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1. Introduction 

 
Miter gates are common water-control structures used as 

the damming surface for inland navigation lock chambers 
throughout the world. In the U.S., the U.S. Army Corps of 
Engineers (USACE) operates and maintains 237 lock 
chambers, of which, over 90% utilize miter gates, with two 
miter gate leaves necessary on each end of the lock 
chamber. A typical miter gate in the closed configuration is 
shown in Fig. 1. A miter-gate generally has a channel-like 
cross-section along the vertical axis where the center of 
gravity is offset from the shear center, as shown in Fig. 2(a). 
As a result, the miter-gate will tend to deflect torsionally 
due to its own substantial weight, as seen in Fig. 2(b). This 
torsional deflection can be problematic, as it will cause the 
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gate to lean into the lock chamber and increase the 
likelihood that a vessel will impact and damage the gate as 
it enters or exits the lock chamber. Moreover, the miter gate 
structure (without diagonals) is generally considered to 
have negligible torsional stiffness. Without the tensioned 
diagonals, the components of the miter gate will be 
subjected to excessive torsional stresses due to 
hydrodynamic forces when the gate swings open and closed 
through water. To counteract the tendency of the gate to 
twist under its own weight and to add some torsional 
stiffness, pre-tensioned diagonals are added to the gate, as 
shown in Fig. 2(c). Formulas to determine the appropriate 
pretension for the diagonals were developed by Hoffman 
(1944) and Shermer (1957), and are summarized in the 
engineer design manual utilized by the USACE for miter 
gate design, EM 1110-2-2703 (U.S. Army Corps of 
Engineers 1994). Utilizing Hoffman (1944) and Shermer 
(1957), pretension in the diagonals is selected so that the 
gate will hang plumb, and the diagonals will never 
decompress when the gate is subjected to any torsional load. 
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Abstract.  Miter gates are water-control structures used as the damming surface on river locks and allow the water levels in the 
lock to raise or lower as needed. Miter gates have channel-like cross sections and are thus prone to torsional deflection due to 
gravity loads. To counter-act the tendency for torsional deflection and to add torsional rigidity to the gate, slender steel members 
termed diagonals are added across the diagonal dimension of the gate and pre-tensioned. To maintain appropriate tension in the 
diagonals over their lifetime, the tension in the diagonals should be monitored; however, no such monitoring is utilized. 
Vibration based methods to obtain an estimate of the tensile loads in the diagonal are attractive because they are simple, 
inexpensive, and do not require continuous monitoring. However, employing vibration-based methods to estimate the tension in 
the diagonals is particularly challenging because the diagonals are subjected to varying levels of submersion in water. Finding a 
relationship between the frequency of vibration and applied pretension that adequately addressed the effects of submersion on 
diagonals is difficult. This paper proposes an approach to account for the effect of submersion on the estimated tension in miter 
gate diagonals. Laboratory tests are conducted using scale-model diagonal specimens subjected to various levels of tension and 
submersion in water. The frequency of the diagonal specimens is measured and compared to an approximation using an assumed 
modes model. The effects of submersion on the frequency of vibration for the partially submerged diagonals are largely 
explained by added mass on the diagonals. Field validation is performed using a previously developed vision-based method of 
extracting the frequency of vibration in conjunction with the proposed method of tension estimation of an in-service miter gate 
diagonal that is also instrumented with load cells. Results for the proposed method show excellent agreement with load cell 
measurements. 
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Maintaining appropriate tension in the diagonals is of 

critical importance to maintaining the operability and 
extending the usable life of the miter gate. Inappropriate 
tension in the diagonals may cause the gate to lean into the 
chamber, increasing the likelihood of impact from passing 
vessels. This type of inappropriate tension may manifest 
itself as an obvious lean of the gate, signifying an issue in 
diagonal tension. However, it is possible that the miter gate 
diagonals will have an appropriate combination such that 
the gate will hang plumb, but have either insufficient 
tension to resist the torsional loads caused by gate swings, 
or excessive tension causing yielding in the diagonals when 
resisting torsional loads. This type of inappropriate diagonal 
tension of may lead to accelerated fatigue damage due to 
stresses beyond the design limits (Riveros et al. 2017), and 
would not manifest itself readily with obvious changes in 
the gate. Monitoring the tension in the diagonals using 
direct measurements such as strain gages or load pins would 
be straightforward; however, the majority of diagonals are 
already in service without instrumentation installed. 
Placing, for example, strain gages on the in-service 
diagonals will only allow monitoring of future changes in 

 
 

 
 

strain, rather than providing an indication of the magnitude 
of tensile stress in the component. Moreover, the 
infrastructure necessary to utilize strain gages or load pins, 
such as cabling and data acquisition hardware, does not 
exist on most miter gates and would be prohibitively 
expensive to install. Accordingly, there is growing interest 
in using vibration-based monitoring to infer the tension in 
the diagonals from a measured frequency of vibration. 
Many researchers have used vibration-based techniques to 
monitor the tension in structural components (Rytter 1993), 
with a particular focus on cables of cable-stayed bridges 
(Jang et al. 2010, Feng et al. 2017, Kim and Kim 2013). 
Work has also been done on inferring damage in cables that 
may be manifested in modal properties due to changes in 
stiffness or tension (Lepidi et al. 2007, 2009). Eick et al. 
(2020), investigated the feasibility of non-contact, vision-
based monitoring of the tension in miter gate diagonals by 
using video of a vibrating diagonal. The vision-based 
method proposed by Eick et al. (2020), utilizes a technique 
known as Lukas-Kanade optical flow to track the 
displacement of the vibration of a manually selected 
location on the miter gate diagonal. Once the displacement 

 
Fig. 1 Miter gate at Lock 27 on the Mississippi River with partially submerged diagonals shown 

 
(a) Eccentricity between center of 

gravity and shear center 
(b) Torsional deflection due to 

self-weight of gate
(c) Tensioned diagonals added to 

counter-act torsional deflection

Fig. 2 Function of miter gate diagonals
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record is obtained, a fast Fourier-transform (FFT) is 
performed on the record to obtain the frequencies of 
vibration. In laboratory tests, Eick et al. (2020), found 
excellent agreement between the frequencies of vibration of 
scale-model diagonal specimens measured using 
accelerometers and those measured using the vision-based 
method. 

