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1. Introduction 

 
Earthquakes continue to comprise one of the deadliest 

natural hazards, with the majority of the casualties caused 
by collapsing buildings (Kenny 2009). While much effort 
has been made to improve building codes and new 
structures can arguably be considered earthquake-safe, 
existing buildings often fail to comply with modern seismic 
code prescriptions. Among building typologies, masonry 
buildings stand out as the most vulnerable (Lourenço and 
Roque 2006, Lam et al. 2019). Repairing or even replacing 
all existing buildings that have been built prior to current 
design codes is economically impossible and 
environmentally unsustainable, given that the construction 
industry is already the largest producer of solid waste 
(World Economic Forum 2016). Better knowledge of the 
behavior of existing structures may justify the extension of 
their lifespan without compromising the resilience of 
communities with respect to natural disasters. 

Structural health monitoring (SHM), which relies on 
utilization of sensor data from operating structures, has the 
potential to expand our knowledge concerning performance 
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of existing buildings, as a supplement to laboratory-based 
experimentation (Spencer et al. 2004a, Ma and Li 2015, 
Chatzis et al. 2015 and Stavridis et al. 2011), and possibly 
alleviating destructive testing and supporting lifetime safe 
exploitation of novel structural solutions (Bedon 2019). 
Rapid developments in sensor technology and the broad 
establishment of the Internet-of-Things (IoT) enriched the 
arsenals of structural sensing tools for structures under 
seismic risk, overcoming most of the main challenges that 
prohibited the broad application of smart sensor networks 
for SHM applications in the past 20 years (Spencer et al. 
2004b). 

Works related to the use of SHM, for dynamic 
characterization and monitoring of buildings, typically 
exploit vibration measurements to infer the modal 
characteristics of the examined system, either as a proxy of 
structural health (Gattulli et al. 2013, Vidal et al. 2014, 
Cheng et al. 2015) or for further exploitation in inverse 
parameter updating of computational models (Atamturktur 
and Laman 2012, Lam et al. 2019, Lombaert et al. 2009, 
Reuland et al. 2019a). Other applications of vibration 
monitoring relate to slender structures, where the 
serviceability requirements are more restrictive than safety 
limits. In such cases, vibrational monitoring supports the 
validation of modeling assumptions and the evaluation of 
compliance to code prescriptions (Martakis et al. 2019). 
Finally, problems related to oscillating machinery and its 
effect on the foundation impedance, form another field of 
extensive academic research, which could profit from better 
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knowledge of vibration responses (Gazetas 1992). 
Ideally, building dynamics are measured under actual 

seismic events (Ulusoy et al. 2010), or under forced 
excitation (Yu et al. 2006, Steiger et al. 2015). Soyoz et al. 
(2013) employed an eccentric mass shaker to mobilize a 
reinforced concrete building prior to and after retrofitting, 
with the aim of assessing the efficacy of the retrofitting 
solution. However, various technical and administrative 
complications undermine such controlled shaking 
experiments for testing of real structures, with perhaps a 
primary obstacle lying in the need to suspend the function 
of the tested infrastructure, or building. As a result, output-
only modal identification algorithms (Brincker et al. 2001, 
Van Overschee and De Moor 1996) for structures that are 
subjected to ambient excitation present a more attractive, if 
not the only, alternative for dynamic measurements. 
However, methodologies that involve ambient vibrations 
are inevitably limited to the structural response in the 
commonly assumed linear elastic range, which may not be 
representative of structural behavior under high-amplitude 
loads (Astorga et al. 2018). This limitation becomes even 
more prominent for masonry structures (Michel et al. 2011, 
Ceravolo et al. 2017) that exhibit non-linear behavior even 
at low excitation levels (order of magnitude lower than 
earthquake excitations). Furthermore, the effect of the soil-
foundation-structure interaction (SFSI), which is proven to 
substantially affect the dynamic response of low-rise 
buildings (Martakis et al. 2017), cannot be captured by 
considering only ambient excitation. This paper proposes a 
testing and analysis framework for model updating based on 
dynamic measurements whose amplitude lies beyond the 
range of classical ambient vibrations, which typically do not 
exceed amplitudes of 0.1 mg. Thus, changes in modal 
parameters, such as frequencies, mode-shapes and 
equivalent viscous damping, due to changes in response 
amplitude are captured. 

With the development and availability of structural 
sensing options, significant research efforts have been 
devoted to solve the inverse model updating problem based 
on measurement data (Jaishi and Ren 2005, Foti et al. 2014, 
Altunişik et al. 2018). To tackle uncertainties that are 
inherent in measurements and are further exacerbated due to 
the simplifications adopted in physics-based models, a 
model-updating framework based on Bayesian conditional 
probability has been proposed by Beck and Katafygiotis 
(1998). Although certain limitations of Bayesian model-
updating schemes and the underlying uncertainty structure 
have been reported (Tarantola 2006, Reuland et al. 2017a, 
Pai et al. 2019), this approach forms a potent tool for 
solving the inverse updating problem (Beck and Au 2002, 
Vanik et al. 2000, Lam et al. 2016, Papadimitriou et al. 
2011, Cheung and Beck 2009, Jensen et al. 2014, Straub 
and Papaioannou 2015). 

