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1. Introduction 

 

Sandwich structures are well known for their good 

mechanical properties (specific strength and stiffness), and 

temperature resistance capability as per the implemented 

material. In general, the sandwich arrangement associated 

with three different layers say the middle layer (core layer) 

is covered by top and bottom face sheets. The Functionally 

Graded Material (FGM) structures are the typical type of 

composite material developed with continuous grading of 

multiple materials i.e., the metal and ceramic constituent 

prepared from the different phases. The variation of 

material properties like Young’s modulus and density along 

the thickness direction are mainly governed through the 

power law method. The closest similarity of Functionally 

Graded (FG) with the laminated composite, but possess a 

unique interface properties across the interlayer. The FGM 

structure or structural components have the diversified 

engineering industrial applications such as automobile, 

space, power and marine, ship construction because of the 

specific mechanical properties as per the application.   
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Further, change of the stresses at the interface of 

structure may happens due to the mechanical property 

variations at the boundaries of different material phases i.e., 

the ceramic and the metal which are utilized to make a 

regular sandwich arrangement. To address this issue, FGMs 

are one of the suitable candidates. This is because FGM 

permits the variation of properties through the thickness of 

structural panel. Further, the FGM sandwich cores (Aragh 

and Yas 2011, Alibeigloo and Liew 2014, Liu et al. 2015) 

and the face sheets (Shen and Li 2008, Wang and Shen 

2013, Yaghoobi and Yaghoobi 2013) are modelled 

mathematically to compute the relevant structural responses 

to establish their applicability. Various works utilizing the 

FSDT (Bousahla et al. 2020, Draiche et al. 2019, Semmah 

et al. 2019) refined plate theories (two and four variables) 

(Balubaid et al. 2019, Tounsi et al. 2020, Abualnour et al. 

2019, Belbachir et al. 2019) simple as well as nth-order 

shear deformation theory (Boussoula et al. 2020, Hellal and 

Bourada 2019), quasi-3D theories (Addou et al. 2019, 

Boukhlif et al. 2019, Boutaleb et al. 2019, Kaddari et al. 

2020, Khiloun et al. 2019, Mahmoudi et al. 2017, Zaoui et 

al. 2018, Zarga et al. 2019) for the analytical (Meksi et al. 

2017) and finite-element (Alimirzaei et al. 2019) solution of 

the buckling and vibration responses of ply laminated 

composite and soft core sandwich plates (Sahla et al. 2019), 

FG beams (Bourada et al. 2019), micro-beams (Tlidji et al. 

2019), nano-beams (Berghouti et al. 2019), plates/beams on 

elastic foundations (Chaabane et al. 2019, Boulefrakh et al. 

2019), nano-plates (Karami et al. 2019a) and nano-shells 

(Karami et al. 2019b, 2020) under thermo-mechanical and 

hygro-thermo-mechanical loading have been presented. 
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Abstract.  The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are 

reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical 

buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the 

framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural 

distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding 

eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The 

numerical stability and the accuracy of the current solution have been confirmed by comparing with the available 

published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature 

ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling 

behavior of graded sandwich curved shell panels. 
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Li et al. (2008) evaluated the natural frequencies using 

Ritz method and compared the final outcomes obtained 

using different two-dimensional plate theories of the FGM 

sandwich plate structure. Zenkour (2005a, b) analyzed the 

bending, buckling and the natural frequency parameters of 

the FG-sandwich plate component using the lower-order 

kinematic models. Additionally, the bending deflection 

values of the FGM viscoelastic sandwich beam including 

relation between the beam and its base reported by Zenkour 

et al. (2010). Recently, the bending, buckling and the 

natural frequencies of FG-porous micro-rectangular plates 

are obtained by Kim et al. (2019) via the lower-order 

kinematic models (Classical Laminated Plate Theory, 

CLPT; First-Order Shear Deformation Theory, FSDT). Thai 

et al. (2014) reported the analytical solutions of the 

bending, buckling and the free vibration frequencies of the 

graded sandwich structure. The structural motion equations 

are obtained via Hamilton’s principle and solved for 

different end constraint conditions. Ghannadpour et al. 

(2012) implemented a finite strip method for the evaluation 

of buckling responses of the rectangular FG-plate under 

thermal environment. Sobhy (2013) implemented a new 

function for the mid-plane kinematics which satisfies 

different kinds of boundary conditions of exponentially 

graded sandwich structural plate. The optimal buckling 

temperature parameters of the laminated structural 

components are predicted numerically by Topal (2012, 

2013) for different line supports considering the FSDT 

kinematic model. Wu and Liu (2014) carried out three-

dimensional linear buckling analysis of simply supported 

FGM sandwich plate under biaxial compressive load. 

Meziane et al. (2014) studied the free vibration frequency 

and the buckling responses of Exponential FGM (E-FGM) 

sandwich plate under the different boundary conditions. 

They implemented variable types of kinematic models i.e., 

the Simple Deformation Theory (SDT) and compared with 

available lower-order (FSDT), as well as the higher-order 

shear deformation theory (HSDT) models. Vo et al. (2015) 

investigated vibration and buckling responses of FGM 

beam under different boundary condition by utilizing FEM 

model. Al-Basyouni et al. (2015) evaluated size-dependent 

bending response and vibration analysis of higher-order FG 

micro-beams by using MCST and neutral surface position. 

Kolahchi et al. (2015) studied bending response of FG 

nano-plate by implementing new sinusoidal shear 

deformation theory and then compared the results with that 

of with FSDT and HSDT while Kolahchi (2017) 

investigated the transverse and axial bending behaviour of 

nano-sandwich plate by using RZT (refined zigzag theory), 

SSDT, FSDT and CPT. Neves et al. (2013) evaluated 

deflection, frequency and stress values of FGM sandwich 

structure by implementing principle of virtual displacement. 

Tounsi et al. (2013, 2016) analyzed the bending, buckling 

and natural frequencies of the functionally graded sandwich 

shell panels exposed to the thermal environment (Tounsi et 

al. 2013) and FGM sandwich plates (Tounsi et al. 2016). 

They adopted refined-third-order shear deformation (Tounsi 

et al. 2013) model using three-unknown non-polynomial 

shear deformation theory (Tounsi et al. 2016). Beldjelili et 

al. (2016) analyzed bending behaviour of S-FGM plate 

resting on elastic foundation under hygro-thermo-

mechanical environment by using four variable 

trigonometry plate theory. Zohra et al. (2016) performed 

buckling behaviour analysis of FGM sandwich structure 

with clamped boundary condition by adopting four 

unknown variables. Van Tung (2015) analyzed the 

buckling/post-buckling and bending behaviour of FGM 

sandwich structure under the combined thermal as well as 

mechanical loading in association with von-Karman 

nonlinearity in the framework of the FSDT. El-Haina et al. 

(2017) investigated the thermal buckling behaviour of thick 

FG-sandwich by implementing both the sinusoidal SDT and 

stress function. Menasria et al. (2017) studied thermal 

stability of FG sandwich plate by implementing new 

displacement field function which is undetermined integral 

terms. Ozdemir et al. (2018) applied 6-DOFs mesh free 

modeling to linear buckling analysis of stiffened plates with 

curvilinear surfaces. Bouderba et al. (2013) analyzed FGM 

plate with elastic foundation and implemented the refined 

plate theory to examine the static behaviour. Natarajan and 

Manickam (2012) used finite element method and various 

type plate theories with shear consideration, for 

development of mathematical model of FG sandwich plates. 

Kiani and Eslami (2012) compute the buckling response 

and post-buckling response of FGM sandwich plate using 

the FSDT kinematic model and von-Karman type 

geometrical nonlinearity utilizing pure metal core whereas 

the graded face and bottom part. Fouad et al. (2018) 

developed model of FGM plate by using novel kinematic 

and considering undetermined integral for analysis of 

thermo-mechanical bending. Dash et al. (2019) investigated 

flexural strength of FG curved sandwich shell structure by 

using FEM and higher order polynomial shear deformation 

kinematics. Ghannadpour and Mehrparvar (2020) 

investigated post buckling response of thick FG-plate with 

oblique elliptical cut-out by using plate assembly technique. 