A particular challenge to vibration-based monitoring of 
miter-gate diagonals is that they are subjected to varying 
amounts of submersion in water. Fig. 3(a) shows an 
elevation view of a typical miter gate, while Fig. 3(b) shows 
the typical in-situ partially submerged condition of a miter 
gate. Draining, or “dewatering” a lock chamber requires 
specialized infrastructure to be put in place and is thus very 
expensive; dewaterings are only performed infrequently for 
routine maintenance once every five to ten year, or for 
emergency repairs to prevent catastrophic failure of the 
gate. Generally speaking, the diagonals on a miter gate will 
be partially submerged for the vast majority of their life. 

Little literature is available on monitoring the tension in 
fluid-structure interaction systems akin to miter gate 
diagonals, particularly for partially submerged structures. 
The aforementioned study by Eick et al. (2020), utilized 
flowing water to excite scale model diagonals to obtain 
frequencies of vibration under conditions that might be 
expected in the field. The flowing water was induced by 
filling a submersion chamber with water. Eick et al. (2020) 
found that as the submersion chamber of the scale model 
diagonal specimens filled with water, and the specimens 
became more submerged, the frequency of the diagonal 
tends to decrease. Indeed, by not accounting for the effects 
of submersion on the diagonal, tension calculations based 
on the frequency of vibration of a miter gate diagonal will 
be underestimated. A great deal of literature is available on 
fluid-structure interaction systems and the effects on 
vibration frequency, such as Chen (1985). Generally, the 
discussions in the literature are for fully submerged 
structures. Miter gate diagonals are typically partially 
submerged, and the amount of submersion can vary 
significantly due to seasonal variations in the river levels. 
Chen (1985) suggests that, for a beam in an ideal fluid, the 
primary effect of submersion on a vibrating beam is a 
reduction in frequency that can be modeled as added mass 

 
 

to the system; in general, submersion can also cause 
increased damping and changes in stiffness of the fluid-
structure system. It is unclear if a miter gate diagonal can be 
appropriately modeled as vibrating in an ideal fluid. 
Moreover, much of the literature provides results for 
prismatic beams, which miter gate diagonals are not. 

This paper proposes an approach to account for the 
effect of submersion on the estimated tension in miter gate 
diagonals. A laboratory experiment utilizing scale-model 
diagonal specimens is utilized to obtain the vibrating 
frequencies of the diagonals subjected to various tensions 
and levels of submersion. The results of Chen (1985), 
regarding the modeling of the effects of submersion on the 
frequency of vibration of a beam as added mass are 
investigated. Using the approximate assumed modes 
method, frequencies of vibration for the tensioned beam are 
generated considering the added mass due to submersion. 
An experimental procedure is then devised to measure the 
frequency of vibration of partially submerged beams with 
accelerometers using a hammer impact test. The frequencies 
generated using the proposed approximate approach are 
compared to the experimental data, and the effects of partial 
submersion are shown to be adequately explained by 
considering added mass due to the volume of water 
displaced as the diagonals vibrate. Finally, the proposed 
method is validated in the field on the vibrating diagonals 
on the miter gate at the Greenup Lock and Dam. Due to 
difficultly in physically accessing the diagonals in the field, 
the video-based approach described by Eick et al. (2020) is 
utilized. Using a video of the vibrating diagonals on the 
miter gate at the Greenup Lock and Dam, the displacement 
record of the vibrating diagonals is found via Lukas-Kanade 
optical flow by manually selecting a pixel in the first frame 
of a video to track. Optical flow then iterates through the 
frames of the video to track the apparent displacement of 
the track pixel. The tracked displacement is stored, and a 
fast Fourier transform is used to obtain the frequencies of 
vibration. The calculated tension using the proposed method 
with the measured frequency is compared with readings 
from an installed load-cell on the diagonal, showing 
excellent agreement. The specifics of the vision-based 
monitoring approach to diagonal tension monitoring can be 
found in Eick et al. (2020). 

(a) Elevation view showing diagonals 
 

(b) Elevation view showing typical, partially-submerged 
condition of diagonals

Fig. 3 Elevation views of miter gates
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2. Vibrating beam dynamics 
 
Miter gate diagonals are long and very slender beams. 

Relationships can easily be found to relate the geometry of 
the beam to the frequencies of vibration. These 
relationships become more complicated when the beam is 
tensioned; nevertheless, the relationship between beam 
geometry, tension, and frequencies of vibration are readily 
available in the literature, such as the compilation by Shaker 
(1975). The general solution to the equation of motion of a 
tensioned, prismatic, Euler-Bernoulli beam is given in 
generalized non-dimensional form as follows 

 𝑣(�̅�) = 𝐶ଵ cosh(𝛼ଵ�̅�) +𝐶ଶ sinh(𝛼ଵ�̅�)               +𝐶ଷ cos(𝛼ଶ�̅�) +𝐶ସ sin(𝛼ଶ�̅�) (1)
 

where 
 

𝛼ଵ = ቌ𝑘ଶ2 + ඨ𝑘ସ4 + 𝛽ସቍభమ
 (2)

 

𝛼ଶ = ቌ− 𝑘ଶ2 + ඨ𝑘ସ4 + 𝛽ସቍభమ
 (3)

 𝑘 = ඨ𝑃𝐿ଶ𝐸𝐼  (4)

 𝛽 = 𝐿 ቆ𝜇𝜔ଶ𝐸𝐼 ቇభర
 (5)

