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Abstract. Miter gates are water-control structures used as the damming surface on river locks and allow the water levels in the
lock to raise or lower as needed. Miter gates have channel-like cross sections and are thus prone to torsional deflection due to
gravity loads. To counter-act the tendency for torsional deflection and to add torsional rigidity to the gate, slender steel members
termed diagonals are added across the diagonal dimension of the gate and pre-tensioned. To maintain appropriate tension in the
diagonals over their lifetime, the tension in the diagonals should be monitored; however, no such monitoring is utilized.
Vibration based methods to obtain an estimate of the tensile loads in the diagonal are attractive because they are simple,
inexpensive, and do not require continuous monitoring. However, employing vibration-based methods to estimate the tension in
the diagonals is particularly challenging because the diagonals are subjected to varying levels of submersion in water. Finding a
relationship between the frequency of vibration and applied pretension that adequately addressed the effects of submersion on
diagonals is difficult. This paper proposes an approach to account for the effect of submersion on the estimated tension in miter
gate diagonals. Laboratory tests are conducted using scale-model diagonal specimens subjected to various levels of tension and
submersion in water. The frequency of the diagonal specimens is measured and compared to an approximation using an assumed
modes model. The effects of submersion on the frequency of vibration for the partially submerged diagonals are largely
explained by added mass on the diagonals. Field validation is performed using a previously developed vision-based method of
extracting the frequency of vibration in conjunction with the proposed method of tension estimation of an in-service miter gate
diagonal that is also instrumented with load cells. Results for the proposed method show excellent agreement with load cell
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measurements.
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1. Introduction

Miter gates are common water-control structures used as
the damming surface for inland navigation lock chambers
throughout the world. In the U.S., the U.S. Army Corps of
Engineers (USACE) operates and maintains 237 lock
chambers, of which, over 90% utilize miter gates, with two
miter gate leaves necessary on each end of the lock
chamber. A typical miter gate in the closed configuration is
shown in Fig. 1. A miter-gate generally has a channel-like
cross-section along the vertical axis where the center of
gravity is offset from the shear center, as shown in Fig. 2(a).
As a result, the miter-gate will tend to deflect torsionally
due to its own substantial weight, as seen in Fig. 2(b). This
torsional deflection can be problematic, as it will cause the
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gate to lean into the lock chamber and increase the
likelihood that a vessel will impact and damage the gate as
it enters or exits the lock chamber. Moreover, the miter gate
structure (without diagonals) is generally considered to
have negligible torsional stiffness. Without the tensioned
diagonals, the components of the miter gate will be
subjected to excessive torsional stresses due to
hydrodynamic forces when the gate swings open and closed
through water. To counteract the tendency of the gate to
twist under its own weight and to add some torsional
stiffness, pre-tensioned diagonals are added to the gate, as
shown in Fig. 2(c). Formulas to determine the appropriate
pretension for the diagonals were developed by Hoffman
(1944) and Shermer (1957), and are summarized in the
engineer design manual utilized by the USACE for miter
gate design, EM 1110-2-2703 (U.S. Army Corps of
Engineers 1994). Utilizing Hoffman (1944) and Shermer
(1957), pretension in the diagonals is selected so that the
gate will hang plumb, and the diagonals will never
decompress when the gate is subjected to any torsional load.
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Fig. 1 Miter gate at Lock 27 on the Mississippi River with partially submerged diagonals shown
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Fig. 2 Function of miter gate diagonals

Maintaining appropriate tension in the diagonals is of
critical importance to maintaining the operability and
extending the usable life of the miter gate. Inappropriate
tension in the diagonals may cause the gate to lean into the
chamber, increasing the likelihood of impact from passing
vessels. This type of inappropriate tension may manifest
itself as an obvious lean of the gate, signifying an issue in
diagonal tension. However, it is possible that the miter gate
diagonals will have an appropriate combination such that
the gate will hang plumb, but have either insufficient
tension to resist the torsional loads caused by gate swings,
or excessive tension causing yielding in the diagonals when
resisting torsional loads. This type of inappropriate diagonal
tension of may lead to accelerated fatigue damage due to
stresses beyond the design limits (Riveros et al. 2017), and
would not manifest itself readily with obvious changes in
the gate. Monitoring the tension in the diagonals using
direct measurements such as strain gages or load pins would
be straightforward; however, the majority of diagonals are
already in service without instrumentation installed.
Placing, for example, strain gages on the in-service
diagonals will only allow monitoring of future changes in

