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1. Introduction 

 
In this study we present an optimal control law to heat 

the surface of transport infrastructure, with non-negligible 
thermal inertia, to prevent icing by knowing future 
environmental conditions. 

In practice, the main solution that is used to prevent 
black ice from occurring is to pour salt at the surface of the 
structure. However, this solution has a lot of drawbacks: 
cost of the salt, damages on vehicles, on infrastructures, 
pollution (Biezma and Schalack 2007, Dai et al. 2012, 
Murray and Ernst 1976). 

Other solutions based on heating the surface have also 
been developed. Two main ways exist in the literature. First, 
a heat fluid that behaves as a heat source can flow inside 
ducts that are buried in the structure (Pan et al. 2015, Zhao 
et al. 2020). An alternative to fluid flow inside pipes is to 
use an intermediate porous layer (Ifsttar 2015, Asfour et al. 
2016, Le Touz et al. 2017). These both technical solutions 
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nonetheless require tanks to store the fluid. Second, heating 
solution can rely on the implementation of electrical 
resistive wires, also buried (Yehia and Tuan 2000). Based 
on the Joule effect, power cables allow heating the structure 
if the electric power is sufficient. For such structures and 
constant environmental conditions, temperature field can be 
predicted from semi-empirical expressions (Liu et al. 2017) 
and optimal parameters can be computed (Liu et al. 2017). 
This study deals with such solution with a particular focus 
on the energetic optimization through time by integrating 
variable weather conditions and illustrated by a numerical 
case study. 

In this study, a formulation of the problem is first 
introduced and a direct thermal model is presented to 
predict the thermal field in the structure from the 
knowledge of environmental conditions. 

Then an optimization process is presented to predict the 
optimal electric heat source. In the case of constant 
environmental condition, such an optimization has been 
dealed (Liu et al. 2017). In this study, an approach based on 
the adjoint state method allows to compute the optimal 
evolution of the electric heat sources under a dynamic 
evolution. 

Some operation constraints are then added. In particular, 
a switching time is set up: during each of these periods the 
heat sources remain constant. Then the computation of the 
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heat sources for an all-or-nothing operation is introduced. A 
minimization process is also proposed, based on the adjoint 
state method initially introduced for the continuous case. 

A case study based on simulated real environmental 
conditions forecasts, using a weather data base, is then 
presented and the different methods are applied and 
compared. Results are finally discussed, conclusions and 
prospects are proposed. 

 
 

2. Formulation of the problem 
 
2.1 Geometry and heat sources considerations for 

icing avoidance 
 
To prevent black-ice from occurring under adverse 

environmental conditions (Fig. 1), a given part Γtarget of the 
surface of the structure, submitted to the adverse 
solicitations, is considered. It is supposed that if the 
temperature T on Γtarget is higher than a given setpoint Tsp, 
then there is no risk of icing. If environmental conditions 
are adverse, particularly if it can be predicted that T (Γtarget) 
< Tsp, heat sources S may be activated. These sources 
represent the Joule effect induced by electric resistances. 
Here, four heat sources are considered with the same 
geometry and a uniform heat density in space. 

 
2.2 Temperature setpoints definitions 
 
The choice of the threshold temperature Tsp is linked to 

the condition of no icing and should be equal at least to the 
temperature at which water can condense into ice at the 
surface of the structure. 

In a first approach, this setpoint can be taken equal to 
the melting temperature of ice, i.e., 0°C with a margin, for 
example 4°C. With such an approach, the threshold is Tsp = 
4°C. 

Another solution consists in using the temperature at 
which the water vapor in the air condensate into ice on any 
solid. This temperature is the frost point denoted here by Tf. 
It can be evaluated from air temperature, humidity and 
ambient pressure (Buck 1981). With the same margin, this 
leads to Tsp = Tf + 4°C. The choice of the setpoint does not 
affect the algorithm presented hereafter that aims at 
computing the heat sources evolutions. In the rest of this 
paper the setpoint taken equal to +4°C will be considered. 
Nonetheless, the more the setpoint is high, the higher the 
heat consumption will be. A discussion on the choice of the 
setpoint is proposed in Le Touz (Le Touz and Dumoulin 
2019). 

