhancement effects were evaluated by comparing the 
detected damage information with the actual values. 

The paper is organized as follows. Section 2 describes 
image quality metrics and quality enhancement techniques. 
The overall image processing process is covered in Section 
3, and field experiment results and analysis using improved 
images are shown in Section 4. Finally, conclusions on the 
effects of applying image quality assessment and enhance-
ment techniques are addressed in Section 5. 

 
 

2. Theoretical background 
 
The human eye can be a good classifier, but when 

inspecting large structures such as bridges, objective 
methods have the advantage of saving time and simplify the 
task. Objective IQA methods are classified into three 
categories: Full Reference (FR), Reduced Reference (RR), 
and No Reference (NR) or Blind Reference (BR). FR and 
RR require entire or partial images to be regarded as 
references. However, in the case of a special application 
such as a bridge inspection using a UAV, it is hardly 
possible to obtain the information regarding the reference 
image. Therefore, in this study, NR or BR IQA was applied 
among objective IQA methods to evaluate UAV images. 

 
2.1 Qual ty assessment: The proposed method 

based on local blur map (LBM) 
 
In this study, the method for evaluating image quality 

through blur map generation based on root mean square 
values (RMS) that emphasized faster and more perceptual 
contrast response was proposed. The local standard 
deviation of the image intensity of the image pixel 𝐼(𝑥, 𝑦) 
was used to generate the local blur map (LBM) of the input 
images. The LBM can be expressed as 

 𝐿𝐵𝑀௥௠௦ = 𝜎௟௢௖௔௟(𝑥, 𝑦)ఉ (1)
 

where σ௟௢௖௔௟(x, y) is the local standard deviation of image 
intensities found in a neighborhood centered around a pixel 
at location (x, y). β denotes the parameter that increases 
the dynamic range of the local blur map and is expressed as 
an exponential of the local standard deviation of each pixel. 
The local standard deviation 𝜎௟௢௖௔௟(𝑥, 𝑦)  is computed 
using the intensity value 𝐼(𝑥, 𝑦) as 

 𝜎௟௢௖௔௟(𝑥, 𝑦)
= 12𝑘 + 1 ඩ ෍ ෍ (𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝜇௟௢௖௔௟(𝑥, 𝑦))ଶ௞

௝ୀି௞
௞

௜ୀି௞ (2)

 
where 2𝑘 + 1 is the size of a local window in the vertical 
and horizontal directions. The term μ௟௢௖௔௟(𝑥, 𝑦) is local 
window mean value that is computed as 

 

𝜇௟௢௖௔௟(𝑥, 𝑦) = 12𝑘 + 1 ඩ ෍ ෍ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)௞
௝ୀି௞

௞
௜ୀି௞  (3)

 
Next, the image array of LBM௥௠௦ is transformed from 

spatial to frequency domain using Discrete Wavelet 
Transformation (DWT). When blur occurs, features such as 
edges in the blurred image have discontinuities, and the 
image array of LBM௥௠௦ also shows discontinuities as well 
as more changes in the frequency domain. Given LBM௥௠௦ 
is decomposed into low frequency band made of DWT 
coefficient and three high frequency sub-bands containing 
horizontal, vertical and diagonal wavelet coefficients. In the 
final step, sorting the coefficients by ranking and weighting 
the wavelet coefficients is conducted. 

 
2.2 Qual ty assessment: Convent onal NR qual ty 

metr cs 
 
Among the NR IQA methods, commonly used are NIQE 

(Mittal et al. 2012b), BRISQUE (Mittal et al. 2012a), and 
SSEQ (Liu et al. 2014a). Mittal et al. (2012a) proposed 
NIQE based on the relationship between the statistical 
characteristics of the clean patch and sharpness and the 
similarity between the object image and the clean image 
meant the distance between qualities. Also, Mittal et al. 
2012a proposed BRISQUE using the statistical 
characteristics of a natural image, which is Natural Scene 
Statistics (NSS), obtained by using Natural Image with 
Mean Subtraction and Contrast Normalization (MSCN). 
They noted that when distortion occurs in the natural image, 
the statistical characteristics of the image pixels are also 
distorted, and they specified the feature and information of 
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the Generalized Gaussian Distribution (GGD) consistent 
with the MSCN histogram of the distorted image. After 
deriving the features, it is training the Support Vector 
Machine (SVM) using the features and labels to predict the 
quality of the image. The NR IQA methods (i.e., NIQE, 
BRISQUE, and SSEQ) as mentioned above assessed the 
image with a high score to a “distortion-free” image, that is, 
a natural image. The distortion is determined by 
comprehensively considering features that appeared inside 
the image such as noise, blur, and exposure. 