Typical model-updating approaches for buildings 
consider fixed boundary conditions (Bakir et al. 2007, 
Behmanesh et al. 2017, Bartoli et al. 2017) and thus, ignore 
the SFSI effect. Updating such models, without considering 
the uncertainties from amplitude-dependent building 
behavior, may result in erroneous predictions that can lead 
to either unnecessary recommendation or unsafe neglecting 

of retrofitting. Song et al. (2019b) applied a hierarchical 
Bayesian model updating approach to a two-story concrete 
building, demonstrating the influence of the response 
amplitude onto the estimated parameters. Asgarieh et al. 
(2012) traced the frequency shifts and their influence on 
updated parameters of a linear finite-element model. 
However, only one contribution (Ceravolo et al. 2017) 
attempted a rigorous derivation of the amount of 
nonlinearity that can be attributed to the soil. A model-
updating approach for both structure and soil, considering 
uncertainties, has not been accomplished. In this paper, 
excitations from planned demolition activities are used to 
estimate the influence amplitude-dependent dynamic 
properties of masonry buildings on updated parameters that 
describe the behavior of the soil and the structure. The 
subsequent utilization of updated model parameters bears a 
direct influence on both the simulated seismic behavior and 
the spectral demand and thus, on the predicted vulnerability 
of the structures (Snoj et al. 2013, Reuland et al. 2017b). 
Therefore, the influence of updated parameters on predicted 
non-linear lateral load bearing is assessed. Such information 
can provide guidance for practitioners seeking to reduce 
uncertainties in the seismic assessment of existing buildings 
through solution of the inverse problem of model updating. 

This paper starts with a description of the studied 
building and the measurement system that are used, as well 
as the demolition process, which allowed to measure 
vibrations that exceed ambient levels without introducing 
permanent damage. In Section 3, the modal properties of 
the building in the healthy state are identified for both, 
ambient vibrations as well as higher levels of excitation. 
Subsequently, the parameter values of an equivalent-frame 
model are updated using a Bayesian approach and the 
influence of the variability in vibration amplitudes on the 
model-parameter identification and finally on the seismic 
performance are assessed. 

 
 

2. Model updating with dynamic measurements at 
different amplitude levels 
 
This section contains an overview of the proposed 

workflow for the inverse task of updating numerical 
models, based on dynamic measurements in a wide range of 
response amplitudes. The proposed workflow is 
demonstrated through its application to a real unreinforced 
masonry building, which has been equipped with 
acceleration sensors during planned demolition. 

 
2.1 Case study and instrumentation 
 
The studied building, erected in Zurich (Switzerland) in 

1922, comprises two storeys and an attic with outer 
dimensions of 10.2 m in length and 8.0 m in width. An 
overview of the geometry is given in Fig. 1. The internal 
and external load-bearing shear walls consist of simple- and 
double-layered clay masonry respectively, while the floors 
are formed by timber beams, aligned parallel to the 
transverse direction of the building. The facades along the 
longitudinal direction, which is parallel to the street, contain  
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openings that reduce the stiffness. The regular and 
symmetric geometry in plane and in elevation is common 
for buildings of this age, which compose today a substantial 
part of the residential building stock in Switzerland and 
central Europe in general (Crowley et al. 2020, Diana et al. 
2019). 

The studied building was instrumented during its 
demolition via 10 triaxial MEMS accelerometers (ADXL 
354), placed in identical positions at levels 1 and 2 (as 
defined in Fig. 1(b)), at the positions marked in Fig. 1(c). 
Each triaxial sensor node was aligned with the longitudinal 
and transverse directions of the building, measuring 
horizontal accelerations along the two main axes Y and 

 
 

 
 

Z, as defined in Fig. 1(c). Typical sensor placement is 
depicted in Fig. 1(d). The data acquisition was conducted 
by means of a National Instruments cDAQ-9188 at a 
sampling rate of 1720 Hz. Weather conditions (cloudy at 
15°C) were stable throughout the (relatively short) duration 
of measurements and thus, environmental conditions are 
considered not to alter material properties. 

 
2.2 Demolition of masonry buildings 
 
The demolition of masonry buildings is performed by 

gradual removal of structural elements from top to bottom 
with the shovel of an excavator. Non-structural elements, 

 
 

 

(a) Three-dimensional view. The front facade corresponds to the 
roadside of the building 

(b) Cross section. All sensor nodes were placed at the 
storey levels 1 and 2 

 

(c) Typical ground floor. The red crosses indicate the positions of the 
triaxial sensor nodes, at levels 1 and 2. All sensors were aligned 
to the main axes of the building: Y and Z 

(d) Typical sensor placement 
 
 

Fig. 1 Overview of the building geometry and sensor layout

(a) Time-series of a characteristic shock (b) Location of shovel-impact 

Fig. 2 Shovel-hits on the undamaged building
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including furniture, opening frames, glass windows, floor 
covering and roof tiling are extracted beforehand, leaving 
the structure at a bare state. This facilitates the inspection of 
structural materials and geometry. Such non-structural 
elements have been shown in the past to bear minor 
influence on the dynamic response of existing masonry 
buildings (Reuland et al. 2017b). 

During demolition, buildings are subjected to hits and 
pulls of arbitrary direction and intensity, resulting in a rich 
variety of impulse responses. Fig. 2 contains an example of 
a hit with the excavator shovel. The resulting acceleration 
time series (Fig. 2(a)) indicate higher response amplitude 
along the transverse direction, which coincides with the 
direction of the hit. The amplitude is stronger in the vicinity 
of sensor 9, which is placed closer to the impact location. In 
the longitudinal direction (axis Y), the time-delay of the 
impact between sensor 9 and sensor 10 is evident. 
Additionally, sensor 10, for which the Y-component of the 
acceleration is oriented along the out-of-wall plane, exhibits 
higher acceleration in this direction than the sensor closest 
to the impact, indicating the possible absence of 
diaphragmatic behavior of the floor slabs for higher 
amplitudes of excitation. 

Although excitation amplitude, location and direction 
cannot be measured directly, the intensity metrics of the 
building response can be utilized to cluster the response 
impulses into groups of similar amplitude. To this end, the 
peak and root mean square (RMS) acceleration response 
during each impulse has been extracted and analyzed. For 
the demolition case analyzed in this paper, the recorded 
impulses are clustered into four amplitude-based bins, as 
demonstrated in Fig. 3(a). A total of 689 impulses have been 
recorded during the first 90 minutes of the demolition, when 
the works were limited to disassembling the roof and no 
structural damage beneath level 2 was observed. The range 
of the response amplitude in terms of RMS acceleration 
during each impulse varies between 0 and 0.04 g, up to 2 
orders of magnitude higher than ambient vibrations. 
However, most of the identified impulses caused low levels 
of excitation (below 1 mg). 