Mehar and Panda (2017) by using FEM analyzed vibration 

response without considering thermal effect of FG-carbon 

nano tube reinforced curved panel with sandwich 

arrangement. Wang and Shen (2011) implemented two-step 

perturbation method to solve the governing equation of 

temperature dependent FGM sandwich structure. Katariya 

et al. (2017) analyzed buckling responses of shape memory 

alloy with sandwich arrangement of shell panel and 

included the Green Lagrange strain-displacement in 

geometrical nonlinearity analysis. Subsequently they used 

FEM model with HSDT for above analysis. Panda and 

Singh (2013) evaluated nonlinear fundamental natural 

frequency of spherical panel composed of shape memory 

alloy with layered composite by using Green-Lagrange 

strain-displacement, HSDT and the FEM with direct 

iterative method. El Meiche et al. (2011) implemented five 

number of unknowns in hyperbolic SDT whereas other 

plate theories contain four unknowns to analyze the 

buckling response and fundamental frequency response of 

laminated sandwich plates. Kettaf et al. (2013) analyzed 

buckling response of FG-sandwich by considering constant, 

linear and nonlinear temperature distributions across the 

thickness functionally graded sandwich plates. 

The review of above articles is indicating two major 

642



 

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory… 

research gaps i.e., i) mathematical model of graded 

sandwich structure derived using lower-order kinematics 

(FSDT) instead of HSDT and ii) the geometrical distortion 

included using von-Karman type nonlinearity. According to 

the published data on the graded sandwich structure, no 

study has been reported on the buckling behaviour using the 

HSDT kinematics and Green-Lagrange type of nonlinear 

geometrical distortion. Hence, the present article aims to 

numerically predict the thermal buckling load parameter 

using displacement controlled isoparametric FE model 

under the influence of variable kinds of temperature loading 

(uniform, linear and nonlinear). The convergence of critical 

buckling temperature (λCr) and the validity has been 

confirmed by solving different numerical examples as same 

as the published articles. Lastly, the model is utilized to 

show the influences of various structural parameters 

(curvature ratio, thickness ratio, power-law index (k), 

support conditions and the FG sandwich type) on the 

buckling characteristics of the graded sandwich curved 

panel structures. The obtained solutions and their relevance 

to the engineering analysis have been highlighted.  

 

 

2. Mathematical modelling 
 

A general mathematical formulation is prepared for the 

doubly curved functionally graded sandwich shell panel. 

The core is considered to be purely ceramic whereas the 

face sheets have been graded (from ceramic to metal) 

functionally along the thickness direction using the power-

law formulae. The material properties (Young’s modulus, 

density and Poisson’s ratio) vary as per the following 

relation 

 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉𝑓
(𝑛) (1) 

 

where Pm: Properties of metal and Pc: Properties of ceramic. 

Additionally, Vf 
(n): Volume fraction (n = 1, 2, 3).   

The volume fraction of the ceramic varies through the 

thickness as per the following power-law 

 

𝑉𝑓
(1) = (

𝑧 − ℎ0
ℎ1 − ℎ0

)
𝑛𝑧

, 𝑧 ∈ [ℎ0, ℎ1] 

𝑉𝑓
(2) = 1, 𝑧 ∈ [ℎ1, ℎ2] 

𝑉𝑓
(3) = (

𝑧 − ℎ3
ℎ2 − ℎ3

)
𝑛𝑧

, 𝑧 ∈ [ℎ2, ℎ3] 

(2) 

 

where nz is the power law index and the thickness 

coordinate (z) levels h0, h1, h2 and h3 are defined in Fig. 1 

which illustrates the geometry of the shell panels based on 

the principal radii of curvature along the longitudinal and 

transverse directions. 

 

2.1 Displacement field 
 

The curved panels (Fig. 1) with adequate geometrical 

dimensions (a × b × h) m3 to construct a rectangular base 

(projection of the curved panel would be a rectangle) panel 

model has been considered. The thickness of the core is 

denoted as hc whereas the thickness of the bottom and top 

face sheets are denoted as hf1 and hf2, respectively such that 

h = hc + hf1 + hf2. The R1 is radius of curvature in x direction 

and R2 is in y direction. The curved panel geometrical 

configurations are defined as: Cylindrical (R1 = R, R2 = ∞), 

spherical (R1 = R, R2 = R), elliptical (R1 = R, R2 = 2R), 

hyperboloid (R1 = R, R2 = -R) and flat (R1 = R2 = ∞) on the 

basis of curvature, where R is a constant. The displacement 

model based on HSDT mid-plane kinematics (Kant and 

Swaminathan 2002) is utilized to model the FG shell panels 

in the present work. 

The nine unknown parameters 𝑝0, 𝑞0, 𝑟0, 𝑝1, 𝑞1, 𝑟1, 𝑝3, 𝑞3, 
 𝑟3 global displacement p, q and r are the polynomial 

functions. At any point of sandwich shell panel the global 

displacement can be evaluated as 
 

𝑝 = 𝑝0 + 𝑧𝑝1 + 𝑧
2𝑝2 + 𝑧

3𝑝3 
𝑞 = 𝑞0 + 𝑧𝑞1 + 𝑧

2𝑞2 + 𝑧
3𝑞3 

𝑟 = 𝑟0 

(3) 

 

where p0, q0 and r0 are displacement components of any 

point in x, y and z-directions respectively. Now, some 

parameters in the equation act for the rotation of normal (p1 

and q1) in y and x axes respectively. The terms p1, q1, p3, and 

q3 represented the expansion of Taylor’s series of composite 

structure at any point on the mid-plane at z = 0. The 

unknown parameters are defined at the mid-plane are given 

as  
 

𝑝0 = 𝑝, 𝑞0 = 𝑞, 𝑟0 = 𝑟 

𝑝1 =
𝜕𝑝

𝜕𝑧
, 𝑞1 =

𝜕𝑞

𝜕𝑧
  𝑝2 =

1

2

𝜕2𝑝

𝜕𝑧2
, 𝑞2 =

1

2

𝜕2𝑞

𝜕𝑧2
 

𝑝3 =
1

6
(
𝜕3𝑝

𝜕𝑧3
),   𝑞3 =

1

6
(
𝜕3𝑞

𝜕𝑧3
) 

 

 

Now, the above Eq. (3) in matrix form 
 

{𝜆} = [𝐻1]{𝜆0} (4) 

 

in which {𝜆} = {𝑝 𝑞 𝑟}𝑇  and {𝜆0} = {𝑝0  𝑞0  𝑟0  𝑝1 

𝑞1   𝑝2  𝑞2   𝑝3   𝑞3 }
𝑇. 

 [H1] is the matrix of thickness co-ordinate, so 

 

[𝐻1] = [
1 0 0 𝑧 0 𝑧2 0 𝑧3 0
0 1 0 0 𝑧 0 𝑧2 0 𝑧3

0 0 1 0 0 0 0 0 0

]  

 

{𝜀} =

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 
 
 
 

 
 
 
 
 (
𝜕𝑝

𝜕𝑥
+
𝑟

𝑅1
)

(
𝜕𝑞

𝜕𝑦
+
𝑟

𝑅2
)

(
𝜕𝑝

𝜕𝑦
+
𝜕𝑞

𝜕𝑥
+
2𝑟

𝑅12
)

(
𝜕𝑝

𝜕𝑧
+
𝜕𝑟

𝜕𝑥
−
𝑝

𝑅1
)

(
𝜕𝑞

𝜕𝑧
+
𝜕𝑟

𝜕𝑦
−
𝑞

𝑅2
)
}
 
 
 
 
 

 
 
 
 
 

 (5) 

 

By substituting Eq. (3) in Eq. (4), the strain vector can 

further be given as 
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Fig. 1 Geometry of FGM sandwich panels and material 

variation in with ceramic core 

 

 

𝜀 =

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 

 
 
𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

𝜀𝑥𝑧
0

𝜀𝑦𝑧
0 }
 
 

 
 

+ 𝑧

{
 
 

 
 
𝑘𝑥
1

𝑘𝑦
1

𝑘𝑥𝑦
1

𝑘𝑥𝑧
1

𝑘𝑦𝑧
1 }
 
 

 
 

 

+ 𝑧2

{
 
 

 
 
𝑘𝑥
2

𝑘𝑦
2

𝑘𝑥𝑦
2

𝑘𝑥𝑧
2

𝑘𝑦𝑧
2 }
 
 

 
 

+ 𝑧3

{
 
 

 
 
𝑘𝑥
3

𝑘𝑦
3

𝑘𝑥𝑦
3

𝑘𝑥𝑧
3

𝑘𝑦𝑧
3 }
 
 

 
 

 

(6) 

 

in which 

 

 

[𝐻2]5×20 = [𝐼1 𝑧𝐼1 𝑧2𝐼1 𝑧3𝐼1]  and [I1] is a unit 

matrix having dimension 5 × 5.  