strain, rather than providing an indication of the magnitude
of tensile stress in the component. Moreover, the
infrastructure necessary to utilize strain gages or load pins,
such as cabling and data acquisition hardware, does not
exist on most miter gates and would be prohibitively
expensive to install. Accordingly, there is growing interest
in using vibration-based monitoring to infer the tension in
the diagonals from a measured frequency of vibration.
Many researchers have used vibration-based techniques to
monitor the tension in structural components (Rytter 1993),
with a particular focus on cables of cable-stayed bridges
(Jang et al. 2010, Feng et al. 2017, Kim and Kim 2013).
Work has also been done on inferring damage in cables that
may be manifested in modal properties due to changes in
stiffness or tension (Lepidi et al. 2007, 2009). Eick et al.
(2020), investigated the feasibility of non-contact, vision-
based monitoring of the tension in miter gate diagonals by
using video of a vibrating diagonal. The vision-based
method proposed by Eick et al. (2020), utilizes a technique
known as Lukas-Kanade optical flow to track the
displacement of the vibration of a manually selected
location on the miter gate diagonal. Once the displacement
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Fig. 3 Elevation views of miter gates

record is obtained, a fast Fourier-transform (FFT) is
performed on the record to obtain the frequencies of
vibration. In laboratory tests, Eick et al. (2020), found
excellent agreement between the frequencies of vibration of
scale-model  diagonal specimens measured using
accelerometers and those measured using the vision-based
method.

A particular challenge to vibration-based monitoring of
miter-gate diagonals is that they are subjected to varying
amounts of submersion in water. Fig. 3(a) shows an
elevation view of a typical miter gate, while Fig. 3(b) shows
the typical in-situ partially submerged condition of a miter
gate. Draining, or “dewatering” a lock chamber requires
specialized infrastructure to be put in place and is thus very
expensive; dewaterings are only performed infrequently for
routine maintenance once every five to ten year, or for
emergency repairs to prevent catastrophic failure of the
gate. Generally speaking, the diagonals on a miter gate will
be partially submerged for the vast majority of their life.

Little literature is available on monitoring the tension in
fluid-structure interaction systems akin to miter gate
diagonals, particularly for partially submerged structures.
The aforementioned study by Eick et al. (2020), utilized
flowing water to excite scale model diagonals to obtain
frequencies of vibration under conditions that might be
expected in the field. The flowing water was induced by
filling a submersion chamber with water. Eick ef al. (2020)
found that as the submersion chamber of the scale model
diagonal specimens filled with water, and the specimens
became more submerged, the frequency of the diagonal
tends to decrease. Indeed, by not accounting for the effects
of submersion on the diagonal, tension calculations based
on the frequency of vibration of a miter gate diagonal will
be underestimated. A great deal of literature is available on
fluid-structure interaction systems and the effects on
vibration frequency, such as Chen (1985). Generally, the
discussions in the literature are for fully submerged
structures. Miter gate diagonals are typically partially
submerged, and the amount of submersion can vary
significantly due to seasonal variations in the river levels.
Chen (1985) suggests that, for a beam in an ideal fluid, the
primary effect of submersion on a vibrating beam is a
reduction in frequency that can be modeled as added mass

to the system; in general, submersion can also cause
increased damping and changes in stiffness of the fluid-
structure system. It is unclear if a miter gate diagonal can be
appropriately modeled as vibrating in an ideal fluid.
Moreover, much of the literature provides results for
prismatic beams, which miter gate diagonals are not.

This paper proposes an approach to account for the
effect of submersion on the estimated tension in miter gate
diagonals. A laboratory experiment utilizing scale-model
diagonal specimens is utilized to obtain the vibrating
frequencies of the diagonals subjected to various tensions
and levels of submersion. The results of Chen (1985),
regarding the modeling of the effects of submersion on the
frequency of vibration of a beam as added mass are
investigated. Using the approximate assumed modes
method, frequencies of vibration for the tensioned beam are
generated considering the added mass due to submersion.
An experimental procedure is then devised to measure the
frequency of vibration of partially submerged beams with
accelerometers using a hammer impact test. The frequencies
generated using the proposed approximate approach are
compared to the experimental data, and the effects of partial
submersion are shown to be adequately explained by
considering added mass due to the volume of water
displaced as the diagonals vibrate. Finally, the proposed
method is validated in the field on the vibrating diagonals
on the miter gate at the Greenup Lock and Dam. Due to
difficultly in physically accessing the diagonals in the field,
the video-based approach described by Eick et al. (2020) is
utilized. Using a video of the vibrating diagonals on the
miter gate at the Greenup Lock and Dam, the displacement
record of the vibrating diagonals is found via Lukas-Kanade
optical flow by manually selecting a pixel in the first frame
of a video to track. Optical flow then iterates through the
frames of the video to track the apparent displacement of
the track pixel. The tracked displacement is stored, and a
fast Fourier transform is used to obtain the frequencies of
vibration. The calculated tension using the proposed method
with the measured frequency is compared with readings
from an installed load-cell on the diagonal, showing
excellent agreement. The specifics of the vision-based
monitoring approach to diagonal tension monitoring can be
found in Eick et al. (2020).
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2. Vibrating beam dynamics

Miter gate diagonals are long and very slender beams.
Relationships can easily be found to relate the geometry of
the beam to the frequencies of vibration. These
relationships become more complicated when the beam is
tensioned; nevertheless, the relationship between beam
geometry, tension, and frequencies of vibration are readily
available in the literature, such as the compilation by Shaker
(1975). The general solution to the equation of motion of a
tensioned, prismatic, Euler-Bernoulli beam is given in
generalized non-dimensional form as follows

v(x) = C; cosh(a;x) +C, sinh(a;x)