 �̅� = 𝑥𝐿 (6)
 

where E is the beam’s modulus of elasticity, L is the length 
of the beam, I in the moment of inertia of the beam in the 
direction of vibration, x is the location on the beam from the 
datum, and 𝜇 is the mass per unit length of the beam. P is 
the axial tensile load in force units while 𝜔  is the 
frequency of vibration. 𝐶 are constants of integration that 
are determined using the boundary conditions of the 
problem. The characteristic equation of the beam is found 
by solving for the constants of integration, which is done by 
taking the determinate of the matrix that consists of the 
coefficients for the unknowns based on the boundary 
conditions. Eq. (1) assumes small amplitude vibrations, 
which is reasonable for a miter gate diagonal. For this study, 
it is further assumed that thermal loadings due to changes in 
temperature are negligible. This simplification is reasonable 
as the measurements used to calculate tension are taken 
over a period of one minute, where changes in temperature 
will be insignificant. Eick et al. (2020) found that miter gate 
diagonals that utilize super-nut style connectors are most 
appropriately modeled as fixed-pinned, in which case, the 
characteristic equation of the beam is as given by 

 𝛼ଵ cosh 𝛼ଵ sin 𝛼ଶ−𝛼ଶsinh 𝛼ଵ cos 𝛼ଶ  = 0 (7)

For a pinned-pinned beam, the characteristic equation is 
given by sin 𝛼ଶ  = 0 (8)

 
With the characteristic equation in hand, the tension in 

the beam can be determined if the geometry, material 
properties, and frequency of vibration are known. 

 
2.1 Effects of submersion on the vibrating 

frequency of a beam 
 
Fluid-structure interaction systems consist of a structure 

moving through a fluid, a volume of which must be 
displaced to allow the structure to move. For simplicity, 
consider an illustrative example of a single-degree-of-
freedom (SDOF) structure. In the fluid-structure interaction 
system, the structure itself has some stiffness (𝑘௦), mass 
(𝑚௦), and damping (𝑐௦). The fluid also has some stiffness 
(𝑘), mass (𝑚), and damping (𝑐). The subscript a is used 
here for “added”, in that the values from the fluid are 
thought of as added to the structure. The formulation of the 
equation of motion for an SDOF fluid-structure interaction 
system then takes the form outlined in Kaneko et al. (2014) 
as 

 (𝑚௦ + 𝑚)𝑥ሷ + (𝑐௦ + 𝑐)𝑥ሶ + (𝑘௦ + 𝑘)𝑥 = 𝑓 (9)
 
Chen (1985) notes that, for a structure moving through 

an at-rest, ideal fluid (i.e., incompressible and inviscid), the 
primary effect of the submersion is to add mass, and so Eq. 
(9) can be simplified to 

 (𝑚௦ + 𝑚)𝑥ሷ + 𝑐௦𝑥ሶ + 𝑘௦𝑥 = 𝑓 (10)
 
The experimental analysis performed herein shows that, 

for determining the effects of submersion on the 
fundamental frequency of vibration of a beam, the 
simplification provided in Eq. (10) produces excellent 
results. Care should be taken in the field to ensure the water 
surrounding a miter gate diagonal is, indeed, at rest, Testing 
should not be performed when a vessel is passing the gate, 
or if both lock gates are open allowing flow through the 
lock chamber. The value of added mass can be determined 
analytically and is related to the geometry of the structure, 
which dictates the volume of water displaced when the 
structure moves through the fluid, and the properties of the 
fluid. Tabulated values of added mass for common 
geometries are available in the literature, such as in Kaneko 
et al. (2014). For this study, the geometry of the diagonals 
closely resembles a thin plate in two cases studied and a 
rectangular prism in one case. The value of added mass per 
unit length of a thin plate of width 2a is given by 

 𝜇_௧ = 𝜌௪௧𝜋𝑎ଶ (11)
 
The value of added mass for a rectangular prism of 

width 2a and depth 2b is dependent on the aspect ratio of 
the cross section, b/a. As will be seen the rectangular 
geometry used in this study has an aspect ratio of 0.57. 
Using the table available in Kaneko et al. (2014) and 
linearly interpolating, the value of added mass per unit 
length for the rectangular prism used in this study is given 
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by 𝜇_௧ = 1.38𝜌௪௧𝜋𝑎ଶ (12)
 
If the beam is fully submerged in water, then the same 

approach as above can be used to find the relationship 
between the frequency of vibration and tension, with the 
note that Eq. (5) becomes 

 𝛽 = 𝐿 ቆ(𝜇 + 𝜇)𝜔ଶ𝐸𝐼 ቇభర
 (13)

 
2.2 Modeling a partially submerged miter gate 

diagonal 
 
A challenge in this study is the fact that the diagonals 

will generally only be partially submerged, and so, the 
added mass due to water will only act on the submerged 
portion of the diagonal. The diagonals on a miter gate can 
thus be modeled as piecewise beams with two distinct 
sections. The first section has a length, Lw, corresponding to 
the submerged part of the beam and has a mass per unit 
length of the steel plus the added mass per unit length due 
to water. The other section has length corresponding to the 
unsubmerged length of the beam and mass per unit length 
of steel only. On both sections of the beam, all other 
geometric and material properties are the same. The beam 
model for a partially submerged diagonal for the pinned-
pinned case is shown in Fig. 4. 

The relatively simple adjustment to the continuous beam 
model of adding mass to a portion of the beam leads to a 
complicated closed-form relationship between the tension in 
the beam and the frequency of vibration. For the beam 
shown in Fig. 4, the characteristic equation of the beam is 
given by the determinant of the matrix below 

 

 
where 𝛼ଵ and 𝛼ଶ are as described in Eqs. (2) and (3), but 
the subscripts a and b refer to using the appropriate material 
and geometric properties of the bottom and top sections of 
the beam, respectively, as shown in Fig. 4. The determinant 
can be explicitly found using appropriate symbolic math 
software; however, determining the tension given a 
specified measured frequency of the beam is not possible in 
closed form and must be done numerically. 

