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1. Introduction 

 
Output-only techniques in vibration-based Structural 

Health Monitoring (SHM) are rapidly emerging as an 
effective tool to assess the condition (e.g., “health”) of 
structures, especially in recent years, since a growing 
number of structures and infrastructures are approaching 
their service life. Excellent overviews in this topic can be 
found in (Das et al. 2016, Fan and Qiao 2011, Farrar and 
Worden 2007, Sohn et al. 2004). Modal parameters have 
been largely used as damage-sensitive features (DSFs) due 
to their direct physical interpretation. In particular, modal 
shapes have been shown effective in damage localization, 
even though they are not as sensitive to small damage 
(Farrar and Worden 2013). Other techniques involving 
pattern recognition and outlier analysis have recently gained 
attention and are becoming more popular in SHM 
applications (Farrar and Worden 2013, Worden et al. 2000). 

In this context, AutoRegressive (AR) models have been 
extensively used in the description of dynamic systems, 
mainly thanks to their low computational complexity 
(Ljung 1987, Guidorzi 2003). Several studies have been 
conducted in the civil engineering field to identify dynamic 
systems using AR models and related extensions (Guidorzi 
et al. 2014, Brincker and Ventura 2015), to find a synthetic 
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representation of the complex structural behavior or retrieve 
modal features. Univariate AutoRegressive (UAR) models, 
i.e., models that consider recorded signals individually, 
have been largely employed for damage identification, 
typically using novelty detection techniques that generate 
control charts. However, evaluating a damage index based 
on localized recordings may be misleading if the signal is 
collected in parts of the structure that are not representative 
of the overall dynamic behavior (e.g., at locations in the 
proximity of modal shape nodes). 

Nair et al. (2006) proposed a DSF based on multiple 
sets of parameters identified assuming a univariate AR 
model per recording channel. In this case, however, the 
inherent relation among different channels is neglected. 
Recently, some techniques have been proposed to take into 
account spatial information employing the parameters of 
Multivariate AutoRegressive (MAR), also addressed as 
‘vector’, models. Such methods generally lead to a more 
robust damage indicator, as shown by Goi and Kim (2017). 
Wang and Ong (2008) proposed using Hotelling’s T2 
control chart to monitor the coefficients of a multivariate 
AR model fitted to acceleration responses collected at 
multiple locations of a structure. This method enables more 
robust damage detection for large structures than univariate 
approaches. 

Initial investigations on damage localization using 
multivariate AR models were conducted by Heyns (1997), 
De Stefano et al. (1997), Bodeaux and Golinval (2003), 
who retrieved natural frequencies and modal shapes from 
Vector Autoregressive Moving Average (VARMA) models. 
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Mosavi et al. (2012) employed the first two elements on the 
main diagonal of the matrices of AR parameters relevant to 
the two most recent time lags as a DSF that also include 
spatial information. In particular, a study on the variation of 
this indicator was evaluated between a baseline and a set of 
inspection signals. More recently, Roy et al. (2015) showed 
a direct relationship between the coefficients of a 
multivariate AutoRegressive with eXogenous input (ARX) 
model and the normalized structural stiffness. In the 
mentioned work, ARX parameters are used for precise 
damage localization by defining a damage index at all the 
Degrees of Freedom (DOFs) except one, which is assumed 
as the location where excitation is applied. This model 
makes, therefore, necessary repetition of the identification 
process, assuming a different response channel at a time as 
exciting input to evaluate damage at all instrumented 
locations. Also, the application of this method to structures 
where excitation can be modeled as uncorrelated white 
noise at each DOF is challenging. 

AR models have great potential in data-based SHM 
applications due to their simple structure and sensitivity to 
damage in comparison with modal-based approaches. 
However, in this context, few studies have been conducted 
for localizing damage in civil structures. In this paper, a 
novel approach for damage detection and localization is 
presented, based on outlier analysis performed using the 
parameters of a MAR model identified by means of 
structural vibration responses. Contrary to most AR-based 
literature methods, such as the ones presented in Mosavi et 
al. (2012) and Loh et al. (2016), the main novelty of the 
proposed approach consists of exploiting all the parameters 
of the selected MAR model to retrieve accurate spatial 
information about the structural state of health. The damage 
index is indeed represented in a two-dimensional map 
whose elements indicate the structural portions included 
among all the possible combinations of the instrumented 
locations. 

The method proposed herein is validated using the 
vibration data of two benchmarks, a numerical model 
representing a 5-DOF frame excited at all the levels and an 
experimental 4-DOF steel frame with excitation applied to 
the lowest DOF. 

 
 

2. From univariate to multivariate autoregressive 
models: an overview 
 
An AR model is a numerical model that can be used to 

describe the dynamic behavior of a system and that can be 
identified only employing the output response of the 
system. AR model identification is thus performed without 
considering any input, and this represents the main 
difference with respect to the identification of ARX models 
(Guidorzi 2003). Due to their characteristics, AR models 
can be employed in the field of civil engineering for 
identifying the behavior of structures and infrastructures 
under ambient excitation, where measuring the excitation 
input is impractical. 

In general, in the identification of AR models, the 
outputs of the analyzed system can be considered either 
individually or simultaneously, generating univariate or 

multivariate models, respectively. 
A univariate autoregressive model can be expressed by 

the following equation 
 𝑦(𝑘) = ෍ 𝑎௜𝑦(𝑘 − 𝑖) + 𝑒(𝑘)௣

௜ୀଵ  (1)

 
where 𝑦(𝑘) is the output at the 𝑘-th time step (e.g., a 
measured time sequence), where 𝑘 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑙 , 
and 𝑝 is the model memory (which is equal to the model 
order in the univariate case). The parameter 𝑙 represents 
the total number of samples of the considered output 
sequence 𝑦(1), 𝑦(2), … , 𝑦(𝑙). The autoregressive coefficients 
are indicated with 𝑎௜  (𝑖 = 1, 2, … , 𝑝)  while 𝑒(𝑘)  is a 
stochastic white process with a null expected value. As 
shown in Eq. (1), the output at time 𝑘 is expressed as a 
linear combination of 𝑝 past outputs. This link between the 
present output and the past values is however not exact 
when considering the measured noisy responses of real 
systems. This is accounted by the introduction in the model 
of the error term 𝑒(𝑘). As shown in Guidorzi (2003), an 
autoregressive model expressed in the form of Eq. (1) 
belongs to the family of the equation error models. 

Assuming that the AR coefficients of the model are 
known, it is possible to obtain the one-step-ahead prediction 
of the output starting from the measured 𝑝 past outputs. 
This operation can be expressed in analytical form by 
considering a row matrix of autoregressive parameters 𝒂 =ൣ𝑎௣   𝑎௣ିଵ  … 𝑎ଵ ൧ with dimension (1 ×  𝑝) and a Hankel 
matrix 𝑯𝟏, of dimensions 𝑝 × (𝑙 −  𝑝), formed by the 
past outputs 

 

𝑯𝟏 = ൦ 𝑦(1) 𝑦(2)𝑦(2) 𝑦(3) … 𝑦(ℓ − 𝑝)… 𝑦(ℓ − 𝑝 + 1)⋮ ⋮𝑦(𝑝) 𝑦(𝑝 + 1) … ⋮… 𝑦(ℓ − 1) ൪ (2)