The signal measured by sensor 9, placed at level 2 on 
the demolition side (see Fig. 1(c)), is illustrated in Fig. 3(b) 

 
 

under hits of varying excitation level. The displacement 
response is derived through double integration of the 
acceleration signal, following the removal of linear trends 
through high-pass filtering with a cutoff frequency equal to 
1 Hz. Since the characteristic frequencies of the structure 
lay above 5 Hz and the studied response does not include 
structural damage, the distortion of the signal due to high-
pass filtering is considered minimal. Although the 
calculation of displacements based on numerical integration 
of acceleration recordings is not precise, it can be used to 
provide an estimate for the order of magnitude reached by 
the total displacement. As the maximum computed 
displacement is lower than 0.05 mm and the equivalent 
linear range, according to subsequent analysis (Section 4.3), 
covers the displacement range up to 1 mm, it can be 
assumed that the structure responds in the elastic range 
during demolition and no damage due to excessive loading 
is expected. 

 
2.3 Model updating based on dynamic 

measurements during demolition 
 
The workflow that is proposed for the inverse task of 

updating a finite-element (FE) model based on identified 
modal properties at different response amplitudes is 
illustrated in Fig. 4. Initially, a baseline identification on 
ambient recordings, prior to the beginning of any 
demolition activity, is conducted. This baseline 
identification provides estimates of the modal 
characteristics that are used for discarding erroneous 
identification results during demolition. 

The signals recorded during the demolition are 
segmented into separate impulse responses that are further 
analyzed in the time domain with the Eigensystem 
Realization Algorithm (ERA) (Juang and Pappa 1985, 
Peterson 1995), which provides identification of modal 
properties (frequency, mode shape and damping) for each 
impulse response. In order to account for the effect of 
Hankel matrix truncation, each impulse response is 
analyzed multiple times following a grid sampling of 
possible values for the Hankel matrix length. The identified 
modal properties are considered valid if the corresponding 

(a) Classification of detected impulses to amplitude bins (b) Impulse response of sensor 9 (level 2, demolition side) 
for two amplitude levels 

Fig. 3 Impulse classification to amplitude bins and response in time domain 
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mode complies with three criteria: (i) mode-shape 
correspondence with the baseline modal identification is 
ensured by modal assurance criterion (MAC) (Allemang 
2003) values over 80%; (ii) frequency fit, as defined by the 
compliance criterion of Eq. (1), with the baseline 
identification results should exceed a minimum threshold, 
set equal to 80%; and (iii) the Pearson’s correlation 
coefficient between ERA prediction and the original 
measured response is constrained to exceed a threshold, 
which is also set to 80%. 

 𝐶𝐶 = 0.5 ∙ 1 − 𝑓 − 𝑓𝑓 + 0.5 ∙ 𝑀𝐴𝐶(𝜑 , 𝜑 ) (1)

 
In Eq. (1), 𝑓  and 𝑓  represent the identified 

frequency of mode i from baseline identification and hit j 
respectively. In a similar manner, the Modal Assurance 
Criterion 𝑀𝐴𝐶 𝜑 , 𝜑  compares the ith modal vector 
from the baseline identification procedure against the one 
extracted from hit j. 

The definition of these tests and their corresponding 
thresholds is essential and needs to balance two competing 
goals: exclude erroneous identification results, which would 
artificially increase the uncertainty in identified modal 
properties, and include with high probability the changes in 
modal properties that originate from increasing amplitudes 
of excitation. The first two criteria compare the ERA 
identification results with the reference model and thus, 
increasing the thresholds could potentially exclude 
information related to phenomena that cannot be captured 
by the baseline identification on ambient excitation data. 
Additionally, targeting too high correlation between ERA 
predictions and measurements could lead to overfitting, due 
to short duration of the impulses and inherent noise of the 
recorded signals with low-cost sensors. The recommended 
range for these thresholds is set in this work between 70 % 
and 90%. A sensitivity analysis within this range showed no 
significant influence on either the overall performance of 
the algorithm or the identification results. 

A parametric finite element model (FEM) of the studied 
structure is developed and proper ranges for the uncertain 
parameters, pertaining to material properties, boundary 
conditions and mass, are defined. The accepted 
identification results are clustered based on response 
amplitude metrics such as peak acceleration and RMS 
acceleration during the impulse (Fig. 3(a)). For each 
intensity bin, the uncertain parameters of the FEM are 
inferred using Bayesian model updating. The updated 
models can be used for the nonlinear seismic assessment, 
considering the code provisions and safety factors. 

 
 

3. System Identification at Healthy State 
 
Despite remaining in a healthy (undamaged) state for 

their entire service life, many buildings exhibit elastic 
(reversible) nonlinear behavior for dynamic excitation 
levels that exceed ambient shaking (Astorga et al. 2018). 
Masonry is an orthotropic and heterogeneous construction 
material and, as a consequence, masonry buildings are 

Fig. 4 Proposed framework for the inverse update and 
seismic evaluation of models for various response 
amplitude levels

 
 

prone to an even more prominent influence of the excitation 
amplitude on the structural response. Therefore, in this 
section, modal identification of a same building (see Fig. 1) 
is performed under ambient vibrations with classical output-
only modal identification techniques and subsequently, 
modal properties are also derived for excitations originating 
from demolition activities. Such excitations exceed the level 
of typical ambient-vibration levels. It is highlighted that the 
present work focuses exclusively on the response during the 
first 90 minutes of the deconstruction process, before the 
demolition reached structural parts. Therefore, the observed 
nonlinearities, which are amplitude dependent, are not 
related to permanent structural damage and the structure is 
considered to remain in healthy state; especially as the 
changes in dynamic properties are reversible. 