Because of  the ease  of  implementat ion and 
computational efficiency, the assumed modes method 
(Craig and Kurdila 2006) is employed to model the 
submerged beam. For the assumed modes method, 
admissible shape functions must be selected for the n modes 
to be estimated. Here, we refer to the ith shape function as 𝜓. An admissible shape function is one that satisfies the 

Fig. 4 Piecewise beam model for partially submerged 
miter gate diagonal 

 
 

geometric boundary conditions of the beam and is twice 
differentiable. Moreover, each of the n assumed mode shape 
functions must be linearly independent of all other assumed 
mode shape functions. To determine the frequencies of 
vibration using the assumed modes method, the eigenvalue 
problem is solved such that 

 𝑑𝑒𝑡 ቀ൫ൣ𝐾௦௧൧ + ൣ𝐾൧൯− 𝜔ଶ([𝑀] + [𝑀ௗௗௗ])ቁ = 0 (14)

 

where ൣ𝐾௦௧൧ is the bending stiffness matrix of the beam, 
 
 
 

 
 
 ൣ𝐾൧  is the geometric stiffness matrix of the beam, [𝑀] is the mass matrix of the beam, and [𝑀ௗௗௗ] is 

the added mass matrix of the beam. Note, the damping of 
the beam itself is assumed negligible and as stated 
previously, the results from Chen (1985) are first explored 
by only considering the added mass of the water. The i, j 
component of each of these matrices is found as in Eq. (15) 
through Eq. (18) 

 𝐾௦௧,ೕ = න 𝐸𝐼(𝑥)𝜓ᇱᇱ(𝑥)𝜓ᇱᇱ(𝑥)𝑑𝑥
  (15)

 𝐾.ೕ = න 𝑃𝜓ᇱ(𝑥)𝜓ᇱ(𝑥)𝑑𝑥
  (16)

 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ sinh ൬𝛼ଵ 𝐿௪𝐿 ൰ sin ൬𝛼ଶ 𝐿௪𝐿 ൰ −cos h ൬𝛼ଵ 𝐿௪𝐿 ൰𝛼ଵcosh ൬𝛼ଵ 𝐿௪𝐿 ൰ 𝛼ଶcos ൬𝛼ଶ 𝐿௪𝐿 ൰ −𝛼ଵsinh ൬𝛼ଵ 𝐿௪𝐿 ൰𝛼ଵଶ  sinh ൬𝛼ଵ 𝐿௪𝐿 ൰ −𝛼ଶଶ  sin 𝛼ଶ 𝐿௪𝐿 −𝛼ଵଶ  cosh 𝛼ଵ 𝐿௪𝐿

−sinh ൬𝛼ଵ 𝐿௪𝐿 ൰ −cos ൬𝛼ଶ 𝐿௪𝐿 ൰ −sin ൬𝛼ଶ 𝐿௪𝐿 ൰−𝛼ଵcosh 𝛼ଵ 𝐿௪𝐿 𝛼ଶsin ൬𝛼ଶ 𝐿௪𝐿 ൰ −𝛼ଶcos ൬𝛼ଶ 𝐿௪𝐿 ൰−𝛼ଵଶ  sinh 𝛼ଵ 𝐿௪𝐿 𝛼ଶଶ  cos 𝛼ଶ 𝐿௪𝐿 𝛼ଶଶ  sin 𝛼ଶ 𝐿௪𝐿𝛼ଵଷ  cosh 𝛼ଵ 𝐿௪𝐿 −𝛼ଶଷ  cos 𝛼ଶ 𝐿௪𝐿 −𝛼ଵଷ  sinh 𝛼ଵ 𝐿௪𝐿0 0 cosh(𝛼ଵ)0 0 𝛼ଵଶ cosh 𝛼ଵ
−𝛼ଵଷ  sinh 𝛼ଵ 𝐿௪𝐿 −𝛼ଶଷ  sin 𝛼ଶ 𝐿௪𝐿 𝛼ଶଷ  cos 𝛼ଶ 𝐿௪𝐿sinh(𝛼ଵ) cos(𝛼ଶ) sin(𝛼ଶ)𝛼ଵଶ sinh 𝛼ଵ 𝛼ଶଶ cos 𝛼ଶ 𝛼ଶଶ sin 𝛼ଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
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𝑀,ೕ = න 𝜇𝜓(𝑥)𝜓(𝑥)𝑑𝑥
  (17)

 𝑀ௗௗௗ,ೕ = න 𝜇𝜓(𝑥)𝜓(𝑥)𝑑𝑥ೢ  (18)
 
Where the “prime” superscript denotes the derivative of 

the shape function with respect to the dimension along the 
length, x. The frequencies calculated using Eq. (14) will be 
higher than the true frequency of the beam being modeled; 
however, the estimate will converge from above toward the 
true value as the number of assumed modes increases (Rao 
2007). 

To satisfy the requirement for linear independence while 
providing a reasonable estimate of the mode shapes of a 
beam, trigonometric functions are frequently employed. 
However, to get sufficiently converged results, many such 
mode shapes may need to be considered in the formulation, 
leading to a computationally demanding problem. To 
increase computational efficiency, the authors herein 
consider the use of so-called Chebyshev polynomials of the 
first kind (for brevity, herein simply referred to as 
Chebyshev polynomials). Chebyshev polynomials, denoted 𝑇(𝑥), are closely related to the cosine function (Mason and 
Handscomb 2003), in that 

 𝑇(𝑥) = cos൫𝑛 arccos (𝑥)൯ , 𝑥 ∈ [−1,1] (19)
 
As seen, Chebyshev polynomials take the form cos 𝑛𝜃 , 

and so each nth Chebyshev polynomial is linearly 
independent. Using Rodrigues’ formula, the nth Chebyshev 
polynomial can be found as 