 
 
 

 
Fig. 1 Schematic view of the problem’s geometry and heat 

sources to avoid icing. Dimensions in arbitrary units

2.3 Environmental contributions 
 
The studied structure is supposed to be submitted to 

environmental constraints only at its surrounding boundary. 
Other boundaries are assumed adiabatic. Three 
contributions are taken into account here and result in heat 
flux at the interface Γsurf schematized in Fig. 2: Φconv for 
convective exchange with ambient air, Φsky for radiative 
exchange with the sky and Φsol for solar radiation. 

Φconv and Φrad can be estimated as 
 Φୡ୭୬୴ = ℎୡ୭୬୴(𝑇ୟ୧୰ − 𝑇ୱ୳୰) (1)
 Φୱ୩୷ = 4𝜀𝜎𝑇ୱ୩୷ଷ (𝑇ୱ୩୷ − 𝑇ୱ୳୰) (2)
 
Where Tsurf is the temperature of the surface Γsurf, hconv is 

the convective exchange coefficient, a function of the wind 
velocity, computed here with the MacAdams correlation 
(Palyvos 2008). 𝜀  is the emissivity of the surrounding 
surface and 𝜎 the Stefan’s constant. 

Four data from weather predictions are also required: air 
temperature Tair, sky temperature Tsky, or sky radiation 
density, wind velocity and solar radiation density Φsol. 
These data can be fetched from different forecasts sources 
databases such as Météo France AROME model (Seity et 
al. 2011) or Copernicus Climate Data Store (Copernicus 
Data Store 2020) which provide application programming 
interface (API). When all the data are not available, it is 
possible to derive some quantities from literature’s 
correlations. For instance, the frost point can be obtained 
from the dew point, itself obtained from the relative 
humidity (Buck 1981). An example of the evolution of these 
parameters is shown in the numerical case study application 
(see Figs. 5 and 6). 

 
2.4 Prediction of the temperature field 
 
The temperature at the surface is here deduced from the 

temperature field in the structure. This one is governed by 
the heat equation given in Eq. (3) with boundary conditions 
of Eq. (4). The initial temperature is supposed to be known: 
T(t = 0) = T0. 

 (𝜌𝑐) 𝜕𝑇𝜕𝑡 − ∇ ∙ (𝑘∇𝑇) = 𝑞 (3)

 
 
 

Fig. 2 Environmental sollicitations
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 𝑘 ∙ ∇𝑇 = ℎୡ୭୬୴(𝑇ୟ୧୰ − 𝑇) + 4𝜀𝜎𝑇ୱ୩୷ଷ (𝑇ୟ୧୰ − 𝑇) + Φୱ୭୪ (4)
 
A finite element formulation for spatial solving and a 

Crank-Nicolson scheme for temporal dimension are used 
(Gartling and Reddy 2010). From the knowledge of the 
geometry, environmental conditions and thermal properties, 
the temperature field can also be computed as a function of 
time and position in the structure. 

 
 

3. Formulation of control law 
 
In this study, the four heat sources are controlled 

simultaneously through the command law q(t), computed as 
the solution of an optimization problem on a functional J. 
Furthermore, some constraints are imposed on the evolution 
and/or the maximal value of this source. 