However, in the case of UAV images, since blurriness is 
the main reason of quality degradation, there are IQA 
methods of the blurred image by calculating the degree of 
the blurriness that occurs mainly inside the image. Jung et 
al. (2019) proposed the quality metric based on the sum of 
gray-intensity variance (SGV). This method was established 
based on the fact that when blurs occurred, the sharpness of 
the image decreased, and the gradient value of the grays-
intensity between neighboring pixels also decreased. On the 
other hand, when blur hardly occurred, since the sharpness 
value increased relatively, the gradient of gray-intensity 
between neighborhood pixels increased. Liu et al. (2014b) 
proposed a blur measure operator that can detect blurred 
images without kernel estimation using the singular value 
decomposition (SVD). This method evaluates the image 
based on the relationship between the change in the singular 
value and the degree of blurriness. To measure the blur, a 
singular value is obtained in units of pixels or image 
neighborhood windows, and high-frequency details of the 
eigen-image are discarded on a small scale through a 
convolution operator. Accordingly, detailed information of 
the image decreases, and the weight of the unique image at 
this time increases. As a result, blurred images usually have 
a much higher weight than clear images. Golestaneh and 
Karam (2017) conducted the high-frequency discrete cosine 
transform (HiFST) to obtain the DCT coefficients of 
gradient magnitudes by using neighboring windows of 
varying sizes around the center pixel, sorting, grouping 
them into multiple layers. The DCT coefficient can 
represent different frequencies, and it includes information 
related to image structure, energy, and blurriness. 

For the relative comparison between the proposed 
quality metric and other quality metrics, the log values of 
diagonal wavelet coefficients were used and the 
conventional blur map 𝐵𝑀(𝑥, 𝑦) was generated by using 
blur operator 𝐵. 

 𝐵𝑀(𝑥, 𝑦) = 𝐵(𝐼(𝑥, 𝑦)) (4)
 

where 𝐼(𝑥, 𝑦)  is a blurred input image for which the 
amount of blurriness is to be computed at each pixel 
location. The blur map is normalized linearly so that 𝐵𝑀(𝑥, 𝑦) ∈ ሾ0,1ሿ . The normalized blur map can be 
expressed as 

 𝐵𝑀෢ (𝑥, 𝑦)) = 1 − 𝐵𝑀(𝑥, 𝑦) − 𝑚𝑖𝑛(𝐵𝑀)𝑚𝑎𝑥(𝐵𝑀) − 𝑚𝑖𝑛(𝐵𝑀) (5)
 

where 𝑚𝑎𝑥(𝐵𝑀) and 𝑚𝑖𝑛(𝐵𝑀) mean the value of the 
maximum and minimum degree of blurriness in the blur 
map. 

2.3 Quality enhancement: The algorithm of blind 
image deconvolution 

 
In general, the process of motion blurs in UAV images is 

modeled as 𝐵𝐼 = 𝑘 ∗ 𝐿 + 𝑁 (6)
 

where 𝐵𝐼  is blurred image, 𝑘  denotes the motion-blur 
kernel, and 𝐿 is the latent image. 𝑁 denots the noise and ∗ is a convolution operation. Since blurred images of UAV 
do not have a reference image, deblurring is an ill-posed 
problem with unknown numbers more than observed data. 
A successful approach is alternating optimization of latent 
image 𝐿 and blur kernel 𝑘 in an iterative processes. The 
standard energy function of image deblurring (Cho and Lee 
2009) can be expressed as 

 𝑓(L, K) = |𝐵 − 𝐿 ∗ 𝑘|ଶ + 𝑞(𝐿) + 𝑟(𝐾) (7)
 

where (𝐿) , 𝑟(𝐾) is regulization terms or priors for L, K. 
In general, the image deblurring process is an iterative 
process of performing latent image estimation and kernel 
estimation based on the estimated latent image. However, it 
is difficult to restore an image that is blurred by an 
ununiformed blur kernel such as motion blur in UAV by the 
conventional image deconvolution method. In order to 
restore a blurred UAV image, deconvolution with precisely 
estimated blind blur kernel by reflecting the motion of the 
UAV is essential. Therefore, in this study, the method of 
variational Dirichlet (VD) blur kernel estimation proposed 
by Zhou et al. (2015) was applied. They addressed the blur 
problem by replacing two optimization problems as 

 𝑥௞ାଵ = argmin ෍ 12 ‖∇௜𝐻௞𝑥 − 𝑦‖ଶଶ + 𝜆௫𝑅௫(𝑥),௜  (8)

 ℎ௞ାଵ = argmin ෍ 12 ‖∇௜𝑋௞ାଵℎ − ∇௜𝑦‖ଶଶ + 𝜆௛2 𝑅௛(ℎ),௜subject to    h ≥ 0 ෍ ℎ(𝑗) = 1௝  
(9)

 
where ∇௜𝑋௞ାଵ is the matrix formed by the gradient of the 
image 𝑥௞ାଵ  utilizing the i-th filter, k denotes iteration 
index , 𝐻௞  is the convolution matrix formed by the 
estimated impulse response of the blur at the k-th iteration 
step ℎ௞  and 𝑅௛  is the regularization function. The 
parameters 𝜆௫ , 𝜆௛  are crucial to get better kernel 
estimation results and 𝜆௛ help to adjust the smoothness of 
the kernel and avoid the delta kernel. As the value of 𝜆௛ 
increases, the kernel becomes wider and shows more noise, 
which is generally proportional to the image size and noise 
level. The results of parameter studies of 𝜆௛ and 𝜆௫ can 
be confirmed by referring to previous paper, and 𝜆௫  = 
0.0002 and 𝜆௛  = 0.01 values were used in this study. 