+C; cos(a,x) +C, sin(a,x) 1
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where E is the beam’s modulus of elasticity, L is the length
of the beam, 7 in the moment of inertia of the beam in the
direction of vibration, x is the location on the beam from the
datum, and p is the mass per unit length of the beam. P is
the axial tensile load in force units while w is the
frequency of vibration. C,, are constants of integration that
are determined using the boundary conditions of the
problem. The characteristic equation of the beam is found
by solving for the constants of integration, which is done by
taking the determinate of the matrix that consists of the
coefficients for the unknowns based on the boundary
conditions. Eq. (1) assumes small amplitude vibrations,
which is reasonable for a miter gate diagonal. For this study,
it is further assumed that thermal loadings due to changes in
temperature are negligible. This simplification is reasonable
as the measurements used to calculate tension are taken
over a period of one minute, where changes in temperature
will be insignificant. Eick et al. (2020) found that miter gate
diagonals that utilize super-nut style connectors are most
appropriately modeled as fixed-pinned, in which case, the
characteristic equation of the beam is as given by

a4 cosh a; sin a,

—aysinh @ cosa, =0 )

For a pinned-pinned beam, the characteristic equation is
given by
sina, =0 ®)

With the characteristic equation in hand, the tension in
the beam can be determined if the geometry, material
properties, and frequency of vibration are known.

2.1 Effects of submersion on the vibrating
frequency of a beam

Fluid-structure interaction systems consist of a structure
moving through a fluid, a volume of which must be
displaced to allow the structure to move. For simplicity,
consider an illustrative example of a single-degree-of-
freedom (SDOF) structure. In the fluid-structure interaction
system, the structure itself has some stiffness (kg), mass
(my), and damping (cg). The fluid also has some stiffness
(kgy), mass (m,), and damping (c,). The subscript a is used
here for “added”, in that the values from the fluid are
thought of as added to the structure. The formulation of the
equation of motion for an SDOF fluid-structure interaction
system then takes the form outlined in Kaneko et al. (2014)
as

(ms +me)x + (cs +c)x + (ks +ko)x=f (9

Chen (1985) notes that, for a structure moving through
an at-rest, ideal fluid (i.e., incompressible and inviscid), the
primary effect of the submersion is to add mass, and so Eq.
(9) can be simplified to

(mg+mx+cx+kx=f (10)

The experimental analysis performed herein shows that,
for determining the effects of submersion on the
fundamental frequency of vibration of a beam, the
simplification provided in Eq. (10) produces excellent
results. Care should be taken in the field to ensure the water
surrounding a miter gate diagonal is, indeed, at rest, Testing
should not be performed when a vessel is passing the gate,
or if both lock gates are open allowing flow through the
lock chamber. The value of added mass can be determined
analytically and is related to the geometry of the structure,
which dictates the volume of water displaced when the
structure moves through the fluid, and the properties of the
fluid. Tabulated values of added mass for common
geometries are available in the literature, such as in Kaneko
et al. (2014). For this study, the geometry of the diagonals
closely resembles a thin plate in two cases studied and a
rectangular prism in one case. The value of added mass per
unit length of a thin plate of width 2a is given by

Ua plate = .Dwaterﬂa2 (11)

The value of added mass for a rectangular prism of
width 2a and depth 25 is dependent on the aspect ratio of
the cross section, b/a. As will be seen the rectangular
geometry used in this study has an aspect ratio of 0.57.
Using the table available in Kaneko et al. (2014) and
linearly interpolating, the value of added mass per unit
length for the rectangular prism used in this study is given
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(12)

If the beam is fully submerged in water, then the same
approach as above can be used to find the relationship
between the frequency of vibration and tension, with the
note that Eq. (5) becomes

_ (1 + p)w?\
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(13)

2.2 Modeling a partially submerged miter gate
diagonal

A challenge in this study is the fact that the diagonals
will generally only be partially submerged, and so, the
added mass due to water will only act on the submerged
portion of the diagonal. The diagonals on a miter gate can
thus be modeled as piecewise beams with two distinct
sections. The first section has a length, L,,, corresponding to
the submerged part of the beam and has a mass per unit
length of the steel plus the added mass per unit length due
to water. The other section has length corresponding to the
unsubmerged length of the beam and mass per unit length
of steel only. On both sections of the beam, all other
geometric and material properties are the same. The beam
model for a partially submerged diagonal for the pinned-
pinned case is shown in Fig. 4.

The relatively simple adjustment to the continuous beam
model of adding mass to a portion of the beam leads to a
complicated closed-form relationship between the tension in
the beam and the frequency of vibration. For the beam
shown in Fig. 4, the characteristic equation of the beam is
given by the determinant of the matrix below

where a; and a, are as described in Eqgs. (2) and (3), but
the subscripts a and b refer to using the appropriate material
and geometric properties of the bottom and top sections of
the beam, respectively, as shown in Fig. 4. The determinant
can be explicitly found using appropriate symbolic math
software; however, determining the tension given a
specified measured frequency of the beam is not possible in
closed form and must be done numerically.