 𝑇(𝑥) = (−2)𝑛!(2𝑛)! ඥ1 − 𝑥ଶ 𝑑𝑑𝑥 (1 − 𝑥ଶ)ିభమ (20)

 
For example, when n = 5 
 𝑇ହ(𝑥) = 16𝑥ହ − 20𝑥ଷ + 5𝑥 (21)
 
The Chebyshev polynomials are closely related to the 

cosine function on the interval [-1,1], and so, for this study 
this relationship is shifted to lie in the desired interval [0,L] 
by using the argument ቀଶ௫ − 1ቁ . The Chebyshev 
polynomials themselves do not satisfy the requirements for 
an admissible shape function. For this study, as per Eick et 
al. (2020), the beam is best modeled as fixed-pinned, and so 
the shape functions must satisfy 𝜓(0) = 0 ,  𝜓(𝐿) = 0 , 𝜓ᇱ(0) = 0 , and 𝜓ᇱ(𝐿) ≠ 0 . To satisfy the boundary 
conditions, two terms are added to each nth Chebyshev 
polynomial such that ith shape function is defined as in Eq. 
(22), which for every ith mode of vibration of can be shown 
to be an admissible shape function. 

 𝜓(𝑥) = ቀ𝑥𝐿ቁଶ ቀ1 − 𝑥𝐿ቁ 𝑇 ൬2𝑥𝐿 − 1൰ (22)

 
The benefit of using the Chebyshev polynomial, as 

opposed to trigonometric functions, is in significantly 

increased computational efficiency of integrating simple 
polynomials in Eqs. (15) through (18). For this study, it was 
found that using 20 mode shapes in the formulation 
provides sufficiently converged results. 

The assumed modes formulation allows the estimation 
of the frequency of vibration of a beam given all the 
relevant parameters. For this study, it is of interest to 
estimate the tension in beam, given a measured frequency 
and all other necessary parameters for the problem. For a 
miter gate diagonal, geometric and material properties are 
obtained from structural design drawings. Then, 
measurements must be taken to obtain the frequencies of 
vibration and the length over which the diagonal is 
submerged. The assumed modes formulation is setup then 
with the only unknown being P in Eq. (16). P can 
reasonably be assumed constant throughout the beam, and 
so it is taken out of the integral and geometric stiffness 
matrix is kept in terms of P. Eq. (14) is calculated by 
iterating through P until a frequency value is obtained 
within a small percentage of error of the frequency 
measured in the field (say 1%). For this initial study, only 
the fundamental frequency is considered, with results being 
shown to be sufficiently accurate. Future work will 
investigate the potential for increased accuracy by including 
results from multiple modes of vibration. 

 
 

3. Experimental setup 
 
An experimental setup was devised to demonstrate the 

performance of the proposed method. Scale model diagonal 
specimens subjected to various levels of submersion and 
tension were tested. The experiment was comprised of three 
scale-model diagonal specimens with dimensions as shown 
in Fig. 5. The cross sectional dimension a and b seen in Fig. 
5 are listed in Table 1. The cross-section of each specimen 
was chosen such that each specimen has identical cross-
sectional area of 11.3 cm2 (1.75 in2) while allowing for 
varying profile widths moving in the water. The geometry 
of the scale model specimens, with an end section tapering 
from a rectangular cross section to a round threaded rod, is 
typical of many miter gate diagonals. The threaded end 
sections are provided to allow for connectivity in the form 
of a heavy hex nut on one end and a super-nut-style multi-
jack-bolt tensioning nut on the other end, which is used to 
provide the pre-stress. 

The specimens were erected vertically and attached to 
the structural reaction wall and load floor in the laboratory. 
A submersion tank was constructed out of four welded 208-
liter (55 gallon) drums stacked on top of each other and 
erected around each specimen. The submersion tank 
allowed for the partial submersion of the specimens. Each 
specimen had three strain gages attached to obtain a 
reference value of tension, and two accelerometers were 
placed just above the submersion chambers, which is offset 
from the mid-span by about 20 cm. The location of 
accelerometers was selected to facilitate the maximum 
number of measured modes by avoiding modal zeros 
(locations where displacements are expected to be zero for 
the first few modes). Note, for the laboratory experiments, 
accelerometers (as opposed to the vision-based method) are 
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Table 1 Scale model diagonal specimens 

Name Cross sectional dimensions 
Specimen 1 a = 8.89 cm (3.50 in), b = 0.32 cm (0.13 in) 
Specimen 2 a = 4.45 cm (1,75 in), b = 0.64 cm (0.25 in) 
Specimen 3 a = 2.22 cm (0.88 in), b = 1.27 cm (0.5 in) 

 

 
 

exclusively used for dynamic measurements. This is 
because of the ability to capture higher modes with the 
accelerometers. As outlined by Eick et al. (2020) a typical 
camera with a frame rate of 60 frames per second (fps) will 
have Nyquist frequency of 30 Hz. For the specimens used 
in this study, 30 Hz is only sufficient to capture two or three 

 
 

 
Fig. 6 Experimental setup 

 
 

Fig. 7 Erected test specimen with submersion chamber
 
 

modes for each beam. Nevertheless, the study performed by 
Eick et al. (2020) readily shows that the vision-based 
method can match accelerometers nearly exactly over the 
range of measurement. A schematic of the experimental 
setup in the lab is shown in Fig. 6. Fig. 7 shows the erected 
test specimen in the lab. 