 
3.1 Baseline identification 
 
A baseline identification of the modal characteristics, 

considering ambient recordings before the beginning of the 
demolition, is conducted by implementing the Stochastic 
Subspace Identification algorithm (Van Overschee and De 
Moor 1996) for the given sensor configuration (Fig. 1(c)). A 
standard pre-processing has been conducted, consisting of 
bandpass filtering between 1 and 40 Hz, exclusion of linear 
trends and down-sampling from 1720 to 172 Hz. The 
identified modal characteristics of the first four stable 
modes are summarized in Fig. 5. The characteristic 
frequencies of the structure are found to lie between 6 and 
20 Hz. The first two modal shapes correspond to the main 
translational degrees of freedom of the building (first mode 
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in the longer direction, Y, and second mode in the shorter 
direction, Z, as defined in Fig. 1). The third modal shape 
seems associated with a torsional mode and the fourth 
modal shape includes a combination of rotational and 
translational degrees of freedom. It is mentioned that the 
building is softer in the longitudinal direction (axis Y), 
which is attributed to the large openings of the 
corresponding facades (Fig. 1(c)). This baseline 
identification serves as reference for the subsequent time-
domain analysis (as described in Section 2.3) at the 
beginning of the deconstruction process, before any visible 
structural damage to the first two floors occurred. Due to 
the use of low-cost MEMS accelerometers on such a stiff 
low-rise building, modal identification is typically limited 
to few modes of vibration. 

 
3.2 Operational modal analysis during demolition 
 
During demolition, the response amplitude exceeds 

typical levels of ambient vibrations, even before the 
structure sustains observable damage or permanent changes 
in stiffness and mass. Although it is impossible to quantify 
the input directly, response impulses of various amplitudes 
are utilized to identify the modal characteristics at different 
amplitude levels. Typical impulse responses for different 
amplitude levels are shown in Fig. 3(b). 

The effect of strong hits with the excavator shovel on 
the modal properties is studied in detail in Fig. 6. The first 
impulse corresponds to the acceleration response history 
plotted in Fig. 2(a). The frequency-domain characteristics 
are derived through application of the Frequency-Domain-
Decomposition method (Brincker et al. 2001) over a time-
window of 1.5 s and with a frequency resolution of 0.1 Hz. 
In order to increase the frequency-domain resolution, zero-
padding is applied. The frequency-domain characteristics 
are calculated for a sliding window with a time increment of 
0.01 sec. 

Fig. 6(b) contains the first singular value of the spectral 
densities, providing an indication of the energy spread 
within the frequency domain. The hits are more prominent 
in the higher frequencies, as the fourth mode (at 17.6 Hz) 
shows the highest spectral density for the first hit, while the 
third mode (at 9.3 Hz) contains most energy for the second 
hit. The spectral-energy content, together with the duration 

 
 

of high-amplitude vibrations, present the highest 
discrepancy between vibrations created by shovel impacts 
and earthquake excitation, as for the latter case, 
fundamental modes carry more energy. Nevertheless, data 
recorded under impulse-like excitation during demolition 
processes are deemed representative of changes in overall 
dynamic behavior due to changes in response amplitude. 

In Fig. 6(c), the evolution of the frequency values, 
compatible with the first translational mode (along the Y-
axis), is traced over time. As the excitation is not 
symmetric, only the Y-components of the measurements are 
used to compare the modal shapes. Prior to the hit, as 
vibrations remain at low amplitude levels, the compatible 
frequency values are densely grouped around the 
corresponding baseline identification frequency (indicated 
by a dotted green line). The highest spectral energy points 
are indicated with red dots, forming point estimates for the 
evolution of the corresponding frequency value. Finally, the 
red-dotted boxes enclose the time-window of the first hit, 
which contains mostly Z-direction components. A short-
term reduction in frequency during higher-amplitude 
excitation can be observed in Fig. 6(c). A similar - even 
more pronounced - behavior can be observed for the second 
mode (Fig. 6(d)), which corresponds to translation along Z-
direction. As evidenced by the evolution of the first two 
natural frequencies, higher amplitudes of excitation lead to 
a short-time drop in the estimated frequency, before 
returning to a level that is similar to the pre-hit level. 

Fig. 6(e) shows the evolution of the frequency values for 
which the modal displacements are compatible with the 
third/rotational mode (Fig. 5(c)). As the hits do not provide 
similar excitation in both directions, no compatible mode-
shape can be found during the first hit (red-dotted box). 
However, a reduction in frequency after the hit is evident. 
The effect of a singular hit on the frequency exposes the 
short-term influence of response amplitude on modal 
properties. In order to highlight the systematic influence of 
vibration amplitude on the global dynamic response, a 
statistical approach, as described in section 3.2, is required. 
As the hits can be assimilated to impulse-like responses, the 
ERA method is used to derive the natural frequencies, the 
equivalent viscous damping and the modal displacements 
for each detected hit. The influence of response amplitude 
on the identified natural frequencies of the first four global 

 
Fig. 5 Overview of the identified modal characteristics based on measurements under ambient vibrations prior to 

demolition. Each column demonstrates the corresponding modal shape from different viewpoints 
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vibration modes is shown in Fig. 7, together with the 
corresponding baseline identification, based on ambient 
recordings. 