Because of the ease of implementation and
computational efficiency, the assumed modes method
(Craig and Kurdila 2006) is employed to model the
submerged beam. For the assumed modes method,
admissible shape functions must be selected for the n modes
to be estimated. Here, we refer to the i shape function as
;. An admissible shape function is one that satisfies the

[ L, . Ly, Ly
sinh (am T) sin (aZa T) —cosh (“11; T)
L L L
aiqc0sh (Olm Tw) 094 COS (aZa Tw) —aqpSinh (aw TW)
L L L
a?, sinh (afla TW) —aZ, sin @y, TW —a?, cosh ayy TW
3 LW 3 LW 3 . w
a3, cosh ay, T T%aC0SUe - @iy sinh a4, T
0 0 cosh(ayp)
0 0 a?, cosh ay,

Kt a \ Lw

Fig. 4 Piecewise beam model for partially submerged
miter gate diagonal

geometric boundary conditions of the beam and is twice
differentiable. Moreover, each of the n assumed mode shape
functions must be linearly independent of all other assumed
mode shape functions. To determine the frequencies of
vibration using the assumed modes method, the eigenvalue
problem is solved such that

det (([Kstiff] + [Kgeom])

(14)
- wz([Mbeam] + [Madded])) =0

where [Kstiff] is the bending stiffness matrix of the beam,

nh(an ) —eos(en ) sinen )
—sinh | @y — —cos | ayp — —sin| ay, —
L L L

Ly, . Ly, L,
_aleOSh a’le arpSINn (azb T) —Q,pCOS (a2b T)

—a? sinh a2 g2 Y
1b 1 @2y COSAzp @2p SIN Aap

—d sinhae 2 a3 sina B 43 Lw
1p SINN aqp L Qyp SIN Ayp L ayp COS Ay L

cos(ayp) sin(ayp)
a?, cos ay, a?, sin ay,

sinh(a4p)

a?, sinh ay,

[ngom] is the geometric stiffness matrix of the beam,
[Mpeam] is the mass matrix of the beam, and [Mgg404] is
the added mass matrix of the beam. Note, the damping of
the beam itself is assumed negligible and as stated
previously, the results from Chen (1985) are first explored
by only considering the added mass of the water. The i, j
component of each of these matrices is found as in Eq. (15)
through Eq. (18)

L
Kuigry, = | EIGOW! G0 () (15)

L
Koeom = | PUICOW) () (16)
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Where the “prime” superscript denotes the derivative of
the shape function with respect to the dimension along the
length, x. The frequencies calculated using Eq. (14) will be
higher than the true frequency of the beam being modeled;
however, the estimate will converge from above toward the
true value as the number of assumed modes increases (Rao
2007).

To satisfy the requirement for linear independence while
providing a reasonable estimate of the mode shapes of a
beam, trigonometric functions are frequently employed.
However, to get sufficiently converged results, many such
mode shapes may need to be considered in the formulation,
leading to a computationally demanding problem. To
increase computational efficiency, the authors herein
consider the use of so-called Chebyshev polynomials of the
first kind (for brevity, herein simply referred to as
Chebyshev polynomials). Chebyshev polynomials, denoted
T,,(x), are closely related to the cosine function (Mason and
Handscomb 2003), in that

T,(x) = cos(n arccos (x)) ,x € [-1,1] (19)

As seen, Chebyshev polynomials take the form cos né ,
and so each nth Chebyshev polynomial is linearly
independent. Using Rodrigues’ formula, the nth Chebyshev
polynomial can be found as

=2)"n! dm 1
To(x) = %J T -y

For example, when n =5
Ts(x) = 16x° — 20x3 + 5x (1)

The Chebyshev polynomials are closely related to the
cosine function on the interval [-1,1], and so, for this study
this relationship is shifted to lie in the desired interval [0,L]

by wusing the argument (sz— 1). The Chebyshev

polynomials themselves do not satisfy the requirements for
an admissible shape function. For this study, as per Eick et
al. (2020), the beam is best modeled as fixed-pinned, and so
the shape functions must satisfy ;(0) =0, ¢;(L) =0,
Y;(0) =0, and ¥;(L) #0. To satisfy the boundary
conditions, two terms are added to each nth Chebyshev
polynomial such that ith shape function is defined as in Eq.
(22), which for every i mode of vibration of can be shown
to be an admissible shape function.

peo=() (-pPn(3-1) @

The benefit of using the Chebyshev polynomial, as
opposed to trigonometric functions, is in significantly

increased computational efficiency of integrating simple
polynomials in Egs. (15) through (18). For this study, it was
found that using 20 mode shapes in the formulation
provides sufficiently converged results.