To determine its fundamental frequency, the specimen 
was excited and the response was recorded using both video 
and accelerometers. In the course of testing at certain levels 
of submersion, exciting the lower modes with a hammer 
impact proved difficult; using a small rope tied near the 
center of the specimen plucking the specimen provided best 
results. Each specimen was tested at five different tension 
levels as listed in Table 2. For each level of stress, the beam 
was submerged to five different levels as listed in Table 2. 
Thus, a total of 25 tests were performed for each of the 
three specimens. For simplicity, the height of the individual 
208 liter (55 gallon) drums were used as a marker for each 
level of submersion, with each drum being approximately 
83.8 cm (33 in.) tall. When testing, the expected fundamental 
frequency of vibration for all tests is not expected to exceed 
14 Hz, and so a sampling frequency of 256 Hz was selected 

 
Fig. 5 Scale model diagonal specimens used in this test
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Table 2 Tensile stresses and water heights utilized in testing

Tensile stress levels 38.92, 77.84 116.77 155.69 194.6 kN 
(8.75, 17.5, 26.25, 35.0, 43.75 kips) 

Height of water 0, 83.8, 167.6, 251.5, 335.3 cm 
(0, 33, 66, 99, 132 in.) 

 

 
 

for the accelerometers, which will allow for the 
measurement of several harmonics for each test. To obtain 
the frequencies of vibration, a fast Fourier-transform (FFT) 
is performed on the recorded acceleration record, and peaks 
in the record are manually selected. 

 
 

4. Model validation 
 
For each test, up to the first five frequencies of vibration 

are extracted from the FFT of the acceleration record. Note 
that in several instances, the frequencies of a particular 
harmonic of the beam’s vibration are difficult to determine 
from the FFT, possibly due to the frequency of that 
harmonic nearly resonating with the frequency of vibration 
of the global test setup. In other instances, the amplitude of 
a particular harmonic is quite small, likely due to the 
placement of the accelerometer near the node for that mode 

 
 

Fig. 8 Amplitude spectrum for test specimen 1 at 137.9 MPa
(20 ksi) and 335.3 cm (132 in) of water 

 
 

of vibration. An example of an FFT displaying both of these 
characteristics (closely spaced peaks, and very low 
amplitude peak), is shown in Fig. 8, which is the amplitude 
spectrum for specimen 1 at 155.69 kN (35 kips) stress and 
with 335 cm (132 in) of water. The numbers in the plot 
correspond to the frequency of the nth mode of vibration, as 
determined by a peak-picking algorithm. In this case, 
several closely spaced peaks are seen near where the second 
mode is expected. Similarly, the amplitude for the peak near 
where the fifth mode is very small. Accordingly, for this 
test, the second and fifth modes cannot be determined and 
are marked as N/A. 

To validate the notion that added mass is the primary 
driver for a change in the frequency of vibration, the extracted 
frequencies from the experimental data are compared to the 
frequencies calculated using the proposed approach. Note, 
for specimens 1 and 2, the added mass to use in Eq. (18) is 
the value for a thin plate (Eq. (11)). For specimen 3, the 
aspect ratio of the cross-section is a rectangular prism, and 
so the added mass from Eq. (12) is used. For all specimens, 
the bending stiffness varies across the length of the bar due 
to the changing cross section, as seen in Fig. 5. Taking the 
left end connection shown in Fig. 5 as the datum, each 
specimen is comprised of the following: a circular cross-
section from 0 cm to 7.62 cm; a tapered region with varying 
cross section from 7.62 cm to 33.0 cm; a constant 
rectangular cross section from 33.0 cm to 576.5 cm; a 
tapered region with varying cross-section from 576.5 to 
601.9 cm; a constant circular cross section from 601.9 cm to 
609.5 cm. The moments of inertia from the regions with 
constant cross section are readily obtained from the 
dimensions in Table 1. The moments of inertia for the 
tapered sections, labeled 𝐼(𝑥) and 𝐼(𝑥) in Fig. 5, are 
functions of the position on the beam, x, and thus need to be 
incorporated into the integral in Eq. (15). Approximate 
functions describing 𝐼(𝑥) and 𝐼(𝑥) with respect to the 
datum previously described are listed in Table 3. 

Figs. 9 through 11 show a comparison between the 
calculated frequencies from the proposed method and the 
experimentally measured frequencies. In the plots, the x-
axis represents the calculated frequencies using the method 
of assumed modes, while the y-axis represents the 
experimentally measured frequencies. A line is also 

 
 
 

Table 3 Functions describing the varying moment of inertia of the tapered section for the 
test specimens 

Specimen Functions of 𝐼(𝑥) and 𝐼(𝑥) (x in cm) 

1 
𝐼(𝑥) = 112 (0.567𝑥 − 0.966 𝑐𝑚)(−0.107𝑥 + 4.178𝑐𝑚)ଷ 𝐼(𝑥) = 112 (−0.567𝑥 + 345.112 𝑐𝑚)(0.107𝑥 − 61.225𝑐𝑚)ଷ 

2 
𝐼(𝑥) = 112 (0.217𝑥 + 1.701 𝑐𝑚)(−0.082 𝑥 + 3.987 𝑐𝑚)ଷ 𝐼(𝑥) = 112 (−0.217𝑥 + 134.419 𝑐𝑚)(0.082𝑥 − 46.175 𝑐𝑚)ଷ 

3 
𝐼(𝑥) = 112 (0.043𝑥 + 3.035 𝑐𝑚)(−0.032𝑥 + 3.606 𝑐𝑚)ଷ 𝐼(𝑥) = 112 (−0.043𝑥 + 29.072 𝑐𝑚)(0.032𝑥 − 16.076 𝑐𝑚)ଷ 
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provided on each plot for ready comparison; if the proposed 
method considering added mass does a good job of 
explaining the effects of submersion on the frequencies, 
then all points on the plots should lie near the y = x line. In 
each of the figures, the individual plots show the 
comparison for all levels of submersion for one level of 
pretension, with the levels of submersion represented by 
different point markers. The first five modes for each level 
of submersion are plotted simultaneously. Markers on the 
plot lying along a y = 0 line are those locations where a 
particular frequency could not be determined from the 
measured data, such as for the previously described 
scenario for the test of specimen 1 at 155.69 kN (35.0 kips) 
and 335 cm (132 in) of water. 