The strain-stress relationship of FGM sandwich 

structure can be expressed as 

 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑧𝑥
𝜏𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55]

 
 
 
 

(

 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

−

{
 
 

 
 
𝛼1
𝛼2
0
0
0 }
 
 

 
 

𝛥𝑡

)

 
 

 

or {𝜎} = [𝑄]{𝜀 − 𝛼𝛥𝑡} 

(7) 

 

where 𝑄11 = 𝐸1/(1 − (𝜇21𝜇12)), 𝑄22 = 𝐸2/(1 − (𝜇21𝜇12)), 
𝑄12 = 𝜈12𝐸2/(1 − (𝜇21𝜇12), 𝑄44 = 𝐺13, 𝑄55 = 𝐺23 and 𝑄66 
= 𝐺12. Further, the values of shear modulus are taken as 

𝐺13 = 𝐺12 and 𝐺23 = 1.2 × 𝐺12. 

Δt: represents temperature rise.  

The total strain energy (U) of the sandwich structure can 

be written as 

 

𝑈 =
1

2
(∬(∫ {𝜀}𝑇

ℎ/2

−ℎ/2

{𝜎}𝑑𝑧)𝑑𝑥𝑑𝑦) 

or 𝑈 =
1

2
(∬(∫ {𝜀}𝑇[𝐻2]

𝑇
ℎ/2

−ℎ/2

{𝑄}{𝐻2}{𝜀}𝑑𝑧)𝑑𝑥𝑑𝑦) 

(8) 

or 𝑈 =
1

2
∬(∫ [𝐵]𝑇{𝜆0}

𝑇[𝐻2]
𝑇

ℎ/2

−ℎ/2

{𝑄}{𝐻2}[𝐵]{𝜆0}𝑑𝑧)𝑑𝑥𝑑𝑦 

or 𝑈 =
1

2
∬{𝜆0}

𝑇[𝐵]𝑇{𝜆0}[𝐷][𝐵]𝑑𝑥𝑑𝑦 

 

where  

 

[𝐷] = ∫ [𝐻2]
𝑇

ℎ/2

−ℎ/2

{𝑄}[𝐻2]𝑑𝑧  

 

Now FGM sandwich panel is under thermal load then, it 

can be evaluated as 

 

{𝑓𝑇} = {𝑀𝑥𝑇 𝑀𝑦𝑇 𝑀𝑥𝑦𝑇 0 0}𝑇     

= ∫ [𝑄]
ℎ/2

−ℎ/2

{𝛼1 𝛼2 0 0 0}𝑇𝛥𝑡𝑑𝑧 
(9) 

 

The work done can be calculated due to temperature rise 

as 

𝑊𝑇 = ∫

(

 
 

1

2
{(𝑝,𝑥)

2
+ (𝑞,𝑥)

2
+ (𝑤,𝑥)

2
}𝑀𝑥𝑇

+
1

2
{(𝑝,𝑦)

2
+ (𝑞,𝑦)

2
+ (𝑤,𝑦)

2
}𝑀𝑦𝑇

+ {𝑝,𝑥𝑝,𝑦 + 𝑞,𝑥𝑞,𝑦 + 𝑤,𝑥𝑤,𝑦}𝑀𝑥𝑦𝑇 )

 
 
𝑑𝑣

𝑉

 (10) 

 

 

𝑊𝑇 = ∫

{
 
 

 
 
𝑝,𝑥
𝑝,𝑦
𝑞,𝑥
𝑞,𝑦
𝑟,𝑥
𝑟,𝑦}
 
 

 
 
𝑇

𝑣

 

[
 
 
 
 
 
 
𝑀𝑥𝑇 𝑀𝑥𝑦𝑇 0 0 0 0

𝑀𝑥𝑦𝑇 𝑀𝑦𝑇 0 0 0 0

0 0 𝑀𝑥𝑇 𝑀𝑥𝑦𝑇 0 0

0 0 𝑀𝑥𝑦𝑇 𝑀𝑦𝑇 0 0

0 0 0 0 𝑀𝑥𝑇 𝑀𝑥𝑦𝑇

0 0 0 0 𝑀𝑥𝑦𝑇 𝑀𝑦𝑇 ]
 
 
 
 
 
 

{
 
 

 
 
𝑝,𝑥
𝑝,𝑦
𝑞,𝑥
𝑞,𝑦
𝑟,𝑥
𝑟,𝑦}
 
 

 
 

𝑑𝑣 

(11) 

 

or 𝑊𝑇 = ∫ {𝜀𝐺}
𝑇[𝑆𝑇]𝑞

{𝜀𝐺}𝑑𝑞 

or 𝑊𝑇 = ∫ {𝜀𝐺}
𝑇[𝐻𝐺]

𝑇[𝑆𝑇]𝑞
[𝐻𝐺]{𝜀𝐺}𝑑𝑞 

or 𝑊𝑇 = ∬{𝜀𝐺}
𝑇 [𝐷𝐺]{𝜀𝐺}𝑑𝑥𝑑𝑦 where {𝜀𝐺} =

{𝑝𝑥 𝑝𝑦 𝑞𝑥 𝑞𝑦 𝑟𝑥 𝑟𝑦}𝑇  is the mid-plane geometric 

strain vector and [𝐻𝐺]6×24 = [𝐼2 𝑧𝐼2 𝑧2𝐼2 𝑧3𝐼2]  is 

thickness coordinate of geometrical matrix. [I2] is a 6 × 6 

unit matrix. [DG]24x24 is a matrix of material properties 

which may be defined as [𝐷𝐺] = ∫ [𝐻𝐺]
ℎ/2

−ℎ/2

𝑇
[𝑆𝑇][𝐻𝐺]𝑑𝑧. 

In this analysis, FEM is employed to compute the 

buckling temperature of FGM sandwich structure. To obtain 

the elemental equation of the sandwich shell structure an 

isoparametric element having nine nodes and nine degrees 

of freedom (DOF) per node is implemented. 

The mid-plane displacement vector is further expressed 

in terms of interpolation function {𝑀𝑖} and nodal 

displacement vector {𝜆0𝑖} as same as the source (Cook et  

{𝜀}

= {𝜀𝑥
0 𝜀𝑦

0 𝜀𝑥𝑦
0 𝜀𝑥𝑧

0 𝜀𝑦𝑧
0 𝑘𝑥

1 𝑘𝑦
1 𝑘𝑥𝑦

1 𝑘𝑧𝑥
1 𝑘𝑦𝑧

1 𝑘𝑥
2 𝑘𝑦

2 𝑘𝑥𝑦
2 𝑘𝑧𝑥

2 𝑘𝑦𝑧
2 𝑘𝑥

3 𝑘𝑦
3 𝑘𝑥𝑦

3 𝑘𝑧𝑥
3 𝑘𝑦𝑧

3} 
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Table 1 Different support condition combinations 

A SSSS Each side having simply supported 

B CCCC All sides clamped 

C SFSF 
Two opposite sides simply supported  

and two other sides are free 

D SCSC 
Two sides clamped and other  

two sides are simply supported 

E CFCF 
Two opposite sides free and  

two other sides are clamped 

F CFFF Cantilever (one side clamped, others free) 
 

 
 

al. 2009) 
 

{𝜆0} =∑𝑀𝑖{𝜆0𝑖}

9

𝑖=1

 (12) 

 

where  
{𝜆0𝑖} = [𝑝0𝑖 𝑞0𝑖 𝑟0𝑖 𝑝1𝑖 𝑞1𝑖 𝑝2𝑖 𝑞2𝑖 𝑝3𝑖 𝑞3𝑖]𝑇 . 

The strain vectors can be expressed in terms of nodal 

displacement vector as 
 

{𝜀} = {𝜆0𝑖}[𝐵] (13) 
 

{𝜀𝐺} = [𝐵𝐺]{𝜆0𝑖} (14) 
 

where [BG] and [B] represent the product of differential 

operators and interpolation functions. Their matrix details 

are available in Mehar et al. (2017). 

The variational principle applied to the FG sandwich 

curved panel for derive governing equation of buckling 

analysis. 
 

𝛿∏ = 𝛿(𝑈 −𝑊𝑇) = 0 (15) 
 

The final steady state equation of FG shell panel for the 

buckling analysis in terms of eigenvalue and eigenvectors is 

present in Eq. (16) 
 

([𝐾𝐿] + 𝜆𝑐𝑟[𝐾𝐺]){𝛥} = 0 (16) 
 

where [𝐾𝐿] = ∬[𝐵]
𝑇[𝐷][𝐵]𝑑𝑥𝑑𝑦  and 

[𝐾𝐺] = ∬[𝐵]
𝑇[𝐷𝐺][𝐵]𝑑𝑥𝑑𝑦 . The linear and geometrical 

stiffness matrices are [𝐾𝐿] and [𝐾𝐺], respectively. Also, 

λCr is critical buckling temperature load factor. 