The assumed modes formulation allows the estimation
of the frequency of vibration of a beam given all the
relevant parameters. For this study, it is of interest to
estimate the tension in beam, given a measured frequency
and all other necessary parameters for the problem. For a
miter gate diagonal, geometric and material properties are
obtained from structural design drawings. Then,
measurements must be taken to obtain the frequencies of
vibration and the length over which the diagonal is
submerged. The assumed modes formulation is setup then
with the only unknown being P in Eq. (16). P can
reasonably be assumed constant throughout the beam, and
so it is taken out of the integral and geometric stiffness
matrix is kept in terms of P. Eq. (14) is calculated by
iterating through P until a frequency value is obtained
within a small percentage of error of the frequency
measured in the field (say 1%). For this initial study, only
the fundamental frequency is considered, with results being
shown to be sufficiently accurate. Future work will
investigate the potential for increased accuracy by including
results from multiple modes of vibration.

3. Experimental setup

An experimental setup was devised to demonstrate the
performance of the proposed method. Scale model diagonal
specimens subjected to various levels of submersion and
tension were tested. The experiment was comprised of three
scale-model diagonal specimens with dimensions as shown
in Fig. 5. The cross sectional dimension a and b seen in Fig.
5 are listed in Table 1. The cross-section of each specimen
was chosen such that each specimen has identical cross-
sectional area of 11.3 ¢m? (1.75 in?) while allowing for
varying profile widths moving in the water. The geometry
of the scale model specimens, with an end section tapering
from a rectangular cross section to a round threaded rod, is
typical of many miter gate diagonals. The threaded end
sections are provided to allow for connectivity in the form
of a heavy hex nut on one end and a super-nut-style multi-
jack-bolt tensioning nut on the other end, which is used to
provide the pre-stress.

The specimens were erected vertically and attached to
the structural reaction wall and load floor in the laboratory.
A submersion tank was constructed out of four welded 208-
liter (55 gallon) drums stacked on top of each other and
erected around each specimen. The submersion tank
allowed for the partial submersion of the specimens. Each
specimen had three strain gages attached to obtain a
reference value of tension, and two accelerometers were
placed just above the submersion chambers, which is offset
from the mid-span by about 20 cm. The location of
accelerometers was selected to facilitate the maximum
number of measured modes by avoiding modal zeros
(locations where displacements are expected to be zero for
the first few modes). Note, for the laboratory experiments,
accelerometers (as opposed to the vision-based method) are
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Fig. 5 Scale model diagonal specimens used in this test

Table 1 Scale model diagonal specimens

Name Cross sectional dimensions
Specimen 1 a=8.89 cm (3.50 in), 5= 0.32 cm (0.13 in)
Specimen 2 a=4.45cm (1,75 in), b =0.64 cm (0.25 in)
Specimen 3 a=2.22cm (0.88 in), b=1.27 cm (0.5 in)

exclusively used for dynamic measurements. This is
because of the ability to capture higher modes with the
accelerometers. As outlined by Eick et al. (2020) a typical
camera with a frame rate of 60 frames per second (fps) will
have Nyquist frequency of 30 Hz. For the specimens used
in this study, 30 Hz is only sufficient to capture two or three

Laboratory reaction
T / wall

Bracket connection
to wall

Strain Gage location
%est Specimen
Accelerometer
location
Submersion
/ Tank

o ‘ ‘ Connection to floor
o / Laboratory
fooooooc /Strong floor

Fig. 6 Experimental setup

Fig. 7 Erected test specimen with submersion chamber

modes for each beam. Nevertheless, the study performed by
Eick et al. (2020) readily shows that the vision-based
method can match accelerometers nearly exactly over the
range of measurement. A schematic of the experimental
setup in the lab is shown in Fig. 6. Fig. 7 shows the erected
test specimen in the lab.

To determine its fundamental frequency, the specimen
was excited and the response was recorded using both video
and accelerometers. In the course of testing at certain levels
of submersion, exciting the lower modes with a hammer
impact proved difficult; using a small rope tied near the
center of the specimen plucking the specimen provided best
results. Each specimen was tested at five different tension
levels as listed in Table 2. For each level of stress, the beam
was submerged to five different levels as listed in Table 2.
Thus, a total of 25 tests were performed for each of the
three specimens. For simplicity, the height of the individual
208 liter (55 gallon) drums were used as a marker for each
level of submersion, with each drum being approximately
83.8 cm (33 in.) tall. When testing, the expected fundamental
frequency of vibration for all tests is not expected to exceed
14 Hz, and so a sampling frequency of 256 Hz was selected
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Table 2 Tensile stresses and water heights utilized in testing

38.92, 77.84 116.77 155.69 194.6 kN
(8.75,17.5, 26.25, 35.0, 43.75 kips)

0, 83.8, 167.6, 251.5, 335.3 cm
(0,33, 66, 99, 132 in.)

Tensile stress levels

Height of water

for the accelerometers, which will allow for the
measurement of several harmonics for each test. To obtain
the frequencies of vibration, a fast Fourier-transform (FFT)
is performed on the recorded acceleration record, and peaks
in the record are manually selected.