 
The one-step-ahead prediction of the output can then be 

obtained as follows 
 𝒉෩𝟐(𝒂) = 𝒂 𝑯𝟏 (3)
 

where 𝒉෩𝟐(𝒂) = ሾ𝑦෤(𝑝 + 1, 𝒂) 𝑦෤(𝑝 + 2, 𝒂) … 𝑦෤(𝑙, 𝒂)ሿ  is a 
row matrix with dimension 1 ×  (𝑙 −  𝑝) formed by the 
values of the predicted outputs associated with a set of AR 
coefficients 𝒂 . The difference between the measured 
outputs 𝑦(𝑘) and the predicted outputs 𝑦෤(𝑘, 𝒂) is denoted 
as prediction (or residual) error 

 𝜀(𝑘, 𝒂) = 𝑦(𝑘) − 𝑦෤(𝑘, 𝒂) (4)
 

which is evaluated for 𝑘 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑙 . The 
estimation of AR coefficients is performed by minimizing a 
cost function, which usually has the following expression 

 𝐽(𝒂) = 1𝑙 − 𝑝 ෍ 𝜀(𝑘, 𝒂)ଶ௟
௞ୀ௣ାଵ  (5)

 
As shown in Eq. (5), the cost function is the mean of the 

squares of the prediction errors (also denoted as mean 
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square prediction error), and it coincides with the variance 
of the prediction errors. To minimize this cost function and 
estimate the AR coefficients, the Least Squares (LS) 
method can be employed. At first, the Hankel matrix 𝑯𝟏 
and the row matrix 𝒉𝟐  are formed starting from the 
measured outputs. Then, the LS estimate 𝒂ෝ for the row 
matrix 𝒂 can be found as follows 

 𝒂ෝ = 𝒉𝟐 𝑯𝟏ା (6)
 

where 𝑯𝟏ା is the pseudoinverse of the matrix 𝑯𝟏. Eq. (6) 
is obtained by inverting Eq. (3), and by considering the row 
matrix 𝒉𝟐 of the observations in place of the row matrix 𝒉෩𝟐(𝒂) of the predictions. 

When estimating the AR coefficients, the selection of 
the memory of the model (i.e., the model order in the 
univariate case) is one of the most important aspects. To this 
purpose, memory selection criteria can be employed, such 
as, the Akaike Information Criterion (AIC) (Akaike 1974), 
the Bayesian Information Criterion (BIC) (Schwarz 1978), 
the Predicted Per Cent Reconstruction Error criterion 
(PPCRE) (Guidorzi et al. 1982), and the mean square error 
criterion (Simani et al. 2003). In this selection, it is 
important to find a memory that guarantees a good accuracy 
of the model - i.e., minimizing the estimation errors, while 
avoiding overfitted models with a number of unnecessary 
parameters. 

On the other hand, a multivariate autoregressive model 
can be defined through the following equation 

 𝒚(𝑘) = ෍ 𝑨௜ 𝒚(𝑘 − 𝑖) + 𝒆(𝑘)௣
௜ୀଵ  (7)

 
where 𝒚(𝑘) is a vector containing all the measured outputs 
at time step 𝑘  (with dimension 𝑚 × 1 ), 𝑨௜  is the 
autoregressive matrix that contains the AR parameters (with 
dimension 𝑚 × 𝑚 ), 𝒆(𝑘)  is the 𝑚 × 1  vector of the 
equation error (the components of which are stochastic 
white processes with null expected value), with 𝑚 being 
the number of the time histories considered in the analysis 
(e.g., the number of the recorded vibration responses of a 
structural system, measured at different locations). As 
already defined for the univariate case, 𝑝 is the model 
memory, and 𝑘 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑙 , where 𝑙  represents 
the total number of samples of the considered output 
sequence 𝑦௝(1), 𝑦௝(2), … , 𝑦௝(𝑙) , with 𝑗 = 1 … 𝑚 . Using 
this notation, the order of the multivariate autoregressive 
model is 𝑝 ∙  𝑚. 

In the multivariate case, the one-step-ahead predictions 
of the outputs can be obtained starting from the two 
following matrices: (1) a block row matrix 𝑨 =ൣ𝑨௣   𝑨௣ିଵ  … 𝑨ଵ ൧ with dimension 𝑚 × (𝑚 ∙  𝑝), which 
is a side-by-side collection of 𝑝 autoregressive matrices 𝑨௜  (with 𝑖 = 𝑝, 𝑝 −  1, … ,1 ), and (2) a block Hankel 
matrix 𝑯𝟏  with dimension (𝑚 ∙  𝑝)  × (𝑙 −  𝑝) , which 
contains the past values of the outputs 

 

𝑯𝟏 = ൦ 𝒚(1) 𝒚(2)𝒚(2) 𝒚(3) … 𝒚(ℓ − 𝑝)… 𝒚(ℓ − 𝑝 + 1)⋮ ⋮𝒚(𝑝) 𝒚(𝑝 + 1) … ⋮… 𝒚(ℓ − 1) ൪ (8)

 
The one-step-ahead predictions of the outputs can be 

determined as follows 
 𝑯෩ 𝟐(𝑨) = 𝑨𝑯𝟏 (9)
 

where 𝑯෩ 𝟐(𝑨) = ሾ𝒚෥(𝑝 + 1, 𝑨) 𝒚෥(𝑝 + 2, 𝑨) … 𝒚෥(𝑙, 𝑨)ሿ  is a 
block row matrix with dimension 𝑚 × (𝑙 −  𝑝), which 
contains the values of the outputs predicted for the different 
time sequences with a given set of AR parameters in 𝑨. In 
the multivariate case, the prediction (or residual) error at 
time step 𝑘  (with 𝑘 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑙 ) is a vector 𝜺(𝑘, 𝑨) with dimension 𝑚 × 1, where the 𝑗-th component 
(for 𝑗 = 1 … 𝑚) is expressed as 

 𝜀௝(𝑘, 𝑨) = 𝑦௝(𝑘) − 𝑦෤௝(𝑘, 𝑨) (10)
 
Similarly to the univariate case, when dealing with 

multivariate autoregressive models the least squares method 
can be employed to estimate the AR coefficients by 
arranging the measured outputs of the different time series 
in the block Hankel matrix 𝑯𝟏 and in the block row matrix 𝑯𝟐. Then, the LS estimate 𝑨෡  for the matrix 𝑨 can be 
obtained as 

 𝑨෡ = 𝑯𝟐𝑯𝟏ା (11)
 
As discussed in Brincker and Ventura (2015), the 

problem of estimating the autoregressive coefficients is 
overdetermined if (𝑙 –  𝑝)  >  (𝑚 ∙  𝑝). However, due to 
the unavoidable presence of noise when dealing with real 
data, in Brincker and Ventura (2015) it is also stated that the 
procedure works properly if the problem is well 
overdetermined – i.e., (𝑙 –  𝑝)  ≫  (𝑚 ∙  𝑝) , which is 
always the case in civil engineering applications. Similar 
considerations are also applicable for the univariate case 
where 𝑚 =  1. 

The cost function in the multivariate case can be 
expressed using the following equation 

 𝐽(𝑨) = 1𝑙 − 𝑝 ෍ ෍ 𝜀௝(𝑘, 𝑨)ଶ௟
௞ୀ௣ାଵ

௠
௝ୀଵ  (12)

 
as shown in Guidorzi et al. (2014). Similarly to the 
univariate AR identification, the selection of the model 
memory represents an important step. To this purpose, as 
mentioned in Guidorzi et al. (2014), the memory selection 
criteria formulated for the univariate case can be extended 
to the multivariate AR identification. 