 
 

3. The proposed approach 
 
The typical procedure of the bridge inspection using 
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UAV proposed by Jung et al. (2019) consists of three phases 
as shown in Fig. 1. This study focused on the verification of 
data acquisition in the post-inspection phase, and this 
mission consists of two sub-missions. One sub-mission is to 
detect the missing area among the inspection areas, and this 
problem can be addressed through an algorithm based on 
UAV metadata and camera attitude information proposed by 
Yoon et al. (2020). The remaining sub-mission of the 
verification process is related to an objective assessment of 
image quality and methods of enhancing the quality of 
degraded UAV image. 

In this study, to address the quality issue in the bridge 
inspection process using UAV mentioned in chapter 1, a 
methodology consisting of three steps was proposed as 
shown in Fig. 2. In Step 1, parameter values of a camera 
related to illuminance that vary depending on the bridge 
member were discussed, and data collection was performed 
by applying them. In Step 2, a new quality metric for IQA 
was proposed, and performance validation was performed 

 
 

 
 

through comparative analysis with the results of existing 
methods. The process of validation was conducted by 
comparing the result of applying each quality metric to the 
material image set and the result classified by the 
perspective of the inspector in advance. The different 
thresholds were applied for each metric to the result of 
image quality quantification, and classification into high-
quality and low-quality images was performed. In Step 3, 
IQE was performed on low-quality images. The method of 
IQE was divided into a blur kernel estimation and a blind 
image deconvolution using a kernel. The details of each 
step were described below, and validation tests based on 
this proposed methodology was conducted and described in 
Section 4. 

 
3.1 Step1: Data collection process 
 
Generally, images with good quality mean well-exposed 

images by adjusting the camera's internal parameters such 

 
Fig. 1 Typical procedure of bridge inspection using UAV proposed by Jung et al. (2019) 

 
Fig. 2 The overall flowchart of the proposed research
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as aperture, shutter speed, and ISO sensitivity. However, 
due to the nature of the UAV platform, it is difficult to 
secure a good quality image due to frequent interference 
from external factors (i.e., velocity of UAV, wind speed, 
shadow, etc.). Nevertheless, based on the experience gained 
through many flying for inspection in various environments, 
the method of setting the parameter of camera and flight 
guides that can minimize blur and satisfy good exposure 
conditions was proposed. When inspecting an actual bridge 
using a UAV, the images obtained according to the values of 
the internal parameters were various results as shown in 
Fig. 3. ISO sensitivity was defined as sensor gain, and 
higher values increase the brightness of the image, but the 
quality of the image decreases due to noise. The shutter 
speed and size of the aperture determined the amount of 
light exposed to the sensor during image capture. Longer 
exposures to light (lower shutter speed) can cause more 
motion blur, and smaller aperture values result in greater 
distortion around the image, resulting in poor quality 
(O’Connor et al. 2017). Assuming a UAV flying 
automatically through a given path, when flight under a 
bridge with relatively low light, the ISO value should be 
raised and the shutter speed was set faster to minimize the 
occurrence of noise and blur. In the case of outside piers 
and girders with adequate exposure, the ISO value should 
be minimized and the aperture size should be increased to 
minimize distortion occurring outside the image frame. 

The examples of UAV images in bridge inspection 
according to the various camera parameter settings have 

 
 

 
 

been shown in Fig. 3. Here, Figs. 3(c), (d) and (f) were 
well-exposed images, Fig. 3(a) was over-exposed, and Figs. 
3(b) and (e) were a low-exposed image. In particular, Fig. 
3(a) was the bridge’s pier section where sunlight was 
reflected, resulting in over-exposure due to the slow shutter 
speed setting. In addition, Fig. 3(e) was the deck floor of the 
bridge with less sunlight, which was intended to secure well 
exposure by increasing the ISO value, but due to the 
incorrect shutter speed setting, there was a lack of exposure. 
On the other hand, image Fig. 3(b) lowered the shutter 
speed so that sufficient light could enter the sensor to secure 
exposure, while Figs. 3(c) and (d) were able to obtain 
images with less distortion of the surrounding through the 
setting of fast shutter speed and aperture opening control. 
Fig. 3(f) is an example of securing sufficient exposure by 
lowering the shutter speed because the area where the 
amount of illumination entering the sensor is small 
compared to Fig. 3(e). Although the parameter values 
shown in Fig. 3 are not fixed values that apply to all 
situations, it can be seen that the camera parameter setting 
considering the ambient conditions when inspecting a 
bridge using UAV has a great influence on the image 
quality. Table 3 shows the internal parameter settings of the 
camera used in this study. 