 
 

 
 
As seen in the figures, considering only the added mass 

due to the presence of water adequately describes the effects 
of submersion on the fundamental frequency. That is, the 
estimated frequency using the assumed modes shape 
matches very closely to the measured frequency. A 
quantitative assessment of the error between the modeled 
frequencies and measured frequencies is shown in Fig. 12. 
The colors in the figure represent the different levels of 
tension, while the different markers represent the different 
submersion levels. As seen, with a few outliers, the 
estimated frequencies are generally within 5% error of the 
measured frequency, and often less than 5%. For specimen 1, 
the error is evenly spread between overestimating and 
underestimating the measured frequency. For specimen 2, 

 
Fig. 9 Comparison of frequencies for specimen 1

 
Fig. 10 Comparison of frequencies for specimen 2
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the error tends to skew more towards an underestimation of 
the frequency. For specimen 3, the error tends to skew more 
towards an overestimation. The percentage error doesn’t 
provide adequate information for the purposes of this study. 
The measured frequencies are to be used to calculate 
tension in the beams, where tension is related to the square 
of the frequency. Accordingly, it is important to investigate 
the magnitude of difference between the calculated and 
measured frequencies, as small differences in frequency can 
manifest as large errors in calculated tension. The difference 
in frequencies for the specimens are shown in Fig. 13. As 
seen, while the percentage error is generally high for the 
proposed approach when estimating the fundamental 
frequency, the magnitude of the difference in frequencies is 
the smallest for the fundamental frequency in all cases, and 
typically within 0.5 Hz. Accordingly, for this initial study, 
the tension is calculated by only considering the 
fundamental frequency. Future work will investigate the 
incorporation of higher modes to potentially increase 
accuracy. 

 
 

 
 
As seen in the figures, considering only the added mass 

due to the presence of water adequately describes the effects 
of submersion on the fundamental frequency. That is, the 
estimated frequency using the assumed modes shape 
matches very closely to the measured frequency. A 
quantitative assessment of the error between the modeled 
frequencies and measured frequencies is shown in Fig. 12. 
The colors in the figure represent the different levels of 
tension, while the different markers represent the different 
submersion levels. As seen, with a few outliers, the 
estimated frequencies are generally within 5% error of the 
measured frequency, and often less than 5%. For specimen 
1, the error is evenly spread between overestimating and 
underestimating the measured frequency. For specimen 2, 
the error tends to skew more towards an underestimation of 
the frequency. For specimen 3, the error tends to skew more 
towards an overestimation. The percentage error doesn’t 
provide adequate information for the purposes of this study. 
The measured frequencies are to be used to calculate 
tension in the beams, where tension is related to the square 

 
Fig 11 Comparison of frequencies for specimen 3

 
Fig 12 Percentage error between measured frequency and calculated frequency 
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of the frequency. Accordingly, it is important to investigate 
the magnitude of difference between the calculated and 
measured frequencies, as small differences in frequency can 
manifest as large errors in calculated tension. The difference 
in frequencies for the specimens are shown in Fig. 13. As 
seen, while the percentage error is generally high for the 
proposed approach when estimating the fundamental 
frequency, the magnitude of the difference in frequencies is 
the smallest for the fundamental frequency in all cases, and 
typically within 0.5 Hz. Accordingly, for this initial study, 
the tension is calculated by only considering the 
fundamental frequency. Future work will investigate the 
incorporation of higher modes to potentially increase 
accuracy. 

While the results for the frequency comparison is 
promising, the primary interest of this study is to be able to 
measure the tension in a partially submerged miter gate 
diagonal by measuring only the diagonal dimensions, 
submerged length, and fundamental frequency of vibration. 
To find the tension given the measured parameters, an 
iterative inverse approach is used where the frequencies of 
vibration for a range of tension values given the submerged 
length are calculated. Then, the tension that corresponds to 
the calculated frequency that is nearest to the measured 
frequency for a given submersion length is used as the 
tension in the diagonal. This is performed for all test 
specimens and the tension value calculated using the 
proposed method is plotted versus the reference tension 

 
 

 
 

values in Fig. 14. The percentage error between the 
calculated tension and the measured tension is shown in 
Fig. 15. With a few exceptions (particularly for Specimen 1 
at lower tension levels), the calculated tension is generally 
within 10% of the measured tension. The increased error 
seen in specimen 1 may be because the cross-section of the 
specimen is such that, without the geometric stiffness 
afforded by axial tension, the bending stiffness of the 
specimen is negligible. When the tension is low, Specimen 
1 will have very little stiffness, and so the amplitude of 
vibration due to a hammer impact may violate the low-
amplitude assumptions. The additional effects due to 
submersion (such as added damping) may need to be 
considered for improved accuracy for specimens with low 
tension and low bending stiffness, which will be explored in 
future work. Nevertheless, the proposed approach greatly 
improves the accuracy of calculations compared to 
neglecting the effects of submersion in water. For 
comparison, the percentage error in calculated tension when 
the effects of submersion are neglected are shown in Fig. 
16. As seen, when neglecting the effects of submersion, the 
calculated tension values can be as much as 70% off. By 
utilizing the proposed method, tension can generally be 
calculated within a range likely to be acceptable to a 
practicing engineer. 

 
 
 
 

 
Fig 13 Difference of calculated frequency from measured frequency 

 
Fig. 14 Comparison of measured tension and calculated tension for test specimens 
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5. Field validation 
 
To test the efficacy of the proposed approach in the 

field, as well as validate the vision-based method proposed 
by Eick et al. (2020), video was taken of the diagonals of 
the Greenup Lock and Dam while it was in operation. The 
Greenup Lock and Dam site is on the Ohio River on the 
border of the U.S. state of Kentucky and Ohio, and is in the 
namesake county in the state of Kentucky. The miter gate at 
Greenup is the only known miter gate in the U.S. with 
instrumentation in place in the form of a load cell to 
monitor the tension in the diagonals, allowing the 
comparison of results found via the proposed approach with 
readings from the load cell. The same camera used in the 
lab was used in the field, and the camera was placed on a 
tripod on the lock chamber wall and pointed at the 
diagonals with a zoom lens. Fig. 17(b) shows the field-of-
view of the camera in the field test, with the location of the 
field of view on the gate noted in Fig. 17(a). 