For numerical analysis different edge conditions are 

considered which are given below (Table 1): 

Ⅰ. Simply-supported edge conditions (S)  

x = 0, a; q0 = r0 = q1 = q2 = p3 = q3 = 0 

y = 0, b; p0 = r0 = p1 = p2 = p3 = 0 

Ⅱ. Clamped edge conditions (C) 

x = 0, a; y = 0, b  

p0 = q0 = r0 = p1 = q1 = p2 = q2 = p3 = q3 = 0 

Ⅲ. Free edge conditions (F) 

x = 0, a; y = 0, b  

p0 = q0 = r0 = p1 = q1 = p2 = q2 = p3 = q3 ≠ 0 

In the present study, various kinds of symmetry of the 

FGM sandwich plate are used and denoted as: 1-1-1, 1-2-1, 

2-1-2, 1-0-1and 2-2-1. Considering the thickness of plate as 

Table 2 Coordinates of different sandwich structure 

Sandwich type h0 h1 h2 h3 

1-0-1 -h/2 0 0 h/2 

1-1-1 -h/2 -h/6 h/6 h/2 

1-2-1 -h/2 -h/4 h/4 h/2 

2-1-2 -h/2 -h/10 h/10 h/2 

2-2-1 -h/2 -h/10 h/10 h/2 
 

 

 

“h” and the plane of symmetry to be at the mid-surface of 

plate, the arrangements of the core and the face sheets for 

each of the sandwich symmetries are as follows the Table 2. 

 

 

3. Results and discussions 
 

In the current investigation, the proposed HSDT type FE 

model has been utilised to compute the thermal buckling 

response of a FG sandwich structure. The study reveals the 

convergence test followed by the validation of the model. 

Then, a series of numerical examples are taken up to solve 

various structural parametric effect on the buckling 

temperature values of graded sandwich structure including 

the geometrical configuration, temperature loading and 

sandwich type (symmetric and unsymmetric). Now, the 

geometrical parameters and the material dependent 

components are defined in a tabular fashion, which are 

utilized for the numerical analysis purpose.  

In the FGM sandwich curved shell panel, temperature of 

the bottom surface is TB and temperature of top surface is 

TT.  

The material properties are adopted for the current 

analysis are: Titanium-alloy/Zirconia [Ti 6Al 4V/ZrO2] FG 

sandwich properties (Titanium alloy: E = 66.2 GPa, α = 

10.3 × 10-6, ν = 0.3; Zr: E = 244.27 GPa, α = 12.766 × 10-6, 

ν =0.3).  

The symmetry of FG panels is defined in terms of the 

ratio of face and core thickness and represented as ℎ𝑓1 −

ℎ𝑐 − ℎ𝑓2. The core-face thickness ratio (CFR) is defined as 

the ratio of thickness of core to the face (CFR = hc/hf, 

where, hf1 = hf2 = hf). The panels are assumed to have the 

following geometrical and material properties throughout, 

unless specified otherwise. The panel is square cross-

section a/b = 1, a/h = 10 and power-law-index (nz = 2). 

Also, the Titanium-alloy/Zirconia [Ti 6Al 4V/ZrO2] 

properties are utilized for throughout the current analysis if 

not stated explicitly.   

The buckling response of FGM sandwich panel focused 

on the temperature distribution through thickness as the 

following. 

Uniformly temperature distribution through thickness:  

In this case the initial temperature of the FG sandwich 

plate is assumed to be Ti which subsequently increases to Tf 

Then the change in temperature is given by 

 

𝛥𝑇 = 𝑇𝑓 − 𝑇𝑖 

 

Graded temperature distribution across thickness:  
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(a) Uniform temperature distribution 

 

(b) Linear temperature distribution 

 

(c) Non-linear temperature distribution 

Fig. 2 Convergence of buckling response of cylindrical 

panels (a) uniform temperature distribution;  

(b) linear temperature distribution;  

(c) non-linear temperature distribution 

 

 

It is assumed that the temperature variation across the 

thickness of FG sandwich panel is regulated through power 

law variation given as (Zenkour and Sobhy 2010) 

 

T(z)= 𝛥𝑡 (
𝑧

ℎ
+

1

2
)
𝛾

+ 𝑇𝑇  

 

where TT and TB are the top and bottom surface 

temperatures respectively. 𝛾 is the temperature exponent 

having values 0 ≺ 𝛾 ≺ ∞. The temperature difference is 

𝛥𝑡 = 𝑇𝐵 − 𝑇𝑇. For 𝛾 = 1, the temperature distribution will 

be linear across the thickness and for other values of 𝛾, it 

will be nonlinear. 
 

3.1 Convergence of critical buckling temperature 
 

At the very beginning, the convergence test of the 

present structural model has been performed. The first 

critical buckling temperature difference (λCr) is obtained for 

different mesh sizes by considering the material properties 

scheme 1-1-1 and 2-2-1 cylindrical shell panels subjected to 

[SSSS], [SFSF] and [SCSC] support conditions. The 

physical the properties for the Ti-alloy/ZrO2 panels is: a/h = 

10, square cross-section, R/a = 10, and nz = 2. 

Figs. 2(a)-(c) are illustrating the sensitivity behaviour of 

critical buckling temperature (λCr) for variable mesh 

divisions. The responses are presented for the uniform, 

linear and nonlinear temperature distributions in Figs. 2(a), 

(b) and (c), respectively considering the earlier defined 

material properties. The results are following the necessary 

convergence with mesh refinement for each type of 

temperature distribution. It can also be concluded that a (6 × 

6) mesh is good enough for the numerical computation of 

the buckling results.  

 

3.2 Validation of thermal buckling response 
 

The numerically calculated critical buckling temperature 

(λCr) using current HSDT based approach is compared with 

the analytical values (of λCr) reported by Zenkour and 

Sobhy (2010). The validation is confirmed as the present 

values are matching well with the values from Zenkour and 

Sobhy (2010) and presented in Tables 3-5, for different 

cases of temperature distributions across the FG sandwich 

panel thickness. The critical buckling temperature (λCr) of  

FG flat sandwich shell panels (a/b = 1, a/h = 10), as 

considered by Zenkour and Sobhy (2010), corresponding to 

power law index 0.5 and 2 for the symmetries 1-0-1 and 2-

1-2 are obtained using the present scheme and listed in 

Tables 3-5 along with the reference values. λCr 

corresponding to uniform temperature distribution, linear 

temperature distribution and nonlinear temperature 

distribution is presented in Tables 3-5 respectively. It may 

be noted that the λCr values in the above Tables comprise of 

analytical solutions of the reference and present HSDT 

based numerical solutions. Moreover, the present approach 

utilizes a nine-noded isoparametric element and each node 

having 9 DOF which is used for discretizing the shell panel 

domain. It is clearly observed that the present λCr values are 

in good agreement with that of the reference. The new value 

is hardly lesser compared to the higher-order theory based 

solution reported by the reference. Therefore, it is safe to 

conclude that the current model yields correct and valid 

results. 
 

3.3 Effect of curvature ratio (R/a) on buckling 
response 

 

Firstly, the influence of R/a on the buckling response of 

FGM sandwich curved panels with [SCSC] support 

conditions is investigated considering four different types of 

panel geometry (cylindrical, spherical, hyperboloid, and  
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Table 3 Validation of critical buckling temperature (λCr) under uniform temperature distribution 

Sandwich type nz Source a/h = 5 a/h = 10 a/h = 15 a/h = 25 

1-0-1 

 0.5 

SPT (Zenkour and Sobhy 2010) 2.87276 0.80328 0.36504 0.13294 

HPT (Zenkour and Sobhy 2010) 2.87073 0.80313 0.36501 0.13294 

FPT (Zenkour and Sobhy 2010) 2.83506 0.80036 0.36444 0.13286 

CPT (Zenkour and Sobhy 2010) 3.34559 0.83639 0.37173 0.13382 

Present 2.8421 0.79451 0.36102 0.13148 

2 

SPT (Zenkour and Sobhy 2010) 2.63459 0.71815 0.32462 0.11789 

HPT (Zenkour and Sobhy 2010) 2.63018 0.71783 0.32455 0.11788 

FPT (Zenkour and Sobhy 2010) 2.57355 0.71357 0.32368 0.11776 

CPT (Zenkour and Sobhy 2010) 2.962 0.7405 0.32911 0.11848 

Present 2.611 0.71573 0.32389 0.1177 

2-1-2  

0.5 

SPT (Zenkour and Sobhy 2010) 2.83194 0.79232 0.3601 0.13116 

HPT (Zenkour and Sobhy 2010) 2.83029 0.7922 0.36007 0.13115 

FPT (Zenkour and Sobhy 2010) 2.79675 0.78959 0.35954 0.13108 

CPT (Zenkour and Sobhy 2010) 3.30065 0.82516 0.36673 0.13202 

Present 2.801 0.78323 0.35591 0.12962 

 2 

SPT (Zenkour and Sobhy 2010) 2.39953 0.65098 0.29396 0.10671 

HPT (Zenkour and Sobhy 2010) 2.39637 0.65075 0.29392 0.1067 

FPT (Zenkour and Sobhy 2010) 2.34733 0.6471 0.29317 0.1066 

CPT (Zenkour and Sobhy 2010) 2.68016 0.67004 0.29779 0.1072 

Present 2.3807 0.64827 0.29296 0.10638 

 