 
 

3. Proposed MAR-based strategy for damage 
detection and localization 
 
The goal of the proposed methodology is to identify the 

presence and location of changes in a given structure that 
may be related to a damaged state. The method proposed is 
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based on the analysis of output-only vibration response 
collected under ambient excitation. Herein, acceleration 
data is considered, although velocity or displacement 
measurements can also be employed. In particular, the 
proposed strategy consists of the following steps: 

 

● Step 1. Formatting the data samples 
● Step 2. Identification of the MAR models 
● Step 3. Extraction of damage-sensitive feature 

vectors 
● Step 4. Evaluation of damage indices 
● Step 5. Damage detection and localization through 

statistical tests 
 

The top four steps are addressed in a general fashion and 
are applicable to any structure that can be modeled as a 
discrete Multi-Degree of Freedom (MDOF) system. Only 
step 5 of the proposed procedure is structure type-
dependent, and, in the present study, it is specifically 
developed to be applied to shear-type building structures. It 
is expected that the methodology could be successfully 
applied to other types of structures, but this will be the 
object of future research developments. 

 
Step 1. FORMATTING THE DATA SAMPLES 
 
The acquisition and the subsequent pre-processing of the 

data should be planned and executed so to have a training 
and a testing datasets. 

The training dataset, related to the structure in its 
baseline condition, should consist of n samples, where 
“sample” denotes a set of time histories collected at each 
instrumented location. It is fundamental to have a “rich” 
training dataset, which collects a diversity of states labeled 
as undamaged to simulate operational and environmental 
variability conditions. The higher the number of available 
samples, the more accurate the identified training statistical 
model will be. 

The testing dataset (i.e., the dataset acquired during the 
inspection phase, for which the structural condition is 
unknown), consists of a single sample. However, it is 
generally convenient to acquire more data, repeating the 
identification process using different samples of the same 
structural state, to improve the robustness of the technique. 

 
Step 2. IDENTIFICATION OF THE MAR MODELS 
 
Before identifying the MAR model, a proper memory p 

should be selected. To this purpose, the mean square error 
criterion (Simani et al. 2003) is employed in this work 
evaluating the cost functions described in Eq. (12) for 
increasing memory values. A stabilization of the obtained 
outcome is expected when the correct model memory is 
achieved. As stated in Simani et al. (2003), the criterion can 
be useful to find a suitable model memory or, at least, a 
range of admissible values for the model memory. 

According to the proposed strategy, for both the training 
and testing datasets, the following calculations should be 
repeated for increasing values of the model memory (i.e., 
for 𝑝 = 1 … 𝑝௠௔௫): 

 

● estimation of the multivariate autoregressive model 
(i.e., estimation of the block row matrix 𝑨෡) using 

Eq. (11); 
● evaluation of the one-step-ahead predictions and 

evaluation of the residual errors using Eqs. (9)-(10), 
respectively; 

● determination of the value of the cost function using 
Eq. (12). 

 

The values of the cost function evaluated for each 
memory value should be plotted as a function of 𝑝 to find 
the most suitable model memory. During this phase, it is 
important to check that the cost functions obtained for 
different samples of the training dataset have similar trends. 
The maximum memory value considered when repeating 
the above-mentioned calculations should also be large 
enough to observe a clear stabilization. According to the 
proposed strategy for damage detection, the memory of the 
identified MAR models should be the same for the baseline 
condition and for the potentially damaged state. The model 
memory is indeed a parameter that, as shown in the next 
steps, defines the dimension of the damage-sensitive 
features vector. This last requirement guarantees that the 
DSFs related to different states can be properly compared 
and processed in the proposed method. 

Upon selecting the model memory, a block row matrix 
 𝑨෡ = ൣ𝑨෡௣ 𝑨෡௣ିଵ  … 𝑨෡௜  … 𝑨෡ଵ ൧ (13)
 

is derived for each sample by identifying the MAR model. 
The components of a generic identified AR matrix 𝑨෡௜ are 

 

𝑨෡௜ =
⎣⎢⎢
⎢⎢⎢
⎡ 𝛼ො(ଵ,ଵ),௜ 𝛼ො(ଵ,ଶ),௜ …𝛼ො(ଶ,ଵ),௜ 𝛼ො(ଶ,ଶ),௜ …⋮ ⋮

𝛼ො(ଵ,௦),௜ … 𝛼ො(ଵ,௠),௜𝛼ො(ଶ,௦),௜ … 𝛼ො(ଶ,௠),௜⋮ ⋮𝛼ො(௥,ଵ),௜ 𝛼ො(௥,ଶ),௜ …⋮ ⋮𝛼ො(௠,ଵ),௜ 𝛼ො(௠,ଶ),௜ … 𝛼ො(௥,௦),௜ … 𝛼ො(௥,௠),௜⋮ ⋮𝛼ො(௠,௦),௜ … 𝛼ො(௠,௠),௜⎦⎥⎥
⎥⎥⎥
⎤

(14)

 
where the indices 𝑟, 𝑠 = 1,2, . . , 𝑚 denote the position of 
each component in the matrix. The parameter 𝑚 has been 
already introduced in Section 2 as the number of time series 
used for the identification of the MAR model, and, within 
the proposed MAR-based strategy for damage detection, 
this parameter coincides with the number of instrumented 
locations. 

 
Step 3. EXTRACTION OF THE DAMAGE-
SENSITIVE FEATURE VECTORS 
 
In this step, the vectors collecting the damage-sensitive 

features are extracted from the identified MAR models. For 
each component 𝛼ො(௥,௦),௜ of the generic identified AR matrix 𝑨෡௜  (Eq. (14)), the elements 𝛼ො(௥,௦),௜ , with 𝑖 = 𝑝, 𝑝 − 1, … , 1, are stored into a vector 𝒙(௥,௦), as follows: 

 𝒙(௥,௦) = ሾ𝛼ො(௥,௦),௣ 𝛼ො(௥,௦),௣ିଵ  … 𝛼ො(௥,௦),௜  … 𝛼ො(௥,௦),ଵ ሿ் (15)
 
This vector, considered here as a damage-sensitive 

feature, has dimensions 𝑝 × 1 and contains the elements of 𝑨෡௜  matrices identified by the index pair (𝑟, 𝑠). All the 
components of the AR matrices are considered to form 𝑚 ∙
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damage identification. This aspect is one of the main 
distinctive characteristics of the proposed approach. Indeed, 
articles available in the existing literature, such as the ones 
by Mosavi et al. (2012) and Loh et al. (2016), only use the 
diagonal components of the identified AR matrices for 
performing the damage localization task. 

In the proposed method, the elements with 𝑟 = 𝑠 (i.e., 𝒙(௥,௥)) are only representative of the instrumented locations 
identified with the index 𝑟(= 𝑠). On the other hand, the 
elements with 𝑟 ≠ 𝑠 consist of the off-diagonal terms of 
the AR matrices and contain mixed information about the 𝑟-th and the 𝑠-th measured DOFs. 

The extraction of the DSF vectors has to be performed 
for all the identified MAR models. At the end of this 
process, for each index pair (𝑟, 𝑠) , n DSF vectors 
(indicated as 𝒙஻,(௥,௦),௤ with 𝑞 = 1 … 𝑛) are generated for 
the baseline condition, while – at least – one (indicated as 𝒙ூ,(௥,௦)) is necessary for the inspection phase. 

 
Step 4. EVALUATION OF DAMAGE INDICES 
 
The proposed damage detection strategy is developed by 

exploiting the outlier analysis tools. A detailed literature 
review concerning outlier analysis techniques can be found 
in the textbook by Barnett and Lewis (1994). Among the 
available procedures, a criterion based on the Mahalanobis 
distance (Mahalanobis 1936) is adopted herein. This 
distance metric is used in this work to calculate the damage 
indices, defined as the distance between the DSF vectors of 
the baseline and of the inspection phase, as defined in the 
section above. 