 
3.2 Step2: Image quality assessment (IQA) 
 
In step 2, ൴mage qual൴ty assessment based on DWT 

coeff൴c൴ents ൴s performed, and the performance of the 
 
 

 
 
 

 
(a)1/50sec, f/5.6 ISO 100 (b) 1/250sec, f/4, ISO 400 (c) 1/800sec, f/4.5, ISO 100

 

 
(d) 1/640sec, f/3.5, ISO 320 (e) 1/1250 sec, f/2.8, ISO 320 (f) 1/200 sec, f/2.8, ISO 320

Fig. 3 Examples of obtaining image for bridge inspection using UAV 

Table 1 Camera parameter setting according to the amount of illumination used in this study 
Sides of bridge pier and girder (bright area) Bottom of bridge deck (shadow area) 
ISO sensitivity 100~320 ISO sensitivity  ≥320 
Aperture size f/4.5 ~ f/5.6 Aperture size f/3.5 
Shutter speed 1/250 ~ 1/800sec Shutter speed 1/100 ~ 1/250sec 
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proposed method ൴s conf൴rmed by compar൴ng w൴th the 
results of apply൴ng convent൴onal metr൴cs. The purpose of 
perform൴ng IQA ൴s to secure ൴mages to be used for damage 
detect൴on by quant൴fy൴ng the qual൴ty of raw ൴mages obta൴ned 
from UAVs and to select low-qual൴ty ൴mages for ൴mage 
enhancement. As shown ൴n F൴g. 2, ൴mage qual൴ty evaluat൴on 
cons൴sts of three steps, and f൴rstly, the ൴nput ൴mage ൴n RGB 
scale ൴s converted to a gray scale ൴mage. Then, the initial 
local blur map is generated using the local standard 
deviation of image intensity and the local window mean 
value as shown in Fig. 4. The exponential coefficient shown 
in Eq. (1) increases the dynamic range of the input image 
converted to gray scale. Fig. 4 shows the change of the 
dynamic range as the exponential coefficient increases. 
When the value of β increases from 0 to 4, the dynamic 
range increases as shown in Figs. 4(a) and (b). However, 
when it is increased to 4 or more, the pixel change is 
performed toward the lower brightness level, and the 
dynamic range tends to narrow as shown in Fig. 4(c). 
Therefore, in this study, the exponential coefficient value 
for generating local blur map was set to 3.5. 

Next, DWT is performed to convert the generated initial 
LBM into the frequency domain. Fig. 5 is the result of 
decomposing the converted LBM into a low-frequency 
band and a high-frequency sub-band. Finally, the wavelet 
coefficient of the high frequency is weighted and converted 
into a log scale value to score the degree of blurriness in the 
image. Fig. 5 shows the local blur maps using input images 
with various blur conditions. As degree of blurriness 
increases, the contrast of the local blur map increases. 
Increasing the contrast of the local blur map means that the 
rate of occurrence and distribution of the blur is higher. The 
scores of image quality are calculated by the log scale value 
using weighted wavelet coefficient value of each local blur 
map. 

 
 
In order to compare with the proposed method, IQA is 

performed using other conventional quality metrics. The 
NR quality metrics (i.e., NIQE, BRISQUE, and SSEQ) 
were used to comprehensively evaluate image quality. 
These algorithms were implemented through open sources 
(MATLAB codes) released by the Laboratory of LIVE at 
the University of Texas at Austin. In addition, methods of 
SVD and HiFST were used to quantify the quality based on 
the degree of blurriness, all processes of IQA were 
performed on a desktop having Intel Core i7 5930K with 
Nvidia GeForce GTX1070 graphic card and 48GB RAM 
using MATLAB 2017a. 

Fig. 6 shows an equation for calculating blurriness 
through each quality metric and the process of classifying 
image quality by applying a threshold with a normalized 
image quality score. The metric as shown in Fig. 6(a) that 
utilizes the variance of neighbor pixel-to-neighbor gray 
intensity notes the nature of blurs occurring resulting in a 
reduction in sharpness. However, if shadows often occur in 
the image as shown in Fig. 3(b), or Fig. 3(e), the results of 
the blur detection are inaccurate. Other quality metrics as 
shown in Fig. 6(b) note that the singular value 
decomposition process is similar to the image blurring that 
keeps structure at large scale, and discards the detail of 
image at small scales (Su et al. 2011). The other metric as 
shown in Fig. 6(c) notes that the blur area has a lower DCT 
coefficient value than the sharp area, and the degree of blur 
is determined through multi-scale fusion, sorting, and 
normalizing processes using high-frequency DCT 
coefficient value. As described above, a comparative 
analysis was performed between the results of applying 
three quality metrics operating on different principles. 