4. Model validation

For each test, up to the first five frequencies of vibration
are extracted from the FFT of the acceleration record. Note
that in several instances, the frequencies of a particular
harmonic of the beam’s vibration are difficult to determine
from the FFT, possibly due to the frequency of that
harmonic nearly resonating with the frequency of vibration
of the global test setup. In other instances, the amplitude of
a particular harmonic is quite small, likely due to the
placement of the accelerometer near the node for that mode

0.0010 4

0.0008

0.0006 1

FFt amplitude

0.0004

0.0002 1

0.0000 -

0 20 40 60 80 100 120
Frequency (Hz.)
Fig. 8 Amplitude spectrum for test specimen 1 at 137.9 MPa
(20 ksi) and 335.3 cm (132 in) of water

of vibration. An example of an FFT displaying both of these
characteristics (closely spaced peaks, and very low
amplitude peak), is shown in Fig. 8, which is the amplitude
spectrum for specimen 1 at 155.69 kN (35 kips) stress and
with 335 cm (132 in) of water. The numbers in the plot
correspond to the frequency of the n mode of vibration, as
determined by a peak-picking algorithm. In this case,
several closely spaced peaks are seen near where the second
mode is expected. Similarly, the amplitude for the peak near
where the fifth mode is very small. Accordingly, for this
test, the second and fifth modes cannot be determined and
are marked as N/A.

To validate the notion that added mass is the primary
driver for a change in the frequency of vibration, the extracted
frequencies from the experimental data are compared to the
frequencies calculated using the proposed approach. Note,
for specimens 1 and 2, the added mass to use in Eq. (18) is
the value for a thin plate (Eq. (11)). For specimen 3, the
aspect ratio of the cross-section is a rectangular prism, and
so the added mass from Eq. (12) is used. For all specimens,
the bending stiffness varies across the length of the bar due
to the changing cross section, as seen in Fig. 5. Taking the
left end connection shown in Fig. 5 as the datum, each
specimen is comprised of the following: a circular cross-
section from 0 cm to 7.62 cm; a tapered region with varying
cross section from 7.62 cm to 33.0 cm; a constant
rectangular cross section from 33.0 cm to 576.5 cm; a
tapered region with varying cross-section from 576.5 to
601.9 cm; a constant circular cross section from 601.9 cm to
609.5 cm. The moments of inertia from the regions with
constant cross section are readily obtained from the
dimensions in Table 1. The moments of inertia for the
tapered sections, labeled I,(x) and I,(x) in Fig. 5, are
functions of the position on the beam, x, and thus need to be
incorporated into the integral in Eq. (15). Approximate
functions describing I,(x) and I,(x) with respect to the
datum previously described are listed in Table 3.

Figs. 9 through 11 show a comparison between the
calculated frequencies from the proposed method and the
experimentally measured frequencies. In the plots, the x-
axis represents the calculated frequencies using the method
of assumed modes, while the y-axis represents the
experimentally measured frequencies. A line is also

Table 3 Functions describing the varying moment of inertia of the tapered section for the

test specimens

Specimen Functions of I,(x) and I,(x) (xincm)
1
| I,(x) = E(O.S67x —0.966 cm)(—0.107x + 4.178cm)3
1
Ip(x) = 75 (~0.567x + 345.112 cm)(0.107x ~ 61.225¢m)?
1
5 I,(x) = E(0.217x +1.701 cm)(—0.082 x + 3.987 cm)3
1
I,(x) = E(—0.217x + 134.419 cm)(0.082x — 46.175 cm)?
1
; I,(x) = E(0.043x +3.035 cm)(—0.032x + 3.606 cm)3

1
Ip(x) = E(—0.043x +29.072 ¢cm)(0.032x — 16.076 cm)?
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provided on each plot for ready comparison; if the proposed
method considering added mass does a good job of
explaining the effects of submersion on the frequencies,
then all points on the plots should lie near the y = x line. In
each of the figures, the individual plots show the
comparison for all levels of submersion for one level of
pretension, with the levels of submersion represented by
different point markers. The first five modes for each level
of submersion are plotted simultaneously. Markers on the
plot lying along a y = 0 line are those locations where a
particular frequency could not be determined from the
measured data, such as for the previously described
scenario for the test of specimen 1 at 155.69 kN (35.0 kips)
and 335 cm (132 in) of water.

As seen in the figures, considering only the added mass
due to the presence of water adequately describes the effects
of submersion on the fundamental frequency. That is, the
estimated frequency using the assumed modes shape
matches very closely to the measured frequency. A
quantitative assessment of the error between the modeled
frequencies and measured frequencies is shown in Fig. 12.
The colors in the figure represent the different levels of
tension, while the different markers represent the different
submersion levels. As seen, with a few outliers, the
estimated frequencies are generally within 5% error of the
measured frequency, and often less than 5%. For specimen 1,
the error is evenly spread between overestimating and
underestimating the measured frequency. For specimen 2,
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Fig 12 Percentage error between measured frequency and calculated frequency

the error tends to skew more towards an underestimation of
the frequency. For specimen 3, the error tends to skew more
towards an overestimation. The percentage error doesn’t
provide adequate information for the purposes of this study.
The measured frequencies are to be used to calculate
tension in the beams, where tension is related to the square
of the frequency. Accordingly, it is important to investigate
the magnitude of difference between the calculated and
measured frequencies, as small differences in frequency can
manifest as large errors in calculated tension. The difference
in frequencies for the specimens are shown in Fig. 13. As
seen, while the percentage error is generally high for the
proposed approach when estimating the fundamental
frequency, the magnitude of the difference in frequencies is
the smallest for the fundamental frequency in all cases, and
typically within 0.5 Hz. Accordingly, for this initial study,
the tension 1is calculated by only considering the
fundamental frequency. Future work will investigate the
incorporation of higher modes to potentially increase
accuracy.