The proposed damage index is defined as 
 𝑀𝐷(௥,௦)= ට൫𝒙ூ,(௥,௦) − 𝒙ഥ஻,(௥,௦)൯் 𝑺஻,(௥,௦)ିଵ ൫𝒙ூ,(௥,௦) − 𝒙ഥ஻,(௥,௦)൯ 

(16)

 
In Eq. (16) the terms 𝒙ഥ஻,(௥,௦)  and 𝑺஻,(௥,௦)  are the 

sample mean vector and the sample covariance matrix of 
the DSF vectors related to the baseline condition (i.e., the 
DSF vectors 𝒙஻,(௥,௦),௤  with 𝑞 = 1 …  𝑛 ), respectively, 
while the term 𝒙ூ,(௥,௦)  is the DSF vector related to the 
inspection phase. The proposed damage index thus 
evaluates the Mahalanobis distance in the multivariate 
space of the considered DSFs between the point related to 
the inspection phase and the centroid related to the baseline 
condition. It is worth emphasizing that in Eq. (16) the mean 
vector and the covariance matrix do not include the DSF 
vector 𝒙ூ,(௥,௦)  (i.e., 𝒙ഥ஻,(௥,௦)  and 𝑺஻,(௥,௦)  are exclusive 
measures). As observed in Farrar and Worden (2013), in 
SHM applications it is indeed not convenient to 
“contaminate” the statistics related to the baseline state with 
the potential outlier related to the inspection phase. Eq. (16) 
has to be evaluated for each index pair (𝑟, 𝑠), i.e., for each 
component of the identified AR matrices. This results in a 
matrix for each inspection formed by the values of the 
damage index 𝑀𝐷(௥,௦)  (where 𝑟, 𝑠 = 1,2, . . , 𝑚 ). Such a 
matrix is denoted herein as 𝑀𝐷 matrix. 

It is necessary to underline that, when performing the 

calculations using a damage index based on the 
Mahalanobis distance, the number of samples of the 
training dataset should be large enough to obtain a reliable 
statistical model with adequate estimates of the mean vector 
and of the covariance matrix. This is of paramount 
importance, especially for the sample covariance matrix, 
which, as shown in Eq. (16), is subjected to numerical 
inversion and may become ill-conditioned if the number of 
samples 𝑛 is not large enough (Balsamo and Betti 2015). 

 
Step 5. DAMAGE DETECTION AND 
LOCALIZATION THROUGH STATISTICAL TESTS 
 
As a final step of the proposed vibration-based strategy, 

statistical tests have to be performed in order to identify the 
presence and location of modifications in the structure that 
can be associated with a damaged state. In these statistical 
tests, the damage indices 𝑀𝐷(௥,௦)  are compared with a 
threshold value. 

For shear-type building structures, it is recommended to 
perform the statistical tests for all the DOF-related index 
pairs (𝑟, 𝑠). For such types of structures, however, some 
specific index pairs (i.e., the ones with 𝑟 = 𝑠, 𝑟 = 𝑠 − 1, 
and 𝑟 = 𝑠 + 1) are more informative than others, as shown 
by the numerical and experimental analyses presented in 
later sections. The focus should thus be on these index 
pairs, which means considering the components of the main 
diagonal (i.e., referred to specific DOFs) and the 
components of the first diagonal above or below the main 
one in the 𝑀𝐷 matrix (i.e., referred to related interstories 
of the shear-type building). 

According to the proposed strategy, a structural 
modification – which can be associated with a damaged 
state and which has affected the dynamics of the structure – 
is detected if the proposed damage index is 

 𝑀𝐷(௥,௦) >  𝑀𝐷்ு (17)
 

for at least one of the DOF-related index pairs (𝑟, 𝑠), where 𝑀𝐷்ு is a threshold value selected as described in Section 
3.1. As stated before, multiple samples for each inspection 
phase should be selected to improve the robustness of the 
procedure over the occurrence of false alarms. On the other 
hand, if 

 𝑀𝐷(௥,௦) ≤  𝑀𝐷்ு (18)
 

for all the index pairs (𝑟, 𝑠), then it can be deduced that no 
structural modifications have occurred in the whole 
structure. Using the inequalities in Eqs. (17) and (18), it is 
thus possible to localize structural modifications that can be 
associated with a damaged state. In general, the obtained 𝑀𝐷  matrix should be inspected to identify clusters of 
components that are above the threshold. The maximum 
values of the identified clusters can indicate the DOFs that 
have been mainly affected by eventual structural 
modifications. Such clusters can be single or multiple 
clusters, depending on whether single or multiple localized 
modifications have occurred. 
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3.1 Definition of the threshold for the damage 
index based on Mahalanobis distance 

 
In this paper, a procedure proposed by Worden et al. 

(2000), Farrar and Worden (2013) to calculate a threshold 
for discordancy tests in outlier analysis based on the 
Mahalanobis squared distance is adopted. It is worth noting 
that a similar approach has also been used in the work by 
Bernagozzi et al. (2018) considering a damage localization 
strategy and related damage-sensitive features that are 
different from those considered in this paper. 

In the proposed procedure, the threshold value 𝑀𝐷்ு 
is determined through a Monte Carlo simulation, not 
involving experimental data measured on the structure. 
Indeed, the threshold only depends on two parameters: the 
dimension of the DSF vectors used for evaluating the 
damage indices (i.e., the parameter 𝑝) and the number of 
samples of the baseline condition (i.e., the parameter n). 

The damage detection procedure consists of six main 
steps, where the last step – not present in the original 
procedure – has been specifically introduced to deal with 
the Mahalanobis distance instead of the Mahalanobis 
squared distance: 

 
T1) A matrix Z of dimension 𝑝 ×  𝑛  consisting of 

random numbers from a univariate normal distribution with 
a zero mean and a standard deviation equal to 1 is 
generated. Each column 𝑧(𝑖) , with 𝑖 =  1 . . . 𝑛 , of the 
matrix Z is a feature vector with dimension 𝑝 ×  1. The 
mean vector 𝒛ത  and the covariance matrix 𝑺𝒛  of these 
feature vectors are then calculated. 

 
T2) The Mahalanobis squared distance between each 

point in the generated multivariate space (i.e., each column 𝒛(𝑖)) and the centroid (i.e., the mean vector 𝒛ത) is evaluated 
as 𝑀𝐷ଶ(𝑖) = (𝒛(𝑖) − 𝒛ത)்  𝑺𝒛 ିଵ  (𝒛(𝑖) − 𝒛ത) (19)

 
The maximum value among the Mahalanobis squared 

distances 𝑀𝐷ଶ(𝑖) obtained for 𝑖 =  1 . . . 𝑛 is stored. It is 
worth noting that each feature vector 𝒛(𝑖) is included in 
the calculation of the statistics related to the whole dataset 
(i.e., the mean vector 𝒛ത and the covariance matrix 𝑺𝒛). 
This means that inclusive measures of the Mahalanobis 
squared distance are obtained using Eq. (19). 

 
T3) The steps T1 and T2 are repeated several times, by 

considering a number of trials that is at least equal to 1000, 
as recommended in Farrar and Worden (2013). For each 
trial, as anticipated at step T2, the maximum value of 
Mahalanobis squared distance is stored, forming a vector 𝒗 
containing all the maximum values of the Mahalanobis 
squared distance. 

 
T4) The 𝑤-th percentile of the values contained in the 

vector 𝒗 is then determined. The parameter 𝑤 is typically 
selected equal to 95 or 99 (Farrar and Worden 2013): in this 
paper, 𝑤 = 99 was selected. The value of the threshold 
obtained at this step represents an inclusive threshold, 
denoted by the symbol 𝑇௜௡௖. 