In order to classify into two groups using the quality 
score calculated through the IQA process, it is essential to 
apply an appropriate threshold value. Among previous 

 
 

 
(a) 𝛽 = 0.5 (b) 𝛽 = 3.5 (c) 𝛽 = 5.5 

Fig. 4 Changes in dynamic range of input image as exponential coefficient increases 
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studies related to this, Jung et al. (2019) performed SGV 
based quality assessment, and quality classification was 
performed by setting criteria of േ2σ from the mean value 

 
 

 
 
of the quality score in local image set. However, in this 
case, when the mean value of quality score of the local 
image set is generally low, the threshold value may not be 

 

 

 

(a) Orginal input (b) LBM௜௡௜௧௔௟ (c) LBM௙௜௡௔௟ 
Fig. 5 The results of the proposed method using LBM

 
Fig. 6 The procedures of compared method using SVD, HiFST, and SGV 
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appropriate. Therefore, in this paper, linear normalization of 
the quality score of each image was performed using a set 
of 2,700 UAV images captured in various environments. By 
setting 𝑚 − 2𝜎  as the threshold value using the mean 
value and standard deviation of the normalized score in the 
UAV image data set, the disadvantages of the threshold 
using the local image set mentioned above were 
compensated. 

 
3.3 Step 3: Image quality enhancement (IQE) 
 
In step 3, the algorithm of image enhancement that 

performs blind image deconvolution by estimating the blur 
kernel using the variational Dirichlet (VD) method 
proposed by Zhou et al. (2015) is applied to the UAV 
image. This method is based on the image prior to non-
dimensional Gaussianity measures to enforce sparsity and 
an undermined boundary condition to reduce the boundary 
artifacts. Since the shape of blurriness occurring in UAV 
images is not constant, non-uniform kernel estimation using 
Dirichlet distribution was used to approximate the posterior 
distribution of the blur. Here, the parameter value 𝜆௫ is set 
to 0.0002 as the default value and 1000 iterations for 
estimating blur kernel. The input image containing concrete 
crack shown in Fig. 7(a) was a cropped image (1000 by 
1000 pixel) from the original image captured by UAV, and 
artificially generated blur by applying 2D-Gaussian filtering 
within the cropped image. When the magnitude of sigma is σ௫ = 2𝜎 and σ௬ = 8𝜎, the blur kernel estimated through 
the VD method was shown in Fig. 7(b). 

 
 

 
 

4. Validation: application to real UAV images 
 
4.1 Imag ng dev ce and UAV system for acqu r ng 

mater al mages 
 
When inspecting a bridge, it was common to select 

cameras and UAV differently depending on the purpose and 
target structure. However, when using a commercial UAV, 
there are disadvantages in that flight time and performance 
are limited, and the range of camera selection is narrow. For 
example, Salaan et al. (2018) used a UAV equipped with a 
passive rotating spherical shell structure to detect surface 
cracks at a distance of 0.5 m, and Myeong and Myung 
(2018) used a type of wall-climbing UAV for performing a 
micro inspection. The performances of the UAV used in this 
study were a maximum takeoff weight of 19 kg, an average 
flight time of 30 minutes, and a quadrotor type designed to 
be equipped with a high-performance imaging device (i.e., 
DSLR camera). In addition, the gimbal attached to this 
UAV not only serves to fix the imaging device but also 
helps to reduce vibrations caused by the wind. Also, the 
gimbal was effective for photographing various members of 
the bridge as it can switch the camera in the direction of roll 
and pitch (േ90°, േ90°). The imaging device used in this 
study is a high-resolution DSLR camera (i.e., Sony alpha9) 
capable of capturing single images with 24 million pixels 
(6000 × 4000), and a lens with fast autofocus and optical 
image stabilization functions was used (i.e., ZEISS Batis 85 
mm f/1.8) as shown in Fig. 8(b). 

The target bridge was selected as the D Bridge in 

 
(a) Blurred image (b) Estimated kernel (c) Deblurred image

Fig. 7 Blind image deconvolution based on VD kernel estimation method 

(a) Target bridge (b) UAV system 

Fig. 8 Field application of bridge inspection using UAV

217



 
Jin Hwan Lee, Sungsik Yoon, Byunghyun Kim, Gi-Hun Gwon, In-Ho Kim and Hyung-Jo Jung 

 
 

 
 

Gangwon province, South Korea, as shown in Fig. 8(a). 
This bridge consists of 10 steel boxes and 10 PSC box 
girders, and the bridge piers, decks, and sides were 
inspected. The inspection path for each member of the 
bridge is shown in Fig. 9, and the continuous acquisition of 
images was performed while maintaining the operating 
distance of about 2 m to 4 m. Among the numerous images 
(about 2,700 images) obtained from UAV for the validation 
test, 20 images were selected and composed as a material 
set. Material images consisted of clear images that can be 
perceived by humans and images with various types of 
quality degradation such as blur, defocusing, and noise. The 
flight path for each member to photograph the material data 
used for the validation test was shown in Fig. 9, and the 
acquired images were shown in Fig. 10. 

The target bridge was selected as the D Bridge in 
Gangwon province, South Korea, as shown in Fig. 8(a). 
This bridge consists of 10 steel boxes and 10 PSC box 
girders, and the bridge piers, decks, and sides were 
inspected. The inspection path for each member of the 
bridge is shown in Fig. 9, and the continuous acquisition of 
images was performed while maintaining the operating 
distance of about 2m to 4m. Among the numerous images 
(about 2,700 images) obtained from UAV for the validation 

 
 

 
 

test, 20 images were selected and composed as a material 
set. Material images consisted of clear images that can be 
perceived by humans and images with various types of 
quality degradation such as blur, defocusing, and noise. The 
flight path for each member to photograph the material data 
used for the validation test was shown in Fig. 9, and the 
acquired images were shown in Fig. 10. 