 
3.1 Optimization problem 
 
The initial problem consists in computing q(t) ∈ 𝒰 

such that T(Γtarget) ≥ Tsp. To avoid an infinite number of 
solutions to this problem, the heat consumption is also 
minimized. This optimization problem is written under a 
weak formulation in Eq. (5), including the condition on the 
setpoint in the function to minimize. Because J ≥ 0, a 
solution to this problem exists. 

 find    𝑞 = 𝑎𝑟𝑔 min∈𝒰 𝐽(𝑞)   with    𝐽(𝑞)                 = 12 ቛ൫𝑇ୱ୮ − 𝑇൯ାቛℳଶ + 𝜖2 ‖𝑞‖𝒰ଶ  
(5)

 
where (∙)+ refers to the positive part: (x)+ = max (0, x). 

In a first approach, the space 𝒰 can be considered as 
L2([0, ta]), the space of continuous functions with integrable 
square. ℳ = L2(Γtarget, [0, ta]) is the space of continuous 
and square integrable functions in Γtarget × [0, ta]. ‖ ∙ ‖𝒰 
and ‖ ∙ ‖ℳ  are the norm for usual inner product 
respectively in 𝒰 and ℳ. 

The minimization problem Eq. (5) includes also a 
residual term ଵଶ ቛ൫𝑇ୱ୮ − 𝑇൯ାቛℳଶ  corresponding to the 
respect of the condition on the setpoint and a consumption 
term ఢଶ ‖𝑞‖𝒰ଶ . 

The coefficient 𝜖  is chosen such that the solution 
allows to respect the constraint T(Γtarget) ≥ Tsp with a fixed 
tolerance ΔT ≈ 0.1°C in the present study. For a surface 
Γtarget of 1 m2, a value 𝜖 = 10-12 is used. Increasing the 
value of 𝜖 will increase the weight of the heat consumption 
and also increase the difference between setpoint and 
surface temperature when positive. 

To minimize J, the gradient of this functional is 
computed with the adjoint state method (Lions 1971). 
Because ఢଶ ‖𝑞‖𝒰ଶ  can be seen as a Tikhonov term (Tikhonov 
1963), the problem is well-posed 

and such a solution exists. This method allows to get the 
gradient of the residual term ଵଶ ቛ൫𝑇ୱ୮ − 𝑇൯ାቛℳଶ  as an inner 

product of the space 𝒰 where lies the heat source q. The 
gradient of the functional related to q can also be written as 
Eq. (6). For a given time t, the gradient can be deduced and 
is written in Eq. (7). 

 𝐽ᇱ(𝑞)𝛿𝑞 = 〈𝛿𝑞, ቆන 𝛿𝑇∗𝑑Ωௌ ቇ + 𝜖𝑞〉𝒰 (6)

 𝜕𝐽𝜕𝑞(𝑡) = න 𝛿𝑇∗𝑑Ωௌ + 𝜖𝑞(𝑡) (7)

 
Where 〈∙, ∙〉𝒰 refers to the usual inner product in 𝒰 

and 𝛿𝑇∗ is the solution to the adjoint problem. 
This one is determined from the direct problem of 

equations Eqs. (3) and (4) and from the expression of the 
functional J of Eq. (5). The adjoint problem is given in Eq. 
(8) and Eq. (9). 

 −(𝜌𝑐) 𝜕𝛿𝑇∗𝜕𝑡 − ∇ ∙ (𝑘∇𝛿𝑇∗) = ൫𝑇ୱ୮ − 𝑇൯ା𝛿౪౨ౝ౪ (8)

 𝑘 ∙ ∇𝛿𝑇∗ = −൫ℎୡ୭୬୴ + 4𝜀𝜎𝑇ୱ୩୷ଷ ൯𝛿𝑇∗    on Γୱ୳୰ (9)
 
The system of equations Eqs. (8) and (9) has the same 

structure than Eqs. (3) and (4). The main difference between 
the two resides in considering a reverse time and a heat 
source at the surface with the term ‒(Tsp ‒ T)+. This is the 
propagation in the reverse time of this source in the whole 
domain Ω and particularly in heating wire S that creates 
non-null values of the gradient of J with Eq. (6). 