T5) The exclusive threshold (denoted as 𝑇௘௫௖ ) is 
obtained from the inclusive threshold estimated at step T4, 
as follows 

 𝑇௘௫௖ = (𝑛 − 1) (𝑛 + 1)ଶ𝑇௜௡௖𝑛 (𝑛ଶ − (𝑛 + 1) 𝑇௜௡௖) (20)

 
It is worth noticing that this step is required since in the 

proposed MAR-based strategy, as shown in Eq. (16), the 
statistics related to the baseline state are evaluated as 
exclusive measures. 

 
T6) The threshold value for the proposed damage index 

based on Mahalanobis distance is then evaluated as follows 
 𝑀𝐷்ு =  ඥ𝑇௘௫௖ (21)
 
The adoption of the Mahalanobis distance in place of the 

corresponding squared value has shown to offer a damage 
index that tends to be more proportional to the damage 
severity. 

 
3.2 An alternative damage metric used in the 

analyses 
 
In this study, as an alternative to the Mahalanobis 

distance, the Euclidean distances between the DSF vectors 
were considered as damage indicators. Such values were 
computed as 

 𝐸𝐷(௥,௦) = ‖𝒙ூ,(௥,௦) − 𝒙ഥ஻,(௥,௦)‖ଶ= ට൫𝒙ூ,(௥,௦) − 𝒙ഥ஻,(௥,௦)൯் ൫𝒙ூ,(௥,௦) − 𝒙ഥ஻,(௥,௦)൯ 
(22)

 
In Eq. (22), the operator ‖ ∙  ‖ଶ denotes the 2-norm 

operator and, similarly to the damage metric based on 
Mahalanobis distance (Eq. (16)), the index based on 
Euclidean distance can be evaluated for each index pair (𝑟, 𝑠). A matrix (denoted as 𝐸𝐷 matrix) formed by 𝐸𝐷(௥,௦) 
values (where 𝑟, 𝑠 = 1,2, . . , 𝑚) can thus be obtained for 
each inspection phase. From the comparison between Eqs. 
(16)-(22), the two aforementioned metrics differ because 
the sample covariance matrix is not present in the 
formulation of the Euclidean distance. Hence, the Euclidean 
distance option may be more suitable than the Mahalanobis-
based metric for applications with small training datasets. 
However, these more challenging scenarios are not part of 
the objectives of the present paper, and Euclidean-based 
damage indices are herein evaluated solely to obtain more 
insight into the damage identification process. 

 
 

4. Results 
 
In this section, two case studies are presented to test the 

performance of the proposed damage identification strategy. 
In the first case study, the simulated acceleration response 
of a 5-DOF shear-type system is used to determine the 
occurrence and location of damage for different scenarios. 
The second case study exploits the acceleration response of 
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Fig. 1 Test structure for case study 1 

 
 

a scaled building model available at the Engineering 
Institute of the Los Alamos National Laboratory 
(Figueiredo et al. 2009). 

 
4.1 Case 1: Simulated shear-type system 
 
System description. The numerically simulated system is 

a 5-story shear-type system (Fig. 1), built according to the 
common lumped mass–spring–viscous damper chain, where 
the energy dissipation properties are modeled according to 
the Rayleigh damping mechanism and the corresponding 
damping coefficients are indicated with 𝑐௝. The masses 𝑚௝ 
(𝑗 = 1, 2, … 5) are numbered in ascending order so that the 
mass closest to the constraint is labeled as 1. The interstory 
stiffness between the (𝑗 − 1)-th and the 𝑗-th masses is 
denoted as 𝑘௝ .  The baseline system is characterized by 
interstory stiffness, 𝑘௝଴ = 25000 𝑁/𝑚  and mass 𝑚௝଴ =1 𝑘𝑔 with 𝑗 = 1, … ,5. 

The system is subjected to a white Gaussian input of 
mean zero and standard deviation one applied at each DOF, 
indicated as 𝑓௝(𝑡) in Fig. 1. The simulated acceleration 
response time histories of the system are 5 minutes long, 
sampled at 0.005 s. Three sets of simulations are carried on 
considering different Root Mean Square (RMS) levels of 
corrupting noise (1%, 5% and 10%), that are added to the 
system response in order to mimic the effects of 
measurement noise and to evaluate its influence on the 
proposed procedure. For the present case study, the 
acceleration response time histories are collected 
in fourteen different structural conditions: one undamaged 
and thirteen addressed as “damaged”, where modifications 
either to the masses or the stiffnesses of the system are 
introduced (Table 1). 

 
Feature extraction and training. At the core of the 

damage detection strategy, the training set is built over 200 
sets of time histories (i.e., the aforementioned “samples”) 
simulated for the baseline condition. Therefore, the training 
dataset is constituted by 200 × 𝑚 time histories, where 𝑚 
is the number of simulated accelerometers. In the following 
case study, a full set of sensors is considered, where the 
acceleration response of the system is available at each 
mass. Other more challenging scenarios characterized by 

Table 1 Damaged and undamaged states considered for case 
study 1 

State Condition Description 
1 Undamaged Baseline 
2 Damaged 𝑚ଵ = 1.2 𝑚௝଴ 
3 Damaged 𝑚ଷ = 1.2 𝑚௝଴ 
4 Damaged 𝑚ସ = 1.2 𝑚௝଴ 
5 Damaged 𝑘ଵ = 0.85 𝑘௝଴ 
6 Damaged 𝑘ଶ = 0.85 𝑘௝଴ 
7 Damaged 𝑘ଷ = 0.85 𝑘௝଴ 
8 Damaged 𝑘ହ = 0.85 𝑘௝଴ 
9 Damaged 𝑘ଷ = 0.90 𝑘௝଴ 
10 Damaged 𝑘ଷ = 0.80 𝑘௝଴ 
11 Damaged 𝑘ଷ = 0.90 𝑘௝଴ and 𝑘ସ = 0.90 𝑘௝଴ 
12 Damaged 𝑘ଶ = 0.90 𝑘௝଴ and 𝑘ଷ = 0.90 𝑘௝଴ 
13 Damaged 𝑘ଶ = 0.90 𝑘௝଴ and 𝑘ହ = 0.90 𝑘௝଴ 
14 Damaged 𝑘ଶ = 0.90 𝑘௝଴ and 𝑘ଷ = 0.80 𝑘௝଴ 
 
 

incomplete sensor setups do not represent the key interest in 
the present study and will be addressed in future works. 

The model memory used in the identification of the 
MAR model is established by investigating the trend of the 
cost function, as explained in the Step 2 of the procedure 
proposed in this work. Fig. 2 shows the cost functions 
derived for memory values up to 30. In particular, in Fig. 
2(a), 10 trends are shown, representing the cost functions 
evaluated considering 10 samples of the baseline condition. 
On the other hand, in Fig. 2(b), 14 trends referring to single 
samples of the inspection conditions are reported (one for 
each tested scenario in Table 1). The overall behavior of the 
cost function remains consistent for all the samples, both in 
the training analysis and in different structural conditions. 
The function presents a substantial drop at memory values 
equal to 2-3, and then it slowly stabilizes. Therefore, in the 
analyses, the memory has been selected equal to 3, which 
leads to a block row matrix 𝑨෡ (Eq. (13)) of dimensions 
5×15. 

Starting from the extracted block row matrix, the MAR 
coefficients are then collected in 25 vectors 𝒙(௥,௦), one for 
each component 𝛼ො(௥,௦),௜ (Eq. (15)), from which the sample 
mean vector and the sample covariance matrix are derived. 