 
4.2 Mater al mage sets of br dge nspect on 

us ng UAV 
 
These UAV images were taken with different camera 

internal parameters and were compressed in JPEG format. 
The resolution of the images follows two types of digital 
format 10 MP (3936 × 2624), 24MP (6000 × 4000). In order 
to perform the process of the quality assessment and 
enhancement using UAV images taken in various 
environments, several inspection flights were performed, 
and images of the bottom of the bridge deck, the side of the 
pier, and the side of the girder were taken as shown in Fig. 
10. 

Before applying the proposed quality metric based on 
blur operator, classification by the inspector’s perspective 
and assessment using the NR quality metric were 

 

(a) Flight path of the deck 
 

(b) Flight path of the pier 

Fig. 9 Flight path of each bridge member

  
Fig. 10 Material image sets for validation test
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performed. The purpose of the preliminary image 
assessment was to confirm whether the NR quality metrics 
commonly used for natural image quality evaluation, such 
as NIQE, BRISQUE, and SSEQ, were suitable to be applied 
to UAV imagery. In addition, the classification result was 
objectively determined by comparing the result of image 
classification performed by the subject of the inspector and 
the result of image quality classification based on the 
quality metric proposed in this study. 

Here, classification by the perspective of the inspector 
means classifying images by the degree of perception of 
blur in the image. From the 20 material images, 11 images 
contained blur, and especially two images (#11, #14) were 
considered to have a larger degree of blur. The result of 
classifying the images into two classes was shown in Table 
2. 

Next, the material image set of UAV images was 
assessed by using three quality metrics, which were used for 
quality assessment of the natural image. As a result of 
evaluating the image quality using the BIRSQUE metric, it 
was confirmed that the quality of the 2 images (#2, #12) 
was the lowest, and the 6 images (#5, #11, #16, #17, #18 
and #19) were lower than the average score as shown in 
Fig. 12(a). As a result of classification using the NIQE 

 
 

 
 

metric, 10 images (#2, #3, #5, #11, #13, #14, #16, #17, #18 
and #19) could be distinguished as low-quality images. In 
addition, it was confirmed that the quality of the three 
images (#2, #12, and #18) has relatively lower scores 
through image quality assessment using the SSEQ metric. 
Although, two images (#3, #18) were considered as the 
sharpened image from the perspective of an inspector, an 
error of classification as a low-quality image occurred. In 
short, BRISQUE, NIQE, and SSEQ metrics were the most 
representative NR quality metrics for evaluating image 
quality, but when compared to the subjective classification 
results, they were insufficient in part to properly measure 
and evaluate the degree of blur in the image. 

 
4.3 Compar son and analys s of IQA results us ng 

var ous blur operators 
 
The results of three quality metrics based on the degree 

of  blur  through pixel-wise processing,  not  the 
characteristics of natural images were shown in Fig. 13. The 
threshold values of each quality metric were 𝑇ୱ୴ୢ = 0.786,𝑇ୌ୧୊ୗ୘ = 0.7096, 𝑇୔୰୭୮୭ୱୣୢ = 0.7112 and 𝑇ୗ୚ୋ = 0.6884 , 
and the classification results were shown in Table 4. The 
scores of the material images obtained through three metrics 

(a) Sharpened images (#6, #13)
 

(b) Blurred images (#14, #15)

Fig. 11 Examples of the classified to high and low quality

Table 2 The results of image classification based on subjective criteria of the inspector 

Quality metric 
Categorized material images in quality group 

High quality Low quality 

Subjective 
classification 

#1, #3, #6, #8, #9, #10, #13, #18, #20 #2, #4, #5, #7, #11, #12, #14, #15, #16, #17, #19

#3 (sharpened, shadow area) 
#12 (ambiguous) 

#11 (larger degree of blurriness) 
#14 (lager degree of burriness) 
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(i.e., SVD, HiFST, and SGV) were normalized to the [0, 1] 
for relatively easy comparison. Since the quality scores 
were obtained by the normalized degree of blurriness by 
using Eq. (5) that was calculated by each blur operator, the 
higher the score, the better the quality. 

The image quality scores measured through blur map 
generation based on the blur operators (SVD, HiFST, SGV, 
and proposed) were shown in Figs. 13 and 14. By applying 
the threshold value for each metric, the image quality was 
classified into two classes. As a result of quality classifica- 

 
 

 
 

 
 

tion using the SVD method shown in Fig. 13(a), a total of 
11 images were lower than the threshold value (𝑇௦୴ୢ =0.786) and image #19 was evaluated as the lowest quality. 
As a result of quality classification using the HiFST method 
shown in Fig. 13(b), a total of 11 images were classified as 
low quality, of which image #12 was evaluated as the 
lowest quality. 