Several videos were taken of the diagonals on the gate. 
The camera used on site was a Nikon DS3300 with a 
resolution of 1080p 60 fps and a focal length of 55 mm. 
Video results were improved with the use of a Nikon AF-S 
NIKKOR 70-200 mm f/2.8G ED VR II zoom lens. For the 
vision-based method to be effective, the best results were 

 
 

 
 

Fig. 17 (a) The Greenup miter gate on the day video was 
captured; (b) The field-of-view of the camera placed 
on the lock chamber wall 

 
Fig. 15 Percentage error of calculated tension

 
Fig. 16 Percentage error of calculated tension if effects of submersion not considered 
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obtained as the gate swung closed and immediately after the 
two leaves of the gate came in contact with each other. This 
small impact provided adequate excitation to the diagonals 
for the optical flow method to track. The vision-based 
approach was applied to the captured video and the raw 
displacement record as tracked by optical flow is shown in 
Fig. 18(a). A high-pass Butterworth filter was applied to the 
displacement signal with a cutoff frequency of 1.0 Hz, and 
the filtered displacement record is shown in Fig. 18(b). An 
FFT was applied to the filtered displacement record to 
determine the frequencies of vibration. The resulting 
fundamental frequency is found to be 2.7 Hz, as shown in 
Fig. 19, while the second peak of 6.3 Hz is a reasonable 
value for the second harmonic of the beam. 

The Greenup diagonals are 22.5 m (886.5 in.) in length, 
with a cross section of 17.8 cm × 3.18 cm (7.0 in. × 1.25 
in). As one of the newer gates on the Ohio River, the 
diagonals utilize the same super-nut jackbolt connections as 

 
 

 
 

those tested in the lab, and so fixed-pinned boundary 
conditions are assumed. Using the proposed method, a 
vibration frequency of 2.7 Hz, and a length of submersion 
of 14.1 m (556 in), the tensile load is determined to be 
895.2 kN (201.25 kips). The load cell on the diagonal read 
862.9 kN (194 kips), resulting in an error of 3.7% for the 
proposed method. Note, using beam theory and ignoring the 
effects of submersion on the frequency of vibration, the 
tension in the diagonals is calculated to be 630.5 kN 
(141.75 kips), for an error of 26.9% 

 
 

6. Conclusions 
 
Miter gates are critical infrastructure to the U.S. 

economy that facilitate the transportation of billions of 
dollars in goods annually. Diagonals are long, slender, 
beam-like component of miter gates that are pre-tensioned 

(a) Raw displacement of tracked point of Greenup diagonal (b) Filtered displacement of tracked point

Fig. 18 Displacement results from Greenup field testing

 
Fig. 19 FFT of displacement of Greenup diagonal
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to add torsional rigidity to the structure and counteract the 
tendency for the gate to twist under its own weight. 
Monitoring the tension in the miter gate diagonals is 
critically important for maximizing the useful life of the 
gate. Due to the expense and infeasibility of installing direct 
measurements of the tension of already in-service 
diagonals, vibration-based methods are attractive to infer 
the tension in the diagonal. Of particular challenge to 
calculating the tension from the frequency of vibration is 
the fact that miter gate diagonals will be partially 
submerged for most of their life. 

The study conducted herein was performed to determine 
a simple method for calculating the tension in partially 
submerged miter gate diagonals given a measurement of the 
frequency of vibration and submerged length of the 
member. To this end, the effects of partial submersion on 
the frequency of vibration of the diagonal were 
investigated. The primary effect of submersion on the miter 
gate diagonal is found to be a reduction in the frequency of 
vibration due to added mass caused by the displacement of 
the water surrounding the diagonal. Closed-form solutions 
accounting for the added mass of a partially submerged 
diagonal are particularly challenging given that the 
submerged length of the diagonal is not constant. While a 
characteristic equation of the partially submerged diagonal 
can be found, numerically solving the characteristic 
equation for tension in the diagonal given the frequency of 
vibration and submerged length is intractable. Accordingly, 
the assumed modes method was used to calculate the 
frequency of vibration of a diagonal given a pretension and 
level of submersion. 

Experimental data was then used to validate the notion 
that the effects of submersion on the frequency of vibration 
of the diagonal can be largely accounted for by added mass 
due to water. The experiment consisted of three scale-model 
diagonal specimens subjected to various levels of 
pretension and submersion. The scale model specimens 
were excited and the first five frequencies of vibration were 
calculated from the displacement record. In all cases, the 
experimentally obtained frequencies of vibration matched 
the calculated frequencies obtained using the assumed 
modes. The exceptional agreement in the data corroborates 
the notion that the primary effect of submersion of the 
frequency can be modeled as added mass. To calculate the 
tension in the specimens using the measured frequency and 
submerged length of the beam, an iterative inverse approach 
is utilized where frequencies of vibration are generated for 
several tension values given a length of submersion. Then, 
the tension that matches the combination of submerged 
length and nearest value of frequency of vibration is taken 
as the tension in the beam 

Field validation was performed by utilizing vision-based 
vibration measurement of an in-service miter gate diagonal 
at the Greenup Lock and Dam. The diagonals at the 
Greenup Lock and Dam are instrumented with load cells to 
monitor the tension in the diagonals, allowing for 
comparison of the tension found via the proposed method 
with that recorded by the load cell. The tension calculated 
using the proposed method showed excelled agreement, 
differing from the load cell by only 3.7%. This field 

validation showed that the proposed method discussed 
herein is viable for monitoring tension in miter gate 
diagonals. While the results of this study focus on miter 
gate diagonals, the results can easily be utilized on any 
other long, slender, pre-tensioned, partially submerged 
beams. 
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