The threshold value for the Mahalanobis distance 
adopted in the damage detection strategy for the numerical 
simulation is derived according to the Monte Carlo 
procedure outlined in Section 3.1. Considering a memory 
equal to 3, 200 sets of time histories in the training phase, 
1000 running trials and a 99 percentile, the threshold value 
of the Mahalanobis distance is estimated to be 3.85. 

Testing. To test whether the algorithm is capable of 
identifying the presence of structural damage, 50 time 
histories of the system response at each DOF and all the 
fourteen states (Table 1) are simulated. For the single 
sample, 25 feature vectors 𝒙ூ,(௥,௦), are extracted and used to 
compute the corresponding damage indices 𝑀𝐷(௥,௦). 

The results for the 50 time histories and for different 
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damage scenarios are here discussed adopting a color bar 
representation of the 𝑀𝐷  matrices. Each figure is 
associated with a tested state (Table 1) and shows a set of 𝑚 × 𝑚 matrices (5×5 for the numerical case study) where 
the generic (𝑟, 𝑠)  element collects the Mahalanobis 
distances, 𝑀𝐷(௥,௦) , computed in the tested samples 
simulated for that damage scenario. 

The bar colors address the classification in damaged or 
undamaged state. The samples classified as undamaged 
present Mahalanobis values that lay under the threshold and 
are characterized by dark grey color. Samples classified as 
damaged are instead associated with a color scale varying 
from blue to yellow with increasing values of the 
Mahalanobis distance. 

Fig. 3(a) shows the results for the undamaged tested 
scenario considering the 10% level of noise. All the 
simulated samples lead to Mahalanobis distance values that 
fall below the threshold that discriminates between healthy 
and unhealthy conditions, except for three samples. Almost 
all the inspected records are correctly associated with the 
undamaged system, highlighting the robustness of the 
procedure in high noise level conditions. 

Figs. 3(b)-(d) show the results for the damaged states 

 
 

 
 

(#2-4) considering a 10% noise corruption of the 
acceleration response time histories. In these scenarios, an 
additional mass corresponding to the 20% of the one 
adopted in the baseline is added to a different degree of 
freedom. All these conditions cause a substantial 
modification of the MAR coefficients located along the 
main diagonal of the identified AR matrices 𝑨෡௜ at the 
position (𝑗, 𝑗), where the additional mass is added. This 
variation is reflected in the damage index 𝑀𝐷(௝,௝) which 
exceeds the threshold and presents the maximum value 
among all the elements on the diagonal. The coefficients 
lying on the 𝑗-th row are also influenced by the mass 
perturbation and overpass the threshold and the same 
applies to some of the coefficients located on the 𝑗-th 
column, particularly for the ones placed right above and 
below the interested one. This behavior can be explained by 
understanding the role played by the MAR coefficients. The 𝑗-th row of the 𝑀𝐷 matrix collects all the indices related to 
the coefficients that take into account the influence of the 
remaining DOFs on the 𝑗-th DOF response regression. On 
the other hand, the 𝑗-th column collects all the damage 
indices associated with the coefficients that consider the 
influence of the 𝑗-th DOF on the remaining DOFs. 

(a) 10 samples of the baseline condition (b) 14 samples, one for each damaged scenario

Fig. 2 Cost function for MAR model for case study 1

(a) State 1 (b) State 2 

(c) State 3 (d) State 4 

Fig. 3 𝑀𝐷 matrix for tests of case study 1
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Therefore, if the damage occurs at the  𝑗 -th DOF, the 
coefficients that consider the influence from and on the 𝑗-th 
DOF itself are those that more likely show that variation. 
The other coefficients remain substantially unchanged 
presenting Mahalanobis distances below the threshold, 
confining the DOF interested by damage and giving 
information that help the damage localization. 

It is evident that not all the coefficients are influenced in 
the same way. Excluding the damage index 𝑀𝐷(௝,௝), which 
shows the maximum variation, the neighboring damage 
indices present dissimilar values, like 𝑀𝐷(ଶ,ଵ) and 𝑀𝐷(ଵ,ଶ) 
in state 2 or 𝑀𝐷(ଷ,ସ) and 𝑀𝐷(ହ,ସ) in state 4. This behavior 
is accentuated when the additional mass is placed at stories 
close either to the base or to the top level of the shear-type 
system, where the boundary conditions influence the system 
response. The Mahalanobis distance metric happens 
therefore to account the influence of the boundary 
conditions on the system response. 

A different pattern in the damage indices can be 
observed, as shown in Fig. 4, when a stiffness reduction at 
the 𝑗-th interstory, 𝑘௝, between the (𝑗 − 1)-th and the 𝑗-th 
DOFs is introduced. The main variations are observed for 
the damage indices 𝑀𝐷(௝,௝)  and 𝑀𝐷(௝ିଵ,௝ିଵ)  located 
along the principal diagonal of the damage matrix 𝑀𝐷. 
This is expected because any variation at the interstory 
stiffness affects the MAR coefficients directly playing a role 
in the regression of the acceleration responses of the two 

 
 

 
 

DOFs located closer to the interested interstory. In addition 
to the elements on the principal diagonal, also the elements 
off-diagonal at position (𝑗, 𝑗 − 1)  and (𝑗 − 1, 𝑗)  show 
similar variations, being associated with the MAR 
coefficients that take into account the influence of the 𝑗-th 
DOF on the (𝑗 − 1) -th DOF and vice versa. The 
asymmetries observed for the damage cases associated with 
an additional mass can also be found for the stiffness 
reductions. 

It is interesting to see how the intensity of damage is 
reflected in the magnitude of the damage index. Fig. 5 
shows the Mahalanobis distance matrices for the damage 
states 9 and 10, where the interstory stiffness, 𝑘ଷ , is 
reduced by 10% and 20%, respectively. Considering also 
the results for state 7, where the same stiffness was reduced 
by 15%, it can be noticed that, increasing the damage level, 
the maximum observed value of the damage index also 
increases (18.25, 26.64 and 35.84). 

The robustness of the proposed damage detection and 
localization strategy has also been tested considering 
double-damage scenarios. Fig. 6 shows the results for those 
cases in which damage occurs at two different locations 
(damage states 11, 12, 13, and 14). 

When the stiffness reduction is introduced into two 
consecutive interstories (states 11, 12 and 14) 𝑘௝ and 𝑘௝ାଵ, 
the damage index showing the maximum value is 𝑀𝐷(௝,௝) 
which corresponds to the coefficient associated with the 

(a) State 5 (b) State 6 

(c) State 7 (d) State 8 

Fig. 4 𝑀𝐷 matrix for tests of case study 1 

(a) State 9 (b) State 10 

Fig. 5 𝑀𝐷 matrix for tests of case study 1
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DOF common to both the interstories. In addition, the 
damage also affects the elements 𝑀𝐷(௝ିଵ,௝ିଵ)  and 𝑀𝐷(௝ାଵ,௝ାଵ)  on the main diagonal and the off-diagonal 
elements 𝑀𝐷(௝,௝ିଵ) , 𝑀𝐷(௝ିଵ,௝) , 𝑀𝐷(௝,௝ାଵ) , 𝑀𝐷(௝ାଵ,௝) , 𝑀𝐷(௝ିଵ,௝ାଵ), and 𝑀𝐷(௝ାଵ,௝ିଵ), which show smaller values 
with respect to 𝑀𝐷(௝,௝), but all above the threshold. The 
proposed damage assessment strategy also performs well 
when considering double-damage scenarios where the 
stiffness reduction is imposed on two non-consecutive 
interstories. In state 13, the second and fifth interstories face 
a 10% reduction of stiffness. In this damage scenario, only 
the damage indices associated with the coefficients related 
to those interstories are affected, demonstrating the 
effectiveness of the strategy in the damage localization. The 
observed trend manifests accordingly, also considering 
damaged scenarios in which the reduction of stiffness in the 
two consecutive interstories is not uniform (Fig. 6(d)). In 
these conditions, the damage index magnitude reflects the 
damage intensity, showing the same damage pattern 
observed for the double-damage conditions. 