As seen in the figures, considering only the added mass
due to the presence of water adequately describes the effects
of submersion on the fundamental frequency. That is, the
estimated frequency using the assumed modes shape
matches very closely to the measured frequency. A
quantitative assessment of the error between the modeled
frequencies and measured frequencies is shown in Fig. 12.
The colors in the figure represent the different levels of
tension, while the different markers represent the different
submersion levels. As seen, with a few outliers, the
estimated frequencies are generally within 5% error of the
measured frequency, and often less than 5%. For specimen
1, the error is evenly spread between overestimating and
underestimating the measured frequency. For specimen 2,
the error tends to skew more towards an underestimation of
the frequency. For specimen 3, the error tends to skew more
towards an overestimation. The percentage error doesn’t
provide adequate information for the purposes of this study.
The measured frequencies are to be used to calculate
tension in the beams, where tension is related to the square
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Fig 13 Difference of calculated frequency from measured frequency

of the frequency. Accordingly, it is important to investigate
the magnitude of difference between the calculated and
measured frequencies, as small differences in frequency can
manifest as large errors in calculated tension. The difference
in frequencies for the specimens are shown in Fig. 13. As
seen, while the percentage error is generally high for the
proposed approach when estimating the fundamental
frequency, the magnitude of the difference in frequencies is
the smallest for the fundamental frequency in all cases, and
typically within 0.5 Hz. Accordingly, for this initial study,
the tension is calculated by only considering the
fundamental frequency. Future work will investigate the
incorporation of higher modes to potentially increase
accuracy.

While the results for the frequency comparison is
promising, the primary interest of this study is to be able to
measure the tension in a partially submerged miter gate
diagonal by measuring only the diagonal dimensions,
submerged length, and fundamental frequency of vibration.
To find the tension given the measured parameters, an
iterative inverse approach is used where the frequencies of
vibration for a range of tension values given the submerged
length are calculated. Then, the tension that corresponds to
the calculated frequency that is nearest to the measured
frequency for a given submersion length is used as the
tension in the diagonal. This is performed for all test
specimens and the tension value calculated using the
proposed method is plotted versus the reference tension

values in Fig. 14. The percentage error between the
calculated tension and the measured tension is shown in
Fig. 15. With a few exceptions (particularly for Specimen 1
at lower tension levels), the calculated tension is generally
within 10% of the measured tension. The increased error
seen in specimen 1 may be because the cross-section of the
specimen is such that, without the geometric stiffness
afforded by axial tension, the bending stiffness of the
specimen is negligible. When the tension is low, Specimen
1 will have very little stiffness, and so the amplitude of
vibration due to a hammer impact may violate the low-
amplitude assumptions. The additional effects due to
submersion (such as added damping) may need to be
considered for improved accuracy for specimens with low
tension and low bending stiffness, which will be explored in
future work. Nevertheless, the proposed approach greatly
improves the accuracy of -calculations compared to
neglecting the effects of submersion in water. For
comparison, the percentage error in calculated tension when
the effects of submersion are neglected are shown in Fig.
16. As seen, when neglecting the effects of submersion, the
calculated tension values can be as much as 70% off. By
utilizing the proposed method, tension can generally be
calculated within a range likely to be acceptable to a
practicing engineer.
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Fig. 14 Comparison of measured tension and calculated tension for test specimens
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5. Field validation

I8 Approx. field-of-view §
with zoom lens

To test the efficacy of the proposed approach in the
field, as well as validate the vision-based method proposed
by Eick et al. (2020), video was taken of the diagonals of
the Greenup Lock and Dam while it was in operation. The
Greenup Lock and Dam site is on the Ohio River on the
border of the U.S. state of Kentucky and Ohio, and is in the
namesake county in the state of Kentucky. The miter gate at
Greenup is the only known miter gate in the U.S. with
instrumentation in place in the form of a load cell to
monitor the tension in the diagonals, allowing the
comparison of results found via the proposed approach with
readings from the load cell. The same camera used in the
lab was used in the field, and the camera was placed on a
tripod on the lock chamber wall and pointed at the
diagonals with a zoom lens. Fig. 17(b) shows the field-of-
view of the camera in the field test, with the location of the
field of view on the gate noted in Fig. 17(a).