The same methods as for the direct problem can also be 
used to solve this new system, with the finite element 
method coupled to a Crank-Nicolson scheme for temporal 
dependence. 

To get the optimal heat source evolution q ∈ 𝒰, the 
temperature field in the structure is firstly computed from 
an initial heat source evolution q0. Then the conjugate 
gradient method is applied: at each iteration adjoint problem 
is solved to get 𝛿T*, the gradient J′(q)𝛿q and also adjust 
heat source q. Once the conjugate gradient has converged to 𝑞, the temperature field is computed from this heat source 𝑞  and the conjugate gradient is applied again. This 
algorithm is applied until 𝑞  converges or a maximum 
number of iteration is reached. 

 
3.2 Adaptation to operation constraints 
 
In Section 3.1, it has been considered that the space in 

which the heat source q is defined was 𝒰0 = L2([0, ta]). 
Such assumption implies a continuous evolution of q 
without a maximum heat source limit. To take into account 
the real operation of the studied system, adaptations are 
considered in this section with spaces 𝒰 different of 𝒰0. 

 
3.2.1 Adaptation to time discretization 
In reality, computation of temperature field is 

discretized with a time step, here equal to 10 min largely 
lower than the variations of the environmental conditions 
(sampled at one hour with respect to the data based used 
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here). Heat source is also discretized with the same time 
grid. Integral terms are computed with linear interpolations. 
Moreover, to avoid too frequent commutations, heat source 
is sampled with a commutation time higher than the 
computation time step, here equal to one hour. q is also 
defined as q(t ∈ [tn, tn+1]) = qn. By noting 𝒞(tn) such a 
space, 𝒰 = 𝒞(tn) and the expression of the gradient given 
in Eq. (6) can also be reused with the inner product 
associated to 𝒰 to obtain Eq. (10). 

 𝜕𝐽𝜕𝑞 = න ቌቆන 𝛿𝑇∗𝑑Ωௌ ቇ + 𝜖𝑞ቍ௧శభ௧ୀ௧ d𝑡 (10)

 
An adaptation can also be proposed for the case of N 

independent sources, each source i being on a subdomain Si ⊂ Ω with S = ⊗ୀଵே Si. The space 𝒰 becomes 𝒰 = (𝒞 
(tn))N and gradient of the functional J respect to qi,n the ith 
source in time interval [tn, tn+1] is deduced from the usual 
inner product on 𝒰 or directly from Eq. (10) and is written 
in Eq. (11). Heat sources can also be desynchronized or be 
considered as space dependant. Only the expression of the 
inner product in the space 𝒰 needs to be known to get the 
gradient. 

 𝜕𝐽𝜕𝑞, = න ቌቆන 𝛿𝑇∗𝑑Ωௌ ቇ + 𝜖𝑞,ቍ௧,శభ௧ୀ௧, d𝑡 (11)

 
For all these adaptations, the algorithm given at the end 

of Section 3.1 can be used, only the number of unknowns 
vary. 

 
3.2.2 Adaptation to a maximum heat source 
In real operation, the heat source cannot reach any value 

and is bounded between 0 and a given maximum value qmax. 
In this case, J is set to −∞ for any q ∉  𝒰0 with 𝒰0 the 
subset of 𝒰 that contains the elements bounded between 0 
and qmax. Gradient of J is also computed with two stages. 

A first evaluation comes from Eq. (12) and a correction 
is made to take into account the infinite values of J with 

 
 

Eq. (13). 
 𝐽ᇱ(𝑞)𝛿𝑞 = 〈𝛿𝑞, ቆන 𝛿𝑇∗𝑑Ωௌ ቇ + 𝜖𝑞〉𝒰 (12)

 𝐽ᇱ(𝑞)𝛿𝑞 ← max(0, 𝐽ᇱ(𝑞)𝛿𝑞)     𝑖𝑓   𝑞 = 𝑞୫ୟ୶ (13)
 
For each iteration i on the conjugate gradient method, an 

increment Δq can still be computed as qiter = i = qiter=i‒1 + Δq 
based on the gradient of J. However, the new value of q 
may not be in 𝒰 with the conjugate gradient. To stay in 
this set of functions, it is proposed to take Δq such that qiter=i ∈ [0, qmax] with Δq ⟵ min (qmax ‒ qiter=i‒1, Δq). The 
complete process is schematized in Fig. 3. 