Due to the short duration of the impulses, their arbitrary 
input (location, direction and amplitude) and the inherent 
measurement noise, the operational modal analysis 
procedure is only able to identify the excited modes during 
the studied impulse, that in certain cases include transient 
local phenomena. In order to ensure consistency of the 
identified modal properties and to limit identification to the 
global modal shapes, three criteria for modal identification 
are implemented. As described in Section 2.3, these criteria 
involve the baseline identification results and the goodness 
of fit between ERA predictions and real response. All 
detected hits during the first 90 minutes of the 
deconstruction process (before the demolition reached 
structural parts of the two main floors) are clustered into 
groups of similar response amplitudes (see Fig. 3(a)). It is 
noted that the changes in modal parameters are reversible 
and thus, can be attributed to the response amplitude and 

 
 

not to potential minor changes to the building introduced by 
demolition activity. Most impulses correspond to low 
amplitude levels, with RMS acceleration below 1 mg. The 
first three modes are detected in the majority of the 
impulses, while the 4th mode is identified in nearly 40% of 
the hits. 

The descriptive statistics of the identified natural 
frequencies, as well as the point estimations of the baseline 
identification are summarized in the boxplots of Fig. 7. The 
baseline identification tends to overestimate the frequency, 
as it lays above the 75th percentile for the modes 1, 3 and 4. 
This shows that even for small-amplitude hits, the dynamic 
response of the building demonstrates a softening behavior. 
For the first two modes, the reduction of median frequency 
between the first and the fourth amplitude bin is 
respectively 5% and 7%. Given the approximate value of 
inter-storey drifts of 0.5-1 10-5, these values of reduction in 
stiffness are in line with previous studies (Michel et al. 
2011). The variability of the observed frequency remains 
mostly constant in relative terms (coefficient of variation 

 
Fig. 6 Frequency evolution in the time-domain under two consecutive strong hits 

163



 
Panagiotis Martakis, Yves Reuland and Eleni Chatzi 

 
 

 
 

 
 

below 0.05 for most cases), with a decrease for high 
amplitudes for the second mode and an increase in 
variability for the third mode. The increase in variability for 
the torsional mode can possibly be linked to the uni-
directional nature of hits. 

The identified modal displacements for the first mode 
are reported in Fig. 8, together with the point estimates of 

 

 
 

 
 

the baseline identification. As expected, the displacement 
coordinates of the first five nodes are lower, as they are 
placed at the first level of the building (Fig. 1). In general, 
the uncertainty of modal displacements reduces with 
increasing amplitude, which is consistent for all four 
identified modes. Node 9, placed at the second level of the 
building, yields lower modal displacements and higher 

Fig. 7 Frequency evolution with increasing response amplitude. The red line indicates the median, while the blue box 
marks the first and third quartile and thus, contains 50% of the identified values. The whiskers indicate ± 2.7σ 
limits, over which the data are discarded as outliers

 
Fig. 8 Identified modal displacements for the first mode, for different amplitude bins. The direction refers to the axes 

defined in Fig. 1. The baseline identification is denoted via green crosses. The red line indicates the median, while 
the blue box marks the first and third quartile and thus, contains 50% of the identified values. The whiskers 
indicate ± 2.7σ limits, over which the data are discarded as outliers

Fig. 9 Damping evolution with increasing response amplitude. The red line indicates the median, while the blue box marks 
the first and third quartile and thus, contains 50% of the identified values. The whiskers indicate ± 2.7σ limits, over 
which the data are discarded as outliers 
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uncertainty compared to the other nodes placed at the same 
level. This behavior, which is not observed in higher modes, 
is attributed to the position of the sensor, adjacent to the 
demolition works, and to the missing diaphragm. The 
baseline identification seems to fit adequately the modal 
displacements for the first mode. Although, for higher 
modes, the reference identification lies outside the first or 
third quartile for certain nodes, indicating the limitations of 
point estimates against the statistical approach applied. 

The reduction in frequency is accompanied by an 
increase in damping, as shown in Fig. 9. As expected, 
damping estimates have a large uncertainty and the values 
derived from ambient vibrations give unrealistic estimates 
for real damping under impulse loading. The damping 
estimates for the first three modes are similar, with median 
values around 1.5% for low-amplitude hits and roughly 2% 
for hits with higher amplitudes. This increase in damping 
may be explained by energy absorption from non-linear 
behavior due to opening and closure of micro-cracks or due 
to hysteretic behavior of soil, which is shown to exist even 
for very low strains, in the theoretical linear elastic regime 
(Martakis et al. 2017). Nevertheless, further studies would 
be necessary to explore energy dissipation at relatively low 
vibration amplitudes. Damping-ratio values are in 
agreement with previous work on masonry buildings (De 
Sortis et al. 2005). Also, values fall in between typical 
code-assumptions for damping (5%), which form an upper 
bound (including also hysteretic energy absorption) and 
damping ratios observed for shake table tests (below 1% as 
reported by Kouris et al. (2017), which can be considered a 
lower bound, due to absence of foundations and non-
structural elements. 

 
 

4. Structural model and data-driven parameter 
updating 
 
The scope of this section is to shed light on the impact 

of conventional assumptions regarding highly uncertain 
model properties on the dynamic response predictions of 

 
 

existing masonry buildings and explore the benefit of 
dynamic measurements on the reduction of these 
uncertainties and finally on the outcome of seismic 
evaluations. The simplified model, which is used to predict 
modal properties, belongs to the category of equivalent-
frame models. 

 
4.1 Model description 
 
Equivalent-frame models, with plasticity lumped into 

zero-length springs, are widely used for nonlinear design 
and assessment of existing masonry buildings. Despite the 
strong underlying assumptions, this method is popular, due 
to its simple modeling principles, the intuitive 
representation of the structural skeleton, the transparent 
consideration of a limited number of uncertain parameters 
and the successful capture of the structural response in the 
nonlinear regime (Belmouden and Lestuzzi 2009, 
Lagomarsino et al. 2013, Bracchi et al. 2015, Quagliarini et 
al. 2017). However, such models fail to represent all 
possible failure scenarios of masonry buildings, such as out-
of-plane failure or bi-directional bending. 