Table 4 Under linear temperature distribution validation of critical buckling temperature (λCr) 

Sandwich type nz Source a/h = 5 a/h = 10 a/h = 15 a/h = 25 

1-0-1 

 0.5 

SPT (Zenkour and Sobhy 2010) 5.69553 1.55657 0.68008 0.21589 

HPT (Zenkour and Sobhy 2010) 5.69147 1.55627 0.68002 0.21588 

FPT (Zenkour and Sobhy 2010) 5.62013 1.55073 0.67888 0.21573 

CPT (Zenkour and Sobhy 2010) 6.64118 1.62279 0.69346 0.21764 

Present 5.458963 1.581754 0.726454 0.266733 

2 

SPT (Zenkour and Sobhy 2010) 5.21919 1.38631 0.59924 0.18578 

HPT (Zenkour and Sobhy 2010) 5.21036 1.38566 0.59911 0.18576 

FPT (Zenkour and Sobhy 2010) 5.0971 1.37714 0.59736 0.18553 

CPT (Zenkour and Sobhy 2010) 5.874 1.431 0.60822 0.18696 

Present 4.975096 1.413244 0.646227 0.236681 

2-1-2  

0.5 

SPT (Zenkour and Sobhy 2010) 5.61388 1.53464 0.6702 0.21231 

HPT (Zenkour and Sobhy 2010) 5.61059 1.5344 0.67015 0.21231 

FPT (Zenkour and Sobhy 2010) 5.5435 1.52919 0.66908 0.21216 

CPT (Zenkour and Sobhy 2010) 6.55131 1.60032 0.68347 0.21405 

Present 5.382616 1.560241 0.716634 0.26314 

 2 

SPT (Zenkour and Sobhy 2010) 4.74906 1.25196 0.53793 0.16341 

HPT (Zenkour and Sobhy 2010) 4.74274 1.2515 0.53784 0.1634 

FPT (Zenkour and Sobhy 2010) 4.64467 1.2442 0.53635 0.1632 

CPT (Zenkour and Sobhy 2010) 5.31032 1.29008 0.54559 0.16441 

Present 4.531798 1.2815 0.585399 0.214275 
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elliptical) subjected to three types of temperature 

distributions (uniform, linear and nonlinear) across the 

thickness. The results are displayed in Figs. 3-5 taking λCr 

as abscissa, CFR as ordinate and keeping other parameters 

fixed like nz = 2, a/b = 1 and a/h = 10. The effect of 

variation of curvature ratio on λCr is carried out by taking 

R/a = 5, 10, 20 and 50. The λCr is computed for increasing 

CFR under uniform temperature distribution and illustrated 

in Fig. 3(a) and (b) for cylindrical, spherical and 

hyperboloid, elliptical geometry, respectively. In this case of 

temperature distribution, with the increase of CFR value, 

the λCr value initially decreases, attends a minimum value  

 

 

 

corresponding to CFR = 1 and then increases with further 

increase in CFR. The same trend is observed in the case of 

linear temperature distribution shown in Figs. 4(a) and (b). 

However, unlike two previous cases, the critical buckling 

temperature monotonically decreases with increase in CFR 

value in case of nonlinear temperature distribution as 

illustrated in Figs. 5(a) and (b) for all of the geometries 

considered. 

It is significant to mention that for a fixed (R/a) ratio, 

TCr values for the spherical shell panels are higher than the 

corresponding values for cylindrical panels and the values 

for the hyperboloid shell panels are higher than the values  

Table 5 Under non linear temperature distribution validation of critical buckling temperature (λCr) 

Sandwich type nz Source a/h = 5 a/h = 10 a/h = 15 a/h = 25 

1-0-1 

 0.5 

SPT (Zenkour and Sobhy 2010) 21.62877 5.91108 2.58262 0.81985 

HPT (Zenkour and Sobhy 2010) 21.61337 5.90995 2.58239 0.81982 

FPT (Zenkour and Sobhy 2010) 21.34245 5.8889 2.57804 0.81924 

CPT (Zenkour and Sobhy 2010) 25.21986 6.16255 2.63342 0.82651 

Present 20.7304 6.006704 2.758705 1.012918 

2 

SPT (Zenkour and Sobhy 2010) 23.0683 6.12734 2.64858 0.82115 

HPT (Zenkour and Sobhy 2010) 23.02926 6.12449 2.648 0.82107 

FPT (Zenkour and Sobhy 2010) 22.52869 6.08684 2.64029 0.82005 

CPT (Zenkour and Sobhy 2010) 25.96247 6.32487 2.68827 0.82634 

Present 21.9894 6.246391 2.856255 1.046104 

2-1-2  

0.5 

SPT (Zenkour and Sobhy 2010) 21.35073 5.83656 2.54893 0.80746 

HPT (Zenkour and Sobhy 2010) 21.33821 5.83566 2.54875 0.80744 

FPT (Zenkour and Sobhy 2010) 21.08306 5.81584 2.54466 0.80689 

CPT (Zenkour and Sobhy 2010) 24.91597 6.08637 2.59941 0.81408 

Present 20.47118 5.933912 2.725505 1.000775 

 2 

SPT (Zenkour and Sobhy 2010) 22.38252 5.90053 2.53532 0.77017 

HPT (Zenkour and Sobhy 2010) 22.35275 5.89838 2.53488 0.77011 

FPT (Zenkour and Sobhy 2010) 21.89054 5.86398 2.52785 0.76918 

CPT (Zenkour and Sobhy 2010) 25.02775 6.08019 2.57139 0.77488 

Present 21.03511 5.956555 2.721782 0.996428 

 

  

(a) (b) 

Fig. 3 Thermal buckling temperature load variation for different curvature ratio (R/a) under uniform temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 
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of elliptical panels for all temperature distributions. 

 

3.4 Effect of power law index on buckling response 
 

The influence of power law index on the buckling 

response of FGM sandwich curved panels with a/h = 10, 

R/a = 10 and [SCSC] support conditions, is investigated  

 

 

 

 

 

 

considering four different types of panel geometry 

(cylindrical, spherical, hyperboloid, and elliptical) under 

three types of temperature distributions (uniform, linear and 

nonlinear) throughout thickness. The results are displayed 

in Figs. 6-8 with nz = 0, 0.5, 1, 2, 5 and 10. The λCr is 

computed for increasing CFR under uniform temperature 

distribution and illustrated in Fig. 6(a) and (b) for cylind- 

  

(a) (b) 

Fig. 4 Thermal buckling temperature load variation for different curvature ratio (R/a) under linear temperature  

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 5 Thermal buckling temperature load variation for different curvature ratio (R/a) under non linear temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 6 Thermal buckling temperature load variation for different nz values under uniform temperature distribution  

(a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 
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rical, spherical and hyperboloid, elliptical geometry, 

respectively. In this case of temperature distribution, with 

the increase of k value, the λCr value decreases for a fixed 

CFR value (other than CFR = 0). It may be observed that 

for all geometric panels, the λCr initially decreases then 

increases for all values of k but however the change is more 

pronounced in case of 𝑛𝑧 = 5 and 10. The similar behav- 

 

 

 

 

 

 

iour is observed in case of linear temperature distribution as 

shown in Figs. 7(a) and (b). Unlike uniform and linear 

temperature distribution, in case of nonlinear temperature 

distribution, the critical buckling temperature decreases 

monotonically with increase of CFR but for a fixed value of 

CFR, the λCr value increases with increase of k value as 

displayed in Figs. 8(a) and (b) for all of the geometries  

  

(a) (b) 

Fig. 7 Thermal buckling temperature load variation for different nz values under linear temperature distribution  

(a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 8 Thermal buckling temperature load variation for different nz values under non linear temperature distribution  

(a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 9 Thermal buckling temperature load variation for different support condition under uniform temperature  

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 
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considered. It may be noted here that for nz = 0, the TCr 

becomes independent of variation of CFR for all 

temperature distributions and all geometric panels. 