 
3.2.3 All or nothing operating mode 
In this operating mode, the heat source can only be 

equal to two values at each time interval: 0 and qmax. Unlike 
previous operations, the number of heat source evolution 
sequences is not infinite: only 2Ntime sequences exist with 
Ntime the number of time intervals. The set of possible q is 
noted 𝒰 ⊂  𝒰0. There is also a solution to the optimization 
problem which can be obtained by computing the functional 
for all the elements of 𝒰. 

We propose however to use an iterative way to find a 
satisfying heat source evolution with a reduced number of 
calculations by computing the gradient of the functional J in 𝒰0 and not in 𝒰 where it is not defined. 

The algorithm is the following: from an initial evolution 
of heat source in 𝒰0, the gradient is computed in 𝒰0. Heat 
source for time intervals in which q = 0 and with gradient 
values higher than a given threshold are switched to qmax if 
the new value of J is lower than the previous. Then the 
threshold in reduced while new switches from q = 0 to q = 
qmax entail decrease of J. 

When the threshold reaches 0 or if there are no more 
switches, a similar operation is carried out for negative 
values of gradient. Threshold is set to a negative value and 
heat source switches from qmax to 0 for time intervals when 
gradient is lower than this threshold if the new value of J is 
lower than the previous. While J decreases, the threshold 

 
 

 

 
Fig. 3 Flowchart representing the optimization of the heat source bounded between 0 and qmax 
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increases and new switches happen. 
The gradient of the functional is then computed for this 

evolution of q. This process is repeated until there are no 
more switches. Because of the finished number of elements 
in 𝒰0, there is convergence to a solution. However, this 
solution may not be the optimal solution. This process is 
schematized in Fig. 4. 

 
3.3 Actualization of weather forecasts 
 
In this research paper, weather forecasts are actually 

weather records that come from the MeteoNorm database 
(MeteoNorm 2020). In a real operation, data may come 
from live forecasts as explained in Section 2.3. However, 
these data are both not exact and only available for a finite 
time horizon. As a consequence, hourly data are updated 
regularly (for instance each 3 hours with the model 
AROME of Météo France (Seity 2011)) and the 
optimisation computation is restarted accordingly. 

To take into account these actualizations, the evolution 
of heat source is also udpated. First, heat source is 
computed over the time interval [0, ta]. When weather 
forecast is actualized, at t = Δtact, a new evolution of q in 
[Δtact, ta + Δtact] is computed with methods presented in 
previous sections. To initialize the optimization process, the 
initial value of q is taken as the previously computed heat 
source on [Δtact, ta]. 

 
 

4. Application to a numerical case study 
 
These different operations are applied to a case study of 

ten days in january for a chosen temperate oceanic climate 
(representative of western region in France). The associated 
temporal evolution of the environmental conditions is 
shown in Figs. 5 and 6. 

Without heating, the surface temperature can be 
computed with the direct model. Fig. 7 shows this 

 
 

Fig. 5 Environmental conditions for the selected period 
and location: air temperature and sky temperature

 
 

Fig. 6 Environmental conditions for the selected period 
and location: wind speed and solar radiation

 
 

Fig. 7 Evolution of the surface temperature at the selected 
location without any heating control 

 
 

evolution. Temperature at the surface can decrease below 
0°C during the night which is particularly the case here 
during the eighth day. 