The studied structure is modelled using the commercial 
structural analysis software SAP2000, version 22 (CSI 
2020), as a three-dimensional equivalent frame model (see 
Fig. 10 for the modelling assumptions). The structural walls 
are discretized into piers and spandrels with cross sections 
dictated by the real dimensions of the structure. The walls 
in the basement are considered elastic above and rigid 
beneath the ground level horizon. The foundation 
impedance is simulated with three translational and three 
rotational springs, that are placed at the geometrical center 
of the foundation, according to the analytical formulations 
proposed by Gazetas (1992). These formulations have been 
validated experimentally through statically imposed loads 
(Dobry et al. 1986), as well as through dynamic 
experiments in centrifuge, under realistic stress soil 
conditions (Martakis et al. 2017). 

Uncertain parameters pertaining to material properties, 
boundary conditions and mass are considered random 

 
 

 
Fig. 10 Schematic representation of the finite-element implementation of the equivalent-frame model
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variables with uniform distributions in predefined ranges 
that are chosen according to Swiss building codes (SIA 261, 
SIA 266, SIA 269/6 and SIA 269/8) and engineering 
judgment. The uncertain parameters and the corresponding 
ranges are summarized in Table 1. For the walls, apart from 
the modulus of elasticity and the unit weight, the 
overlapping between spandrels and piers, which defines 
rigid regions, are considered uncertain. The length of the 
rigid regions ranges from 30% to 100% of the maximum 
overlapping length (see Fig. 10). The timber beams of the 
slabs are aligned parallel to the short direction of the 
building (Z-direction in Fig. 1), which results in an 
orthotropic behavior. In order to account for the stiffness 
and mass distribution of timber floors, equivalent 
orthotropic slabs with constant thickness of 20 cm are 
adopted. The ranges for the elastic properties and unit 
weight are calculated in accordance to the timber floor 
dimensions (square beams with 25 × 25 cm section at a 
distance of 70 cm). The equivalent elastic properties and 
unit weight of the soil are considered very uncertain and 
thus, wide prior parameter ranges comprising all possible 
soil compositions, are defined according to Studer et al. 
(2007). Finally, the effective foundation embedment, 
accounting for loose contact with soil, according to Gazetas 
(1992), is bounded between 30% and 100% of the total 
embedment D, as schematized in Fig. 10. 

 
4.2 Bayesian model updating 
 
In order to determine the model parameters that best fit 

the identified modal properties, a Bayesian inference 
framework (Beck and Katafygiotis 1998) is implemented 
through the UQLab toolbox (Marelli and Sudret 2014, 
Wagner et al. 2019). In this framework, uncertain model 
parameters are considered as random variables with 
uniform prior distributions, per Table 1. These prior 
distributions are updated using measurement data, so that 
the posterior distributions combine the prior information 
and the information extracted from the modal identification 
data (frequencies of the first two modes and the 
corresponding modal displacements). 

The computation of the posterior distributions is 
achieved via Markov-Chain Monte-Carlo sampling 
(Gelman et. al. 2014), by considering 10 Markov chains 

 
 

with 10’000 samples. In order to reduce the computational 
burden, a surrogate Polynomial Chaos Expansion model 
trained on 2000 runs of the original FEM was constructed 
and implemented in the MCMC simulation. The leave-one-
out error between the surrogate model and the FEM model 
is calculated to be lower than 10-4 for the identified 
frequencies and lower than 0.025 for the identified modal 
shapes (normalized to the maximum modal displacement). 
This discrepancy is deemed acceptable compared to other 
sources of uncertainty. The computational model (M) 
provides response predictions (y) for a given set of input 
parameters (x). To account for measurement errors and 
model inaccuracy, a discrepancy term (ε) is considered, as a 
Gaussian random variable with zero mean and diagonal 
covariance matrix with constant variance equal to 0.0025 

 𝒚 = 𝑀(𝒙) + 𝜀       𝜀~𝑁(𝜀|0, 𝛴) (2)
 
Consequently, all identified modal properties 

(characteristic frequencies and modal displacements) 
included in the output vector yi for the i measurement are 
considered as equally weighted realizations of independent 
Gaussian distributions with mean values estimated from 
M(x) and covariance matrix Σ. For N independent 
identification results (measurements, Y = {yi ,…, yN}) and M 
identified modal properties (yi = {yij ,…, yiM}), the likelihood 
is estimated from the multivariate Gaussian distribution, 
which is formed as the product of the above marginal 
Gaussian distributions and can be written as 

 𝓛(𝒙, 𝒀) = 𝑁 𝑦 |𝑀(𝒙), 𝛴  (3)

 
Uncertainties are a crucial aspect of model updating 

(Simoen et al. 2015, Reuland et al. 2017a). A-priori 
estimation of more precise uncertainty structures (bias and 
correlation) or identification of exact variance estimates 
(Song et al. 2019a) are outside the scope of this paper. In 
addition, selection of the optimal model-class for the 
problem at hand (Muto and Beck 2008, Reuland et al. 
2019b) is not performed. Simplified models, such as the 
equivalent-frame model used here, fail to capture all the 
physics of real building responses. As the discrepancy 

 
 

Table 1 Prior and posterior ranges for modeling parameters, based on the baseline identification. The 
posterior ranges of the parameters that are considered independent from the response 
amplitude are highlighted 

 
Walls Foundation & Soil 

E [GPa] w [kN/m3] rpier [%] rspr [%] G [MPa] v [-] w [kN/m3] rfound [%]
Prior 0.6-3 15-18 30-100 30-100 50-100 0.15-0.45 14-19 30-100 
Post. 1.41-1.66 15-15.8 91-100 37-60 65-69 0.19-0.28 18.7-19 30-40 

 

 
Equivalent slabs (t = 20 cm) 

E⫽ [GPa] E⫞ [GPa] w [kN/m3] Top ceiling load [kN/m2] 
Prior 1-5 1-2 1-3 1-3 
Post. 2.23-4.22 1.51-1.59 2.1-3 2.7-3 
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between equivalent-frame models and real behavior is 
smallest for the fundamental translational modes, only the 
first two modes are used for Bayesian model updating. In 
addition, the assumption of zero-mean uncorrelated 
uncertainties does not compromise the purposes of this 
analysis, which focuses on the comparison of the inferred 
model parameters for different response amplitude levels, 
rather than exact predictions for risk-based decision 
making. 