As a result of SGV-based quality evaluation shown in 
Fig. 14(a), a total of 7 images were classified as low quality, 
of which image #20 was evaluated as the lowest quality. As 

 
 

 

(a) BRISQUE (blue) (b) NIQE (orange) 
 

(c) SSEQ (purple)

Fig. 12 Results of applying each NR quality metric to 20 material images 

Table 3 The results of applying quality evaluation criteria based on natural image characteristics 

Quality metric 
Categorized material images in quality group 

High quality Low quality 

NR quality 
metric 

BRISQUE #3, #4, #6, #7, #8, #9, #10, #13, #14, #15, #20 #2, #5, #11, #12, #16, #17, #18,  #19 
NIQE #1, #4, #6, #7, #8, #9, #10, #12, #15, #20 #2, #3, #5, #11, #13, #14, #16, #17, #18, #19 
SSEQ #1, #3, #4, #6, #7, #8, #9, #11, #14, #16, #17, #20 #2, #5, #10, #12, #13, #15, #18, #19 

 

(a) SVD (blue) (b) HiFST (yellow) 

Fig. 13 The Results of applying each quality metric based on blur operator 
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a result of applying the proposed method in this study 
shown in Fig. 14(b), a total of 9 images were evaluated as 
low quality, and image #11 was evaluated as the lowest 
quality. The quality metric proposed in this study showed 
the most similar results to subjective classification results of 
the inspectors shown in Table 4, and the quality 
classification results of the material image set except for 
image #7 were very similar. The image quality metric 
proposed in this study has the advantage that it can be used 
not only for relative comparison between images but also 
for absolute comparison through normalized scores. 

 
4.4 Analys s of IQE results and val dat on us ng 

deep learn ng model 
 
In the previous section, low-quality images having a 

quality score lower than the threshold were classified. 
Based on the results of applying the proposed quality 
metric, a total of 6 images (4, #5, #11, #14, #16, and #19) 
were selected as target images for quality improvement. The 
size of the blurred patch was 1000 by 1000 pixels, and the 
blurred patch of the damaged part in the ROI as shown in 
Fig. 11(b) was cropped and used as an input image. The 
estimated kernel size as shown in Fig. 15(b) was 125 by 37 
pixel or 37 by 125 pixel and the results of blind 
deconvolution were as shown in Fig. 15(c). The parameter 𝜆௫ is set to 0.0002 as the default value and 1000 iterations 
for estimating the blur kernel. This process was performed 
on a desktop having Intel Core i7 5930K with Nvidia 
GeForce GTX1070 graphic card and 48 GB RAM using 
MATLAB 2017a. 

The shape and size of the blur kernel shown in Fig. 
15(b) correlated with the degree of blurriness, and through 
this, the main cause of blur can be estimated. Since the blur 

 
 

 
 

kernels of three images (#4, #5, and #11) were not large in 
vertical and horizontal directions, it was confirmed that the 
blur of the image was caused by the vibration of the camera 
rather than the motion of the UAV. On the other hand, since 
the blur kernels of the three images (#14, #16, and #19) 
were non-uniform and had a size in the vertical or 
horizontal direction, it can be seen that the motion of UAV 
was the main cause of blur. The deconvolution process was 
performed through the estimated blur kernel, and the results 
are shown in Fig. 15(c). When compared with the input 
image, the resulting image is clearly distinguished from 
damage such as cracks and leaks, which is expected to 
reduce the probability of false-alarm occurring in the 
damage detection phase. 

To confirm how much the quality of the enhanced image 
was improved quantitatively, re-evaluation was performed 
using the previously applied quality metric. As a result of 
performing a quality assessment with 6 enhanced images, 
the scores improved by 20.65%, 26.39%, 27.68%, 30.87%, 
40.11%, and 13.89% respectively. Through an average of 
26% improvement in the score as shown in Fig. 16, quality 
scores above the threshold value were secured for all 
images, which was a level considered as data that could be 
used in the damage detection phase. 

In addition, the damage detection technology through 
deep learning was applied to see how the image quality 
improvement affects damage detection. The deep learning 
model used for damage detection was the mask and region-
based convolutional neural network (Mask R-CNN) model. 
In this study, the Mask R-CNN model using the backbone 
ResNext-101 (Xie et al. 2017) was trained on a dataset 
consisting of 1276 cracks, efflorescence, and rebar exposure 
images. 