Fig. 8 shows the surface temperature during the same 
period when heat source is activated and optimized for 

 
Fig. 4 Flowchart representing the optimization of the heat source in an all-or-nothing operating mode
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Fig. 8 Evolution of the surface temperature at the selected 
location with an optimal heat source for a setpoint 
equals to +4°C without any predefined power limit

 
 

a setpoint equal to +4°C without any predefined power 
limit. T the condition on the surface temperature higher than 
the setpoint with the tolerance of 0.1°C is respected on the 
whole target surface. 

Results obtained are presented in Fig. 9: 
 
● optimal control: optimal control is applied without 

bounding of heat source 
● optimal control, qmax = 160 W : 

optimal control is applied with the total heat source 
between 0 and 160 W 

● optimal control, qmax = 40 W : 
optimal control is applied with the total heat source 
between 0 and 40 W 

 
 

 
 

● all-or-nothing: operation with total heat source (i.e., 
for the four sources) equal to 0 or 160 W 

 
This figure also shows that operation in optimal control 

with and without power limit at 160 W are quite the same 
during the first five days for which heat source stays below 
the limitation. 

On the contrary, during the five last days, operation with 
power limit entails a heat source equal to this limit most of 
the time. During this period, heat source evolution is closed 
to operation in all or nothing mode. 

From the computed temperatures on Γtarget for these 
various operations, the gap g with the setpoint can be 
evaluated. It is defined here from Eq. (14), where |Γtarget| is 
the area of Γtarget. 

 𝑔(𝑡) = න ൫𝑇ୱ୮ − 𝑇(𝑥, 𝑡)൯ାd𝑆หΓ୲ୟ୰ୣ୲ห௫∈౪౨ౝ౪  (14)

 
Fig. 10 shows the evolution of this gap for the four 

operation modes and without heating. Without heating and 
with a maximal heat source at 40 W, the surface 
temperature often decreases below the setpoint with gaps 
that can exceed 5°C. With heat source maximum at 160 W 

 
 

 
 

 
Fig. 9 Optimized heat source evolution for different operating modes, from top to down graph: optimal control 

without any power limitation, with qmax = 160 W, with qmax = 40 W and all-or-nothing: 0 or 160 W

 
Fig. 10 Gap evolution : Temperature difference between the mean surface temperature and the set-point 

temperature, in log-scale 
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(both optimal control and all or nothing), the gap reaches at 
the maximum 1°C and less than 0.3°C without constraint on 

the maximum heat source. 
Energy consumption are quite similar when heat source 

is bounded to 160 W. Without constraint on maximum heat 
source, consumption is higher but gap to setpoint is also 
reduced. For a heat source bounded at 40 W, heat 
consumption is lower but the objective of preventing from 
icing is not reached. 

Table 1 shows these results. 
Thus, the lower the maximum heat source is, the lower 

the heat consumption will be, and the lower the setpoint 
temperature will be respected. 

 
 

5. Conclusions 
 
In this paper, control of a heating system to prevent 

black ice from occurring at the surface of transport 
infrastructures has been described. The command law relies 
on a direct model for the thermal diffusion based on the 
finite element method and on an adjoint state problem that 
has the same structure than the direct one. Solution of this 
adjoint problem allows to solve a minimization problem 
that involves energy consumption and respect of a setpoint 
for the surface temperature. From weather forecasts, an 
optimal temporal evolution for heat source can be 
computed. 

Some adaptations caused by physical limitations of the 
device have been proposed and applied on a case study. 
Results show the possibility of using such command laws as 
long as weather forecasts are reliable. To go further, a 
validation of the approach suggested above will be 
performed on a mock- up. Other numerical approaches can 
also be studied, particularly to take into account the 
uncertainties around these weather forecasts and the 
response to the direct model. A probabilistic approach could 
be for example added by giving the probability for the risk 
of black ice occurring. 

In future work, we will exploit the possibility of 
achieving greater energy savings by considering different 
setpoints like the frost temperature for optimal control. 
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