For the Bayesian model updating, the displacements and 
frequencies of the first two modes that correspond to the 
translational modal shapes of the structure are considered. 
Higher modes include rotational movements that are poorly 
captured by equivalent frame models, while they typically 
have lower modal mass and thus, have a reduced influence 
on the seismic assessment through nonlinear pushover 
analysis (Penelis 2006, Marino et al. 2019). 

Starting from the uniform distributions defined in Table 
1, the affine-invariant ensemble sampler (Goodman and 
Weare 2010) is implemented, in order to generate sufficient 
samples from the posterior distributions of the uncertain 
parameters. Initially, the baseline identification results 
(obtained for ambient vibrations) are used to infer 
parameter values that are independent from excitation 
amplitude. The posterior ranges are very narrow, providing 
precise point estimates of unit weights, top ceiling load and 
Poisson’s ratio of the soil. These parameter values are 

 
 

 
 

considered constant for the subsequent analysis, as they are 
not expected to vary with increasing intensity. The prior and 
posterior distributions of all uncertain parameters pertaining 
to baseline identification are reported in Table 1. 

In order to highlight the effect of response amplitude on 
the inferred stiffness properties, the Bayesian inverse 
analysis is conducted for each amplitude-related bin defined 
in Fig. 3(a). The posterior distributions of the inferred 
stiffness properties are sampled via the affine-invariant 
ensemble sampler (Goodman and Weare 2010) applied on 
the identified modal properties corresponding to each bin. 
The posterior distributions of the equivalent elastic modulus 
of masonry and the G-modulus of the soil for the amplitude 
bin 4 (highest amplitudes) are illustrated in Fig. 11. It can 
be observed that the posterior ranges are very narrow and 
thus, the mean value is considered as an adequate point 
estimate. The mean point estimates of all uncertain 
parameters for all amplitude-bins are summarized in Table 
2. 

As discussed in Section 3.3, the identified modal 
frequencies tend to drop with increasing response 
amplitudes, indicating nonlinear behavior in the equivalent 
elastic range of the response, before any damage occurs. To 
this end, the results from Bayesian model updating for 
increasing response amplitudes provide valuable insights 
into the properties that cause these shifts. As stated in 
previous work of the authors (Martakis et al. 2017), inertial 

 
 

 
 

 
Fig. 11 Posterior distribution and correlation of the equivalent elastic stiffness properties of masonry and the 

soil for intensity bin 4 (highest amplitudes). Prior distributions are [0.6, 2.0] GPa for E-modulus of 
masonry and [50, 100] MPa for the G-modulus of the soil

Table 2 Posterior mean point estimates of stiffness related parameters for increasing response 
amplitude 

 Walls Foundation & Soil Equivalent slabs (t = 20 cm)
Ampl. Bin E [GPa] rpier [%] rspr [%] G [MPa] rfound [%] E⫽ [GPa] E⫞ [GPa] 

1 1.64 95 31 67.8 30 1.6 1.0 
2 1.64 97 30 66.1 30 1.0 1.0 
3 1.65 96 32 67.4 33 1.2 1.0 
4 1.34 97 31 67.7 30 1.2 1.1 
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soil-structure interaction effects cause transient shifts of the 
equivalent elastic properties of the system Structure-
Foundation-Soil, even at very low amplitude, in the 
equivalent linear elastic regime. However, in this case 
study, the governing parameter for the system softening due 
to increasing response amplitudes is the elastic modulus of 
masonry. The comparison of the inferred values of elastic 
modulus for increasing amplitude exposes a stiffness 
reduction of 18% between amplitude bins 1 and 4 (Fig. 12). 
The corresponding shift of the predicted frequencies is 
significantly lower (below 5%) and less evident, as no clear 
decreasing tendency can be justified between bins 1 and 4. 
Hence, Bayesian model updating, based on identified modal 
properties, provides robust estimates of the equivalent 
elastic properties that are sensitive to changes in stiffness, 
due to increasing response amplitude. 

 
4.3 Impact of parameter updating on seismic 

assessment 
 
Knowledge of the influence of the amplitude of shaking 

on the assumed stiffness of masonry can find several 
practical applications, such as reducing the probability of 
false positives in automatic data-driven damage-detection 
schemes. Moreover, a better understanding of the 
amplitude-dependent stiffness of masonry buildings may 
enable a more refined prediction of the seismic 
displacement demand, especially under use of simplified 

 
 
 

Fig. 12 Shifts in frequency predictions and changes in the 
inferred values of the E-modulus of masonry for 
increasing amplitude, considering amplitude-bin 1 
as reference 

 
 

static nonlinear methods, such as the N2-method proposed 
by Fajfar and Gašperšič (1996). Since regional risk 
assessment models widely rely on bi-linearized capacity 
curves, for which assumptions regarding reduced stiffness 
are taken, these would also profit from monitoring-driven 
knowledge of amplitude-dependent stiffness drops. 