 

3.5 Effect of support condition on buckling response 
 

The influence of support conditions on the buckling  

 

 

 

 

 

 

response of FGM sandwich curved panels with a/h = 10, 

R/a = 5, nz = 2, a/b = 1 is investigated considering four 

different types of panel geometry subjected to various 

temperature distributions as mentioned in the preceding 

subsections (3.3 and 3.4).  

The results are displayed in Figs. 9-11. The sandwich 

panel subjected to [SSSS], [CCCC], [SCSC] and [CFCF]  

  

(a) (b) 

Fig. 10 Thermal buckling temperature load variation for different support condition under linear temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 11 Thermal buckling temperature load variation for different support condition under non linear temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 12 Thermal buckling temperature load variation for core face thickness ratio (hc/hf) under uniform temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 
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support conditions. It has been observed from Figs. 9-11 

that the maximum and minimum values of critical buckling 

temperature (λCr) occurs for [CCCC] and [SSSS] support 

conditions respectively in all four geometries. This is 

attributed that the increasing number of constraints has an 

effect of increasing stiffness of the shell panel. For uniform 

and linear temperature distributions, the λCr increases 

monotonically with increase in CFR beyond CFR = 1 for all 

geometries and support conditions corresponding to Figs. 9-

10. However in case of nonlinear temperature distribution 

Fig. 11, the value of λCr monotonically decreases with 

increase in CFR for all geometries. 

It is significant to mention that the λCr values are higher 

for spherical geometry compared to the corresponding 

values of cylindrical geometry for all support conditions 

and uniform (Fig. 9(a)) and nonlinear (Fig. 11(a)) 

temperature distributions. Moreover for linear temperature, 

their TCr values are nearly identical (Fig. 10(a)). 

 

3.6 Effect of CFR (core to face thickness ratio) on 
buckling response 

 
The influence of CFR on the buckling response of FGM 

sandwich curved panels with R/a = 10, nz = 2, a/b = 1 is 

investigated considering four different type of panel  

 

 

 

 

geometries with three types of temperature distributions 

throughout thickness as mentioned earlier. Both core (hc) 

and face thickness (hf) are varied but the total thickness (h) 

of the panel is constant. 

The results are displayed in Figs. 12-14. The CFR is 

varied to have the values 0, 1, 2, 3, 5 and 10. The λCr is 

computed for increasing thickness ratio (a/h) under uniform 

temperature distribution and illustrated for cylindrical and 

spherical shells in Fig. 12(a) and hyperboloid and elliptical 

shells in Fig. 12(b). In this case, with increase of a/h ratio, 

the λCr value decreases. The similar behaviour is observed 

in the case of linear and nonlinear temperature distributions 

as shown in Figs. 13(a) and (b) and Figs. 14(a) and (b) 

respectively. For a fixed (a/h) ratio, the λCr value increases 

with increase in CFR value in uniform and linear 

temperature distributions and for all geometries but 

surprisingly the λCr value falls with rise in CFR value in 

case of nonlinear temperature distribution as depicted in 

Figs. 14(a) and (b). spherical shells in Fig. 12(a) and 

hyperboloid and elliptical shells in Fig. 12(b). In this case, 

with increase of a/h ratio, the λCr value decreases. The 

similar behaviour is observed in the case of linear and 

nonlinear temperature distributions as shown in Figs. 13(a) 

and (b) and Figs. 14(a) and (b) respectively. For a fixed 

(a/h) ratio, the λCr value increases with increase in CFR 

  

(a) (b) 

Fig. 13 Thermal buckling temperature load variation for core face thickness ratio (hc/hf) under linear temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 

  

(a) (b) 

Fig. 14 Thermal buckling temperature load variation for core face thickness ratio (hc/hf) under nonlinear temperature 

distribution (a) cylindrical and spherical; (b) hyperboloid and elliptical FG sandwich shell panels 
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value in uniform and linear temperature. 

 

3.7 Effect of sandwich symmetry type 
 

The buckling responses of Ti-alloy/ZrO2 FGM sandwich 

spherical shell panels is studied accounting the influence of 

sandwich symmetry type with a/h = 10, R/a = 10 and 

clamped boundary condition [CCCC]. The schemes such as 

1-1-1, 2-2-1, 1-1-3, 2-1-2, 2-1-3, 1-5-1 and 3-1-4 are 

considered here. The symmetry types are 1-1-1, 1-5-1, 2-1-

2 and non- symmetry ones are 2-2-1, 1-1-3, 2-1-3, 3-1-4. 

The value of λCr is plotted with increasing (nz) value and 

depicted in Fig. 15. In case of uniform and linear 

temperature distribution all schemes have identical 

behaviour excluding 1-1-3 which is give higher λCr value 

than other scheme in linear temperature distribution. But in 

case of nonlinear temperature distribution all schemes are 

λCr value increases with increasing nz value and 1-1-3 have 

highest λCr value. The non-linear temperature distribution 

exhibit higher values of λCr corresponding to all of the 

power law index values. Finally, 1-1-3 scheme gives the 

highest λCr value than other unsymmetrical sandwich with 

respect to all temperature distribution. Similarly, 1-5-1 

gives highest λCr value than other symmetrical sandwich in 

case of uniform and linear temperature distribution but in 

case of non-linear distribution 2-1-2 scheme gives highest 

λCr value. 

 

 

4. Conclusions 
 
Thermal buckling load of FGM sandwich curved shell 

panels are predicted numerically using Green-Lagrange 

type large distortion in the framework of the HSDT. The 

computational responses are evaluated using in-house 

higher-order FE MATLAB code with the help of the current 

mathematical model. The solution validity as well as the 

convergence are checked initially using the similar kind of 

results available in the published domain. Finally, a set of 

numerical examples are solved to bring out the influences 

of curvature ratio, CFR (hC/hf), power-law index (k), 

support conditions and the FG sandwich including the types 

of sandwich i.e., symmetrical and unsymmetrical on 

buckling temperature. Moreover, the results are obtained for 

the four different geometrical shapes viz. cylindrical, 

spherical, hyperboloid, and elliptical including three kinds 

of temperature loading (uniform, linear and nonlinear) 

through the panel thickness. The following concluding 

remarks are listed in the following lines to understand the 

capability of the proposed model to investigate the 

sandwich structure made from graded material.  

• The critical buckling temperature (λCr) is increasing 

while the curvature ratio increases under the uniform and 

linear temperature distributions whereas following a reverse 

path for the nonlinear temperature distribution. 

• The buckling load parameters are decreasing while the 

power-law indices (nz) increase under the uniform 

temperature distribution irrespective of all kind of 

geometries adopted in this analysis whereas the values 

follow the reverse line for nonlinear temperature loading.  

• For all four geometrical shapes, as well as the 

temperature distributions, the λCr values are decreasing 

when the thickness ratio (a/h) increases. However, for a 

particular thickness ratio, the λCr values follow an increasing 

line when CFR value increase under the uniform and linear 

temperature distributions. However, the values follow a 

similar downline type for the nonlinear temperature 

distribution.  

• The clamped graded structure is showing the stiffest 

configuration while compared to all other kinds of end 

boundaries.  

 

 
References 
 
Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., 

Bousahla, A.A. and Tounsi, A. (2019), “Thermomechanical 

analysis of antisymmetric laminated reinforced composite plates 

using a new four variable trigonometric refined plate theory”, 

Comput. Concrete, Int. J., 24(6), 489-498. 

https://doi.org/10.12989/cac.2019.24.6.489. 

Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., 

Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), “Influences 

of porosity on dynamic response of FG plates resting on 

Winkler/Pasternak/Kerr foundation using quasi 3D HSDT”, 

Comput. Concrete, Int. J., 24(4), 347-367. 

http://dx.doi.org/10.12989/cac.2019.24.4.347 

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), “Size 

dependent bending and vibration analysis of functionally graded 

micro beams based on modified couple stress theory and neutral 

surface position”, Compos. Struct., 125, 621-630. 

https://doi.org/10.1016/j.compstruct.2014.12.070. 

Alibeigloo, A. and Liew, K.M. (2014), “Free vibration analysis of 

sandwich cylindrical panel with functionally graded core using 

three-dimensional theory of elasticity”, Compos. Struct., 113, 

23-30. https://doi.org/10.1016/j.compstruct.2014.03.004. 

Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), 

“Nonlinear analysis of viscoelastic micro-composite beam with 

geometrical imperfection using FEM: MSGT electro-magneto-

elastic bending, buckling and vibration solutions”, Struct. Eng. 