Several videos were taken of the diagonals on the gate.
The camera used on site was a Nikon DS3300 with a
resolution of 1080p 60 fps and a focal length of 55 mm. .
Video results were improved with the use of a Nikon AF-S F]g 17 (a) The Greenup miter gate on the day video was
NIKKOR 70-200 mm f/2.8G ED VR II zoom lens. For the captured; (b) The field-of-view of the camera p]aced
vision-based method to be effective, the best results were on the lock chamber wall
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Fig. 18 Displacement results from Greenup field testing
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Fig. 19 FFT of displacement of Greenup diagonal

obtained as the gate swung closed and immediately after the
two leaves of the gate came in contact with each other. This
small impact provided adequate excitation to the diagonals
for the optical flow method to track. The vision-based
approach was applied to the captured video and the raw
displacement record as tracked by optical flow is shown in
Fig. 18(a). A high-pass Butterworth filter was applied to the
displacement signal with a cutoff frequency of 1.0 Hz, and
the filtered displacement record is shown in Fig. 18(b). An
FFT was applied to the filtered displacement record to
determine the frequencies of vibration. The resulting
fundamental frequency is found to be 2.7 Hz, as shown in
Fig. 19, while the second peak of 6.3 Hz is a reasonable
value for the second harmonic of the beam.

The Greenup diagonals are 22.5 m (886.5 in.) in length,
with a cross section of 17.8 cm x 3.18 cm (7.0 in. x 1.25
in). As one of the newer gates on the Ohio River, the
diagonals utilize the same super-nut jackbolt connections as

those tested in the lab, and so fixed-pinned boundary
conditions are assumed. Using the proposed method, a
vibration frequency of 2.7 Hz, and a length of submersion
of 14.1 m (556 in), the tensile load is determined to be
895.2 kN (201.25 kips). The load cell on the diagonal read
862.9 kN (194 kips), resulting in an error of 3.7% for the
proposed method. Note, using beam theory and ignoring the
effects of submersion on the frequency of vibration, the
tension in the diagonals is calculated to be 630.5 kN
(141.75 kips), for an error of 26.9%

6. Conclusions

Miter gates are critical infrastructure to the U.S.
economy that facilitate the transportation of billions of
dollars in goods annually. Diagonals are long, slender,
beam-like component of miter gates that are pre-tensioned
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to add torsional rigidity to the structure and counteract the
tendency for the gate to twist under its own weight.
Monitoring the tension in the miter gate diagonals is
critically important for maximizing the useful life of the
gate. Due to the expense and infeasibility of installing direct
measurements of the tension of already in-service
diagonals, vibration-based methods are attractive to infer
the tension in the diagonal. Of particular challenge to
calculating the tension from the frequency of vibration is
the fact that miter gate diagonals will be partially
submerged for most of their life.

The study conducted herein was performed to determine
a simple method for calculating the tension in partially
submerged miter gate diagonals given a measurement of the
frequency of vibration and submerged length of the
member. To this end, the effects of partial submersion on
the frequency of vibration of the diagonal were
investigated. The primary effect of submersion on the miter
gate diagonal is found to be a reduction in the frequency of
vibration due to added mass caused by the displacement of
the water surrounding the diagonal. Closed-form solutions
accounting for the added mass of a partially submerged
diagonal are particularly challenging given that the
submerged length of the diagonal is not constant. While a
characteristic equation of the partially submerged diagonal
can be found, numerically solving the characteristic
equation for tension in the diagonal given the frequency of
vibration and submerged length is intractable. Accordingly,
the assumed modes method was used to calculate the
frequency of vibration of a diagonal given a pretension and
level of submersion.

Experimental data was then used to validate the notion
that the effects of submersion on the frequency of vibration
of the diagonal can be largely accounted for by added mass
due to water. The experiment consisted of three scale-model
diagonal specimens subjected to various levels of
pretension and submersion. The scale model specimens
were excited and the first five frequencies of vibration were
calculated from the displacement record. In all cases, the
experimentally obtained frequencies of vibration matched
the calculated frequencies obtained using the assumed
modes. The exceptional agreement in the data corroborates
the notion that the primary effect of submersion of the
frequency can be modeled as added mass. To calculate the
tension in the specimens using the measured frequency and
submerged length of the beam, an iterative inverse approach
is utilized where frequencies of vibration are generated for
several tension values given a length of submersion. Then,
the tension that matches the combination of submerged
length and nearest value of frequency of vibration is taken
as the tension in the beam

Field validation was performed by utilizing vision-based
vibration measurement of an in-service miter gate diagonal
at the Greenup Lock and Dam. The diagonals at the
Greenup Lock and Dam are instrumented with load cells to
monitor the tension in the diagonals, allowing for
comparison of the tension found via the proposed method
with that recorded by the load cell. The tension calculated
using the proposed method showed excelled agreement,
differing from the load cell by only 3.7%. This field

validation showed that the proposed method discussed
herein is viable for monitoring tension in miter gate
diagonals. While the results of this study focus on miter
gate diagonals, the results can easily be utilized on any
other long, slender, pre-tensioned, partially submerged
beams.
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