As mentioned in Section 3.2, it is possible to consider 
alternative metrics to define the damage index. A common 
alternative to the Mahalanobis distance is the Euclidean 
distance. Fig. 7 shows the results considering this second 
distance metric for states 4 and 8. It is evident how the 
overall behavior of the damage indices remains unvaried, 
confirming the applicability of the proposed damage 
assessment strategy even with different metrics. 

 
 

 
 
It is worth noticing that the damage indices given in 

terms of Euclidean distance are more uniform in 
comparison with those obtained considering the 
Mahalanobis distance. This distinction in the behavior can 
be attributed to the different nature of the two metrics. 
Indeed, the Euclidean distance assumes the data to be 
generated from an isotropic Gaussian model. On the other 
hand, the Mahalanobis distance seeks to measure the 
correlation between variables and relaxes the Euclidean 
distance assumption, assuming an anisotropic Gaussian 
distribution instead. Therefore, the adoption of the 
Mahalanobis distance as metric in the damage detection 
strategy provides additional information on how the DSFs 
relate to each other and how the damage influences them 
differently. 

The effects of measurement noise on the damage 
classification have been tested considering three RMS 
levels of corrupting noise: 1%, 5%, and 10%. As an 
example, Fig. 8 presents the box plot (showing medians, 
quartiles and maximum-minimum values) for the damage 
indices 𝑀𝐷(ଷ,ଷ) and 𝑀𝐷(ହ,ଵ) considered at two different 
damage scenarios, state 1 and state 7, computed with three 
measurement noise levels. The two indices present a 
consistent distribution between the three noise levels over 
the 50 simulated realizations in the undamaged scenario. 
When the stiffness at the third interstory is reduced, the 
damage index 𝑀𝐷(ହ,ଵ), away from the critical position in 
the 𝑀𝐷 matrix, remains almost identical and does not 

(a) State 11 (b) State 12 

(c) State 13 (d) State 14 

Fig. 6 𝑀𝐷 matrix for tests of case study 1 

(a) State 4 (b) State 8 

Fig. 7 𝐸𝐷 matrix for tests of case study 1
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show substantial differences for the different noise levels. 
On the contrary, referring to the index 𝑀𝐷(ଷ,ଷ), which is 
associated with the MAR coefficient related to the DOF 
affected by damage, the introduction of different noise 
levels induces a perturbation in the damage index 
magnitude. This perturbation is, however, small in 
comparison with the damage index value, and consequently 
it does not endanger the detection and localization task. 

The proposed damage detection and localization 
strategy is robust in several scenarios and could offer 
improvements, particularly towards the localization task, 
compared with methodologies built on the univariate 
autoregressive models. 

The univariate regression model is built considering the 
system time histories recorded at each sensor individually, 
estimating 𝑚  individual row matrices 𝒂ෝ  (Eq. (6)) of 
dimension 1 × 𝑝. Therefore, in this case, an 𝑀𝐷 vector of 
dimensions 𝑚 × 1 is computed in place of the 𝑀𝐷 matrix 
derived in the case of the MAR model. To appreciate the 
comparison between the presented strategy built over the 
MAR model and the corresponding one associated with the 
UAR model, only the damage indices located on the main 
diagonal of the damage matrix 𝑀𝐷 derived from the MAR 
model should be considered. These are the damage indexes 
that show the influence of the 𝑗-th DOF on the structural 
response of the same DOF, and that can be put in direct 
comparison with the elements of the 𝑀𝐷 vector derivable 
in the case of the UAR model. 

In this case study, the AR coefficients in the univariate 
model are computed adopting a model memory equal to 17. 

 
 

 
 

The memory is inferred implementing the same approach 
suggested for the multivariate methodology, and the cost 
function is estimated considering the response time history 
of each DOF independently from the others. The threshold 
re-calibrated considering a memory of 17, results equal to 
6.57. 

Fig. 9 presents the results obtained in the proposed 
strategy considering the multivariate model, as well as a 
univariate model, respectively, for state 7. In the case of the 
UAR model (Fig. 9(a)), the 5 subplots represent the 
corresponding 5 damage indicators collected in the 𝑀𝐷 
vector for the 50 realizations simulated for that damage 
state. In the case of the MAR model (Fig. 9(b)), the 5 
subplots show the Mahalanobis distances associated with 
(𝑟, 𝑠) elements of the 𝑀𝐷 matrix where 𝑟 = 𝑠, in the 
tested samples simulated for that damage scenario. In both 
cases, the bar colors address the same classification in 
damaged or undamaged state presented for the 3D 
representation previously given. 

In the univariate approach, the damage detection task is 
correctly achieved but the localization of the damaged area 
cannot be accomplished since all the indices exceed the 
threshold and assume similar magnitudes. On the contrary, 
in the multivariate methodology, only the damage indices 𝑀𝐷(ଶ,ଶ) and 𝑀𝐷(ଷ,ଷ) overshoot the threshold, while the 
others consistently fall below, indicating that the occurrence 
of damage is between the 2nd and 3rd DOF and thus 
demonstrating the superiority of the proposed method over 
the univariate approach. Further comparisons between the 
proposed MAR-based method and other existing methods, 

(a) Undamaged (State 1) (b) Damaged (State 7) 

Fig. 8 Box plot for case study 1 considering different RMS noise levels (1%, 5%, and 10%) 

  
(a) Univariate model (b) Multivariate model 

Fig. 9 MD values for State 7 for case study 1
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Table 2 Damaged and undamaged states considered for case 
study 2 

State Condition Description 
1 Undamaged Baseline 
2 Damaged Added mass of 1.2 kg at the 1st floor 

3 Damaged 87.5% stiffness reduction 
in one column of the 1st interstory 

4 Damaged 87.5% stiffness reduction 
in two columns of the 1st interstory 

5 Damaged 87.5% stiffness reduction 
in one column of the 2nd interstory 

6 Damaged 87.5% stiffness reduction 
in two columns of the 2nd interstory 

7 Damaged 87.5% stiffness reduction 
in one column of the 3rd interstory 

8 Damaged 87.5% stiffness reduction 
in two columns of the 3rd interstory 

 

 
 

for example based on a different type of DSFs, will be 
addressed in dedicated future works. 

 
4.2 Case 2: Experimental laboratory model 
 
System description. The second case study is a 

laboratory three-story frame with a moving base, whose 
schematics and sensor locations are shown in Fig. 10. The 
reader is referred to Figueiredo et al. (2009) for a more 
detailed description of the structure and of the collected 
data. 

The load is applied by means of an electrodynamic 
shaker to the base floor along the centerline of the frame. 
The system is instrumented with four accelerometers 
mounted at the centerline of each floor and of the base on 
the opposite side of the excitation source. The dynamic 
response is sampled at 320 Hz for a duration of 25.6 
seconds. The input time history is a band-limited excitation 
in the range of 20–150 Hz applied at the base and the 
acceleration response time histories, including the one at the 
base, are recorded for different structural configurations. 

 
 
In this study, eight different sample sets were 

considered, as reported in Table 2. One dataset is obtained 
from the model in its original configuration, representing 
the baseline condition for the “healthy” reference condition, 
while the other seven datasets corresponds to modifications 
of the mass and stiffness of the structural elements. 