In this section, an equivalent-frame model, based on the 
Tremuri method (Lagomarsino et al. 2013), is used to 
perform a static nonlinear seismic assessment (Fig. 13(a)). 
Although simplified, such a model helps in investigating the 
effect of updated elastic-parameter values on the seismic 
assessment. Given that the openings are essentially placed 
in the longitudinal direction (Y-direction in Fig. 1), 
pushover results are shown only for this direction, as the 
building strength is considered sufficient in the transversal 
direction. Piers and spandrels correspond to the scheme 
shown in Fig. 10. The seismic assessment is done using the 
basic assumptions prescribed by Swiss building codes (SIA 
266, SIA 269/6 and SIA 269/8) and therefore, the 
compressive strength of masonry is taken as 0.001 times the 
elastic modulus and the G-modulus as 0.4 times the elastic 
modulus. In addition, the building is considered to be 
rigidly anchored to the ground and the clamping horizon 
corresponds to the ground level in Fig. 10. Local collapse 
mechanisms (such as out-of-plane failure of walls) are not 
examined, as they do not belong to the scope of this 
analysis and are not captured by equivalent frame models. 

The pushover curves, obtained via imposed displace-
ments that are proportional to the first mode shape, are 
reported in Fig. 13(b). The spectral demand is calculated 
from the Swiss design spectrum for seismic zone 2 and soil 
class E (SIA 261). The ultimate displacement of the 
capacity curve is defined as failure of the first load-bearing 
element. As can be seen in Fig. 13(b), elastic parameters, 
namely the elastic modulus of masonry, have an important 
influence on the overall nonlinear capacity curve. In order 
to demonstrate the effect of the uncertainty in the elastic 
stiffness on the calculated seismic performance, the lower 
and upper bound for the elastic modulus, according to 
relevant literature and existing building standards 
(SIA269/8, OPCM3274), have been considered. The 
estimated safety factor varies between 0.3, with practically 
no ductility, and 1.7, with ductility over 3. These extreme 

 
 

 

(a) 3D representation of the computational model. 
The clamped horizon is placed at the ground level

(b) Pushover curves, corresponding spectral demands and Safety 
Factors (SF) for varying E-modulus of masonry 

Fig. 13 Effect of response amplitude on the seismic performance, estimated through nonlinear pushover analysis
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cases expose the uncertainty pertaining to seismic 
assessment without prior information on the equivalent 
elastic stiffness. To this end, model updating is necessary in 
order to obtain robust estimates of the stiffness and reduce 
the uncertainty of the expected seismic performance. 

When comparing the predictions resulting from model 
updating for bin 1 and 4, the E modulus drops by 18 % (see 
Section 4.2 and Table 2). This change in the elastic modulus 
translates to a reduction of the safety factor from 1.13 to 
0.97. This significant reduction indicates the impact of 
stiffness changes at very-low amplitude excitation on global 
seismic performance. While the ultimate displacement and 
the maximum shear strength do not vary much, the 
reduction in stiffness increases the yield displacement and 
thus, reduces the post-yield displacement capacity. In 
addition, the displacement demand depends directly on the 
elastic branch of the equivalent bilinear capacity curve. 
Therefore, lower stiffness values (for an overall stiff 
building typology, such as the low-rise shear building under 
study) translate to higher displacement demands. 

It has to be noted that both nominal and monitoring 
extracted values of the E-modulus are further reduced by 
50% for the pushover analysis, to account for the cracked 
state of the material. The value of 50% can be considered to 
be arbitrary and the extent to which it covers stiffness 
changes under low amplitudes is debatable. Stronger hits 
and measurements under earthquake loads would be 
required to quantify the stiffness drop at the equivalent 
yield point. 

Although the recorded hits produce displacements that 
are lower than 0.1 mm, corresponding to the very beginning 
of the predicted pushover curve (Figs. 3(b) and 13(b)), 
nonlinearities have been observed (Section 3.3) and found 
to cause significant stiffness-reduction (Section 4.2). Thus, 
the impulse responses generated during the demolition 
process expose nonlinearities in the commonly assumed 
linear elastic range. While the pushover analysis is highly 
simplified, and application to additional buildings is 
required to formalize the findings, it is concluded that 
systematic measurement of buildings that are being 
demolished can help in acquiring a better understanding of 
the dynamic properties, and by extension of the seismic 
safety, of existing structures. 

 
 

5. Conclusions 
 
The influence of changes in the amplitude of shaking on 

the dynamic properties of a masonry structure and as a 
result on its elastic parameters, obtained by updating a 
physics-based model, has been studied in this paper. Based 
on the presented monitoring campaign on a real masonry 
building, equipped with sensors during planned demolition, 
the following conclusions are drawn: 

 
● Nonlinear behavior is observed in the elastic portion 

of the building response, without visible damage. 
Low-cost sensors can evidence such nonlinearity 
during demolition activities, which carries the 
potential for a systematic analysis of this behavior, 
particularly in countries with low-to-moderate 

seismicity. Nonlinearities can be tracked under one 
isolated hit, and by applying a statistical analysis of 
all possible hits and stronger vibrations that are 
created by demolition activities. 

● Through updating a physics-based model, the 
changes in frequencies and modal shapes that are 
observed under increasing levels of shaking are 
shown to be related to changes in stiffness of the 
masonry, and not to transient changes in the 
foundation properties. 

● Stiffness parameters, which are obtained through 
data-driven model updating, deliver a more sensitive 
indicator of changes in stiffness than modal 
frequencies. 

● The stiffness reduction at low excitation levels, 
which is modelled to be linear in classical 
engineering assessment approaches, affects 
substantially the global seismic performance of the 
structure. 

 
With the feasibility of such approaches verified in this 

first stage, future work is planned in order to systematically 
study the phenomenon on multiple buildings. By such an 
analysis, the influence of the building type on the sensitivity 
of modelling parameters to the response amplitude can be 
assessed and would be a valuable starting point for many 
applications in structural health monitoring. In addition, the 
necessary conditions for inclusion of higher modes into 
physics-based models will be investigated, with the goal to 
not compromise the computational burden of nonlinear 
seismic assessment. 
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