 

(a) SGV (gray) (b) The proposed method (magenta) 

Fig. 14 The Results of applying each quality metric based on blur operator 

Table 4 Results of applying quality evaluation criteria based on blur image characteristics 

Quality metric 
Categorized material images in quality group 

High quality Low quality 

Blur operator 
based quality 

metric 

SVD #3, #4, #5, #7, #11, #14, #15, #16, #17 #1, #2, #6, #8, #9, #10, #12, #13, #18, #19, #20 
HiFST #3, #4, #10, #11, #13, #14, #15, #16, #20 #1, #2, #5, #6, #7, #8, #9, #12, #17, #18, #19 

SGV #1, #2, #5, #6, #8, #10, #11, 
#12, #13, #14, #15, #17, #18 #3, #4, #7, #9, #16, #19, #20 

Proposed method #1, #3, #6, #7, #8, #9, #10, #13, #15, #18, #20 #2, #4, #5, #11, #12, #14, #16, #17, #19 
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Image 
number 

(a) Input image (blurred) 
[1000 × 1000] 

(b) Estimated blur kernel 
[37 × 125], [125 × 37] 

(c) Output image (de-blurred) 
[1000 × 1000] 

4 

  

5 

  

11 

  

14 

  

16 

  

19 

  

Fig. 15 The results of image enhancement for material images classified as low quality (applied to blurred patches 
containing damage such as cracks and efflorescence
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Fig. 17 shows the results of damage detection using the 

Mask R-CNN model. Original images and enhanced images 
were used as input images, and the effect of performing 
image quality assessment on the damage detection phase 
was investigated by comparing the two results. In general, 
the shape of the crack detected in the blurred image was 
often missing detection due to discontinuity in the direction 
of crack propagation as shown in Fig. 18. However, it was 
confirmed that some information of pixels distorted by blur 
was restored through blind image deconvolution, and crack 
detection through deep learning was properly performed as 
shown in Fig. 18. As shown in Fig. 17(c), not only cracks 
occurred on the concrete surface but also the detection 
patterns of efflorescence were partially different, and it was 
confirmed that cracks that were not detected in the original 
image could also be detected in the enhanced image. 

In order to quantitatively compare the detected damage 
results using the Mask R-CNN model, crack segmentation 
was performed. The regions detected as cracks were 

 
 

 
 

separately extracted from the blurred image and the 
enhanced image, and the number of corresponding pixels 
was compared and shown in Table 5 below. As shown in 
Fig. 18, in the enhanced image, some cracks not detected in 
the blurred image were detected due to the discontinuity of 
cracks caused by blur, and the effective pixel detection rate 
increased by an average of 41%. 

So far, it has been demonstrated that the proposed 
quality assessment and enhancement method were validated 
to address the quality issue of UAV images during the 
bridge inspection. By using the actual UAV image of bridge 
inspection as a validation set, classification by using the 
proposed quality metric and process of quality enhancement 
for low-quality data were performed. Quantitative 
assessment of the image quality of the material image set 
was successfully performed, and the improved quality was 
quantitatively re-measured to confirm the performance of 
the image enhancement processes. 
 

 
Fig. 16 Comparison of quality scores before and after image enhancement using the proposed method

 
(a) #5 blurred (left) and enhanced (right) (b) #11 blurred (left) and enhanced (right)

 

 
(c) #14 blurred (left) and enhanced (right) (d) #16 blurred (left) and enhanced (right)

Fig. 17 Damage detection results based on deep learning (Mask R-CNN) for validation of image quality enhancement
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Table 5 Comparison of damage detection rates before and 
after quality enhancement 

Target 
images 

Number of pixels detected 
through deep learning Increase of 

detection rate
Blurred image Enhanced image 

#5 2929 4303 46.91% 
#11 2673 3912 46.35% 
#16 3515 4611 31.18% 

 

 
 

5. Conclusions 
 
It is well known that aerial images acquired during the 

inspection could be degraded in quality due to various 
environmental factors. Among them, the most frequently 
occurring form of quality deterioration in UAV images is 
motion blur caused by the movement of a camera or a UAV. 
In this study, a new methodology to address the image 
quality problem that is mainly encountered in the field of 
actual bridge inspection using a UAV was developed. Prior 
to proposing the methodology, the images used in this study 
were acquired via UAV in a real-world environment, not on 
a controlled laboratory scale. A new quality metric based on 
local blur map that can be applied to various and numerous 
raw images that can be acquired in bridge inspection using 
UAV was proposed. 

In order to verify the proposed method, a comparison 
with the existing quality metrics was performed, and the 
result of the proposed metric showed the highest similarity 

 
 

to the classification result by human perception. Thus, it 
was confirmed that the performance of the proposed method 
was superior to other metrics. In addition, the deblurring 
algorithm was applied to mitigate the effect of blur for low-
quality images. In this study, a kernel estimation method 
based on Dirichlet distribution was used in consideration of 
the non-uniform shape of the blur caused by UAV or 
camera motion. As a result of performing the quality 
enhancement, it was confirmed that the degree of blurring 
decreased by 26% on average, and the damage detection 
results using the deep learning model (i.e., Mask R-CNN, 
ResNext-101) also showed that the shape of the crack was 
preserved and detected in the enhanced image. 

The new image quality evaluating and enhancing 
methodology proposed in this study has the advantage that 
it can be directly applied to the field of bridge inspection 
because it has been verified through real-world data. It can 
also be distinguished from other previous studies in that it 
can drastically reduce the time and cost required in the 
image selection and classification process. Therefore, from 
the perspective mentioned above, the proposed 
methodology is expected to contribute greatly to the 
efficiency improvement of the UAV in the field of bridge 
inspection. 
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