 
Feature extraction and training. The training dataset is 

built over 10 sets of time histories performed to establish 
the baseline condition. For case study 2, as it was for the 
previous numerical example, the construction of the training 
model requires only the evaluation of the sample mean 
vector and the sample covariance matrix of the features 
extracted from the training data. 

As before, the memory of the system is determined by 
investigating the cost function trend. Fig. 11 shows the cost 
functions derived for the 10 samples of the training set (Fig. 
11(a)) and one for each tested scenario (Fig. 11(b)). The 
overall cost function shows a substantial drop at the 
memory order equal to 2 and then slowly converges to a 
stable value. Hence, a value of the model memory equal to 
2 has been selected for all the analyses, leading to a block 
row matrix 𝑨෡ of dimensions 4×8. Consequently, 16 feature 
vectors are extracted for every sample in the training set 
following the same procedure described for the simulated 
system. 

The acceleration response of the base is considered in 
the construction of the regression model and, consequently, 
in the extraction of the MAR coefficients both in the 
training model and in the tested samples. However, being 
the input excitation directly applied to the base of the 
structure, the results related to the base level are not 
reported in the analyses. Considering a memory equal to 2, 
10 sets of time histories for training the model, 1000 
running trials, and a 99 percentile, the threshold value for 
the Mahalanobis distance metric has been determined equal 
to 3.06. 

Testing. The test dataset consists of 9 samples for each 
tested scenario (Table 2) for a total of 72 time histories at 
each recording location. Again, each sample will be 
considered separately to test the algorithm ability to 
distinguish between an undamaged or damaged state. Fig. 

 
Fig. 10 Test structure for case study 2 (adapted from Figueiredo et al. 2009); dimensions in cm 
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12 shows the results of the proposed strategy and each sub-
figure shows a 3×3 set of matrices collecting the 
Mahalanobis distances 𝑀𝐷(௥,௦) computed for the (𝑟, 𝑠) 
coefficient in the 9 tested samples recorded for that damage 
scenario. All the samples belonging to the undamaged 

 
 

 
 
condition are below the threshold value (Fig. 12(a)), and 
they are correctly associated with the healthy system. The 
scenario that involves the additional mass at the first floor, 
state 2 (Fig. 12(b)), presents, as expected, the highest values 
of Mahalanobis distance, for all the samples, at position 

(a) 10 samples used in the training phase (b) 8 samples, one for each damaged scenario

Fig. 11 Cost function for MAR model for case study 2

(a) State 1 (b) State 2 

(c) State 3 (d) State 4 

(e) State 5 (f) State 6 

(g) State 7 (h) State 8 

Fig. 12 𝑀𝐷 matrix for tests of case study 2
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(1,1) in the damage matrix 𝑀𝐷. As in the previous case 
study, the elements along the first row and the first column 
tend to be higher than the other indices but smaller than 𝑀𝐷(ଵ,ଵ). In this condition, some false alarms are registered 
with indices slightly higher than the threshold but still 
distinctly smaller than the ones associated with the affected 
DOFs, thus not penalizing the localization task. This 
instability in the identification may be partially caused by 
the small dataset available for the training. 

With regards to the cases of damage associated with a 
stiffness reduction, for states 3 and 4, where the reduction is 
at the first interstory, the stiffness reduction at the first 
interstory is clearly visible in the index at position (1,1), 
where the maximum value of the damage index emerges 
(Figs. 12(c)-(d)). Considering two different damage 
intensities, the position of maximum affected coefficients 
stays the same, and the intensity of the index results to be 
directly proportional to the introduced damage level. 

The states associated with a reduction of stiffness at the 
second interstory (states 5 and 6) and third interstory (states 
7 and 8) emerge with the same previously observed pattern, 
involving four adjacent elements of the 𝑀𝐷 matrix. Again, 
the stiffness reduction at the 𝑗-th interstory, 𝑘௝, between 
the (𝑗 − 1)-th and the 𝑗-th DOFs causes large variations in 
the damage indices 𝑀𝐷(௝,௝), and 𝑀𝐷(௝ିଵ,௝ିଵ) as well as on 
the off-diagonal elements at position (𝑗, 𝑗 − 1)  and (𝑗 − 1, 𝑗). 

Even if the overall observed behavior agrees with the 
one seen in the numerical simulation, unlike in the 5-DOF 
system, there is a strong asymmetry between the four 
involved elements in the damage scenarios associated with 
a reduction of stiffness. In this experimental case, the 
maximum damage index is observed in one of the off-
diagonal elements, while in the numerical study, even if 
asymmetric in some of the damage scenarios, the maximum 
damage index is consistently observed on the principal 
diagonal as well. 

When considering the Euclidean distance as damage 
metric, the results present the same overall behavior, 

 
 

perhaps with a more uniform trend between the indices. Fig. 
13 shows the results considering this alternative distance. It 
is evident how the detection and localization of damage can 
be inferred from the bar plots. In states 2 and 4 the 
maximum damage index occurs at position (1,1), indicating 
that structural modifications (additional mass and reduction 
in stiffness) occur in the proximity of the first level, 
confirming the trend observed when considering the 
Mahalanobis distance. 

In states 6 and 8, where damage occurs at the 2nd and 3rd 
interstory columns, respectively, the maximum damage 
index is still on an off-diagonal element but the three 
neighboring indices associated with the interested DOFs 
show a value similar to the maximum one. The imbalance 
observed in the values obtained using the Mahalanobis 
distance can be attributed to the fact that the Mahalanobis 
distance allows to better appreciate the correlation between 
the AR coefficients and the different influence that the 
damage has on those, while the Euclidean distance, lacking 
the covariance matrix in its formulation, cannot address this 
level of detail. 

 
 

5. Conclusions 
 
The present study addresses a novel damage detection 

and localization strategy based on the use of autoregressive 
coefficients, derived for a multivariate formulation, as 
damage-sensitive features. An extensive description of the 
extraction modality of such features is presented, explaining 
the approach followed to define the system memory, the 
extraction process of the AR coefficients, and the damage 
detection strategy. The proposed methodology adopts the 
Mahalanobis distance as damage index to investigate the 
deviation of the AR coefficients corresponding to an 
unknown condition from those related to the healthy 
reference model of the system. The definition of the 
threshold to discriminate between undamaged and damage 
conditions is determined through numerical calculations 
based on a Monte Carlo simulation. 

(a) State 2 (b) State 4 

(c) State 6 (d) State 8 

Fig. 13 𝐸𝐷 matrix for tests of case study 2 
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The proposed methodology was tested on data from two 
frame structures. The first test adopted a set of simulated 
data from a 5-DOF shear-type system, while, in the second 
test, the experimental data obtained from a scaled building 
model were used. In the numerical case, the results showed 
that the proposed damage diagnosis, even in the presence of 
high levels of measurement noise, is capable of recognizing 
damaged scenarios from the healthy conditions. In addition, 
the proposed methodology was quite successful in locating 
the damaged area, considering a wide range of different 
simulated conditions: variations in terms of mass and 
reduction of stiffness in single or double positions. In all the 
analyses, the damage indices showing the larger deviations 
from the baseline conditions are those associated with the 
MAR coefficients strictly related to the damaged DOF, 
confining the damage location on the system. Similar 
results were obtained when the proposed methodology was 
tested on an experimental case study, showing the 
robustness of the strategy even in handling smaller training 
datasets. The flexibility of the methodology to different 
damage index metrics was tested by replacing the 
Mahalanobis distance with the Euclidean distance: identical 
conclusions were reached. The performed numerical 
simulations and experimental validation suggest that the 
proposed procedure is robust and might be well suited for 
real-life applications. 
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