Mech., Int. J., 71(5), 485-502. 

http://dx.doi.org/10.12989/sem.2019.71.5.485.  

Aragh, B.S. and Yas, M.H. (2011), “Effect of continuously grading 

fiber orientation face sheets on vibration of sandwich panels 

with FGM core”, Int. J. Mech. Sci., 53(8), 628-638. 

https://doi.org/10.1016/j.ijmecsci.2011.05.009. 

Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), 

“Free vibration investigation of FG nanoscale plate using 

nonlocal two variables integral refined plate theory”, Comput. 

Concrete, Int. J., 24(6), 579-586. 

http://dx.doi.org/10.12989/cac.2019.24.6.579. 

Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. 

and Mohammadimehr, M. (2019), “Bending analysis of anti-

symmetric cross-ply laminated plates under nonlinear thermal 

and mechanical loadings”, Steel Compos. Struct., Int, J., 33(1), 

81-92. https://doi.org/10.12989/scs.2019.33.1.081. 

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R.  (2016), “Hygro-

thermo-mechanical bending of S-FGM plates resting on 

variable elastic foundations using a four-variable trigonometric 

plate theory”, Smart Struct. Syst., Int. J., 18(4), 755-786. 

https://doi.org/10.12989/sss.2016.18.4.755. 

Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. 

(2019), “Vibration analysis of nonlocal porous nanobeams made 

of functionally graded material”, Adv. Nano Res., Int. J., 7(5), 

351-364. https://doi.org/10.12989/anr.2019.7.5.351. 

653



 

Brundaban Sahoo, Bamadev Sahoo, Nitin Sharma, Kulmani Mehar and Subrata Kumar Panda 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), 

“Thermomechanical bending response of FGM thick plates 

resting on winkler-pasternak elastic foundations”, Steel 

Compos. Struct., Int, J., 14(1), 85-104. 

https://doi.org/10.12989/scs.2013.14.1.085. 

Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., 

Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), “A simple 

quasi-3D HSDT for the dynamics analysis of FG thick plate on 

elastic foundation”, Steel Compos. Struct., Int, J., 31(5), 503-

516. http://dx.doi.org/10.12989/scs.2019.31.5.503.  

Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. 

and Mahmoud, S.R. (2019), “The effect of parameters of visco-

Pasternak foundation on the bending and vibration properties of 

a thick FG plate”, Geomech. Eng., Int, J., 18(2), 161-178. 

https://doi.org/10.12989/gae.2019.18.2.161. 

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. 

and Tounsi, A. (2019), “Dynamic investigation of porous 

functionally graded beam using a sinusoidal shear deformation 

theory”, Wind Struct., Int. J., 28(1), 19-30. 

https://doi.org/10.12989/was.2019.28.1.019. 

Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, 

A., Bedia, E.A. and Tounsi, A. (2020), “Buckling and dynamic 

behavior of the simply supported CNT-RC beams using an 

integral-first shear deformation theory”, Comput. Concrete, Int. 

J., 25(2), 155-166.  

http://dx.doi.org/10.12989/cac.2020.25.2.155.  

Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., 

Bousahla, A.A. and Tounsi, A. (2020), “A simple nth-order 

shear deformation theory for thermomechanical bending 

analysis of different configurations of FG sandwich plates”, 

Smart Struct. Syst., Int. J., 25(2), 197-218. 

http://dx.doi.org/10.12989/sss.2020.25.2.197.  

Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, 

A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), 

“Dynamic analysis of nanosize FG rectangular plates based on 

simple nonlocal quasi 3D HSDT”, Adv. Nano Res., Int. J., 7(3), 

191-208. http://dx.doi.org/10.12989/anr.2019.7.3.191.  

Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., 

Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), 

“Analytical study of bending and free vibration responses of 

functionally graded beams resting on elastic foundation”, Struct. 

Eng. Mech., Int. J., 71(2), 185-196. 

http://dx.doi.org/10.12989/sem.2019.71.2.185. 

Wu, C.P. and Liu, W.L. (2014), “3D buckling analysis of FGM 

sandwich plates under bi-axial compressive loads”, Smart 

Struct. Syst., Int. J., 13(1), 111-135. 

https://doi.org/10.12989/sss.2014.13.1.111. 

Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), 

Concepts and Applications of Finite Element Analysis, John 

Wiley & Sons, Singapore. 

Dash, S., Mehar, K., Sharma, N,. Mahapatra, T.R. and Panda, S.K. 

(2019), “Finite element solution of stress and flexural strength 

of functionally graded doubly curved sandwich shell panel”, 

Earthq. Struct., Int. J., 16(1), 55-67. 

https://doi.org/10.12989/eas.2019.16.1.055. 

Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. 

and Mahmoud, S.R. (2019), “Static analysis of laminated 

reinforced composite plates using a simple first-order shear 

deformation theory”, Comput. Concrete, Int. J., 24(4), 369-378. 

http://dx.doi.org/10.12989/cac.2019.24.4.369 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., Int. J., 63(5), 585-595. 

https://doi.org/10.12989/sem.2017.63.5.585. 

El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Bedia, 

E.A.A. (2011), “A new hyperbolic shear deformation theory for 

buckling and vibration of functionally graded sandwich plate”,  

Int. J. Mech. Sci., 53, 237-247. 

https://doi.org/10.1016/j.ijmecsci.2011.01.004.  

Fouad, B., Bouiadjra, M.B., Bouremana, M. and Tounsi, A. 

(2018), “Hygro-thermo-mechanical bending analysis of FGM 

plates using a new HSDT”, Smart Struct. Syst., Int. J., 21(1), 

75-97. https://doi.org/10.12989/sss.2018.21.1.075.  

Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), 

“Buckling analysis of functionally graded plates under thermal 

loadings using the finite strip method”, Comput. Struct., 

108(109), 93-99. 

https://doi.org/10.1016/j.compstruc.2012.02.011. 

Ghannadpour, S.A.M. and Mehrparvar, M. (2020), “Nonlinear and 

post-buckling responses of FGM plates with oblique elliptical 

cutouts using plate assembly technique”, Steel Compos. Struct., 

Int. J., 34(2), 227-239.  

https://doi.org/10.12989/scs.2020.34.2.227. 

Hellal, H. and Bourada, M. (2019), “Dynamic and stability 

analysis of functionally graded material sandwich plates in 

hygro-thermal environment using a simple higher shear 

deformation theory”, J. Sandw. Struct. Mater., 2019, 

1099636219845841. 

http://dx.doi.org/10.1177/1099636219845841. 

Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., 

Tounsi, A., Bedia, E.A. and Al-Osta, M.A. (2020), “A study on 

the structural behaviour of functionally graded porous plates on 

elastic foundation using a new quasi-3D model: Bending and 

free vibration analysis”, Comput. Concrete, Int. J., 25(1), 37-57. 

http://dx.doi.org/10.12989/cac.2020.25.1.037.  

Kant, T. and Swaminathan, K. (2002), “Analytical solutions for the 

static analysis of laminated composite and sandwich plates 

based on a higher order refined theory”, Compos. Struct., 56, 

329-344. 

https://doi.org/10.1016/S0263-8223(02)00017-X. 

Karami, B., Janghorban, M. and Tounsi, A. (2019a), “Galerkin’s 

approach for buckling analysis of functionally graded 

anisotropic nanoplates/ different boundary conditions”, Eng. 

Comput., 35(4), 1297-1316.  

http://dx.doi.org/10.1007/s00366-018-0664-9. 

Karami, B., Janghorban, M. and Tounsi, A. (2019b), “On pre-

stressed functionally graded anisotropic nanoshell in magnetic”, 

J. Braz. Soc. Mech. Sci. Eng., 41, 1-17. 

https://doi.org/10.1007/s40430-019-1996-0. 

Karami, B., Janghorban, M. and Tounsi, A. (2020), “Novel study 

on functionally graded anisotropic doubly curved nanoshells”, 

Eur. Phys. J. Plus, 103, 135. 

http://dx.doi.org/10.1140/epjp/s13360-019-00079-y. 

Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and 

Thakare, O. (2017), “Enhancement of thermal buckling strength 

of laminated sandwich composite panel structure embedded 

with shape memory alloy fibre”, Smart Struct. Syst., Int. J., 

20(5), 595-605. 

https://doi.org/10.12989/sss.2017.20.5.595. 

Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. 

(2013), “Thermal buckling of functionally graded sandwich 

plates using a new hyperbolic shear displacement model”, Steel 

Compos. Struct., Int. J., 15, 399-423. 

https://doi.org/10.12989/scs.2013.15.4.399. 

Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. 

and Mahmoud, S.R. (2019), “Analytical modeling of bending 

and vibration of thick advanced composite plates using a four-

variable quasi 3D HSDT”, Eng. Comput., 2019, 1-15. 

https://doi.org/10.1007/s00366-019-00732-1. 

Kiani, Y. and Eslami, M.R. (2012), “Thermal buckling and post-

buckling response of imperfect temperature-dependent 

sandwich FGM plates resting on elastic foundation”, Arch. 

Appl. Mech., 82, 891-905.  

654



 

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory… 

https://doi.org/10.1007/s00419-011-0599-8. 

Kim, J., Żur, K.K. and Reddy, J.N. (2019), “Bending, free 

vibration, and buckling of modified couples stress-based 

functionally graded porous micro-plates”, Compos. Struct., 209, 

879-888. https://doi.org/10.1016/j.compstruct.2018.11.023. 

Kolahchi, R. (2017), “A comparative study on the bending, 

vibration and buckling of viscoelastic sandwich nano-plates 

based on different nonlocal theories using DC, HDQ and DQ 

methods”, Aerosp. Sci. Technol., 66, 235-248. 

https://doi.org/10.1016/j.ast.2017.03.016. 

Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), “Size-

dependent bending analysis of FGM nano-sinusoidal plates 

resting on orthotropic elastic medium”, Struct. Eng. Mech., Int. 

J., 55(5), 1001-1014. 

https://doi.org/10.12989/sem.2015.55.5.1001. 

Li, Q., Iu, V.P. and Kou, K.P. (2008), “Three-dimensional vibration 

analysis of functionally graded material sandwich plates”, J. 

Sound Vib., 311(1), 498-515. 

https://doi.org/10.1016/j.jsv.2007.09.018. 

Liu, M., Cheng, Y. and Liu, J. (2015), “High-order free vibration     

analysis of sandwich plates with both functionally graded face 

sheets and functionally graded flexible core”, Compos. Part B, 

72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037. 

Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda 

Bedia, E.A. and Mahmoud, S.R. (2017), “A refined quasi-3D 

shear deformation theory for thermo-mechanical behavior of 

functionally graded sandwich plates on elastic foundations”, J. 

Sandw. Struct. Mater., 21, 1906-1929. 

https://doi.org/10.1177/1099636217727577. 

Mehar, K. and Panda, S.K. (2016), “Geometrical nonlinear free 

vibration analysis of FG-CNT reinforced composite flat panel 

under uniform thermal field”, Compos. Struct., 143, 336-346. 

https://doi.org/10.1016/j.compstruct.2016.02.038. 

Mehar, K. and Panda, S.K. (2017), “Thermal free vibration 

behavior of FG-CNT reinforced sandwich curved panel using 

finite element method”, Polym. Compos., 39(8), 2751-2764. 

http://dx.doi.org/10.1002/pc.24266. 

Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, 

E.A.A. and Mahmoud, S. (2017), “An analytical solution for 

bending, buckling and vibration responses of FGM sandwich 

plates”, J. Sandw. Struct. Mater., 21(2), 727-757. 

http://dx.doi.org/10.1177/1099636217698443. 

Menasria, A., Bouhada, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

Int. J., 25(2), 157-175. 

https://doi.org/10.12989/scs.2017.25.2.157. 

Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), “An 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318. 

https://doi.org/10.1177/1099636214526852. 

Natarajan, S. and Manickam, G. (2012), “Bending and vibration of 

functionally graded material sandwich plates using an accurate 

theory”, Finite Elem. Anal. Des., 57, 32-42. 

https://doi.org/10.1016/j.finel.2012.03.006. 

Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, 

C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), “Static, free 

vibration and buckling analysis of isotropic and sandwich 

functionally graded plates using a quasi-3D higher-order shear 

deformation theory and a meshless technique”, Compos. Part B 

44(1), 657-674.   

https://doi.org/10.1016/j.compositesb.2012.01.089. 

Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T.T. and 

Bui, T.Q. (2018), “Application of 6-DOFs meshfree modeling to 

linear buckling analysis of stiffened plates with curvilinear 

surfaces”, Acta Mech., 229, 4995-5012. 

https://doi.org/10.1007/s00707-018-2275-3. 

Panda, S.K. and Singh, B.N. (2013), “Nonlinear finite element 

analysis of thermal post-buckling vibration of laminated 

composite shell panel embedded with SMA fibre”, Aerosp. Sci. 

Technol., 29, 47-57. https://doi.org/10.1016/j.ast.2013.01.007. 

Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and 

Tounsi, A. (2019), “Free vibration analysis of angle-ply 

laminated composite and soft core sandwich plates”, Steel 

Compos. Struct., Int. J., 33(5), 663-679. 

https://doi.org/10.12989/scs.2019.33.5.663. 

Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), 

“Thermal buckling analysis of SWBNNT on Winkler 

foundation by non local FSDT”, Adv. Nano Res., Int. J., 7(2), 

89-98. https://doi.org/10.12989/anr.2019.7.2.089. 

Shen, H.S. and Li, S.R. (2008), “Postbuckling of sandwich plates 

with FGM face sheets and temperature dependent properties”,  

Compos. Part B, 39(2), 332-344. 

https://doi.org/10.1016/j.compositesb.2007.01.004. 

Sobhy, M. (2013), “Buckling and free vibration of exponentially 

graded sandwich plates resting on elastic foundations under 

various boundary conditions”, Compos. Struct., 99, 76-87. 

https://doi.org/10.1016/j.compstruct.2012.11.018. 

Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), “Analysis of 

functionally graded sandwich plates using a new first-order 

shear deformation theory”, Eur. J. Mech. A Solids, 45, 211-225. 

https://doi.org/10.1016/j.compstruct.2015.03.010. 

Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, 

A., Bousahla, A.A. and Mahmoud, S.R. (2019), “Vibration 

analysis of different material distributions of functionally 

graded microbeam”, Struct. Eng. Mech., Int. J., 69(6), 637-649. 

http://dx.doi.org/10.12989/sem.2019.69.6.637. 

Topal, U. (2012), “Thermal buckling load optimization of 

laminated plates with different intermediate line supports”, Steel 

Compos. Struct., Int. J., 13(3), 207-223. 

https://doi.org/10.12989/scs.2012.13.3.207. 

Topal, U. (2013), “Application of a new extended layerwise 

approach to thermal buckling load optimization of laminated 

composite plates”, Steel Compos. Struct., Int. J., 14(3), 283-293. 

https://doi.org/10.12989/scs.2013.14.3.283. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. 

(2013), “A refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates”, 

Aerosp. Sci. Technol., 24(1), 209-220. 

https://doi.org/10.1016/j.ast.2011.11.009.  

Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), “A new 3-

unknowns non-polynomial plate theory for buckling and 

vibration of functionally graded sandwich plate”, Struct. Eng. 

Mech., Int. J., 60(4), 547-565. 

https://doi.org/10.12989/sem.2016.60.4.547. 

Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-

Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), “A four 

variable trigonometric integral plate theory for hygro-thermo-

mechanical bending analysis of AFG ceramic-metal plates 

resting on a two-parameter elastic foundation”, Steel Compos. 

Struct., Int. J., 34(4), 511-524. 

http://dx.doi.org/10.12989/scs.2020.34.4.511. 

Van Tung, H. (2015), “Thermal and thermomechanical 

postbuckling of FGM sandwich plates resting on elastic 

foundations with tangential edge constraints and temperature 

dependent properties”, Compos. Struct., 131, 1028-1039. 

https://doi.org/10.1016/j.compstruct.2015.06.043. 

Vinson, J.R. (2001), “Sandwich structures”, Appl. Mech. Rev., 54, 

201-214.  

Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), “A 

quasi-3D theory for vibration and buckling of functionally 

graded sandwich beams”, Compos. Struct., 119, 1-12. 

https://doi.org/10.1016/j.compstruct.2014.08.006. 

655



 

Brundaban Sahoo, Bamadev Sahoo, Nitin Sharma, Kulmani Mehar and Subrata Kumar Panda 

Wang, X.Z. and Shen, H.S. (2011), “Nonlinear analysis of 

sandwich plates with FGM face sheets resting on elastic 

foundations”, Compos. Struct., 93, 2521-2532. 

https://doi.org/10.1016/j.compstruct.2011.04.014. 

Wang, Z.X. and Shen, H.S. (2013), “Nonlinear dynamic response 

of sandwich plates with FGM face sheets resting on elastic 

foundations in thermal environments”, Ocean Eng., 57, 99-110. 

https://doi.org/10.1016/j.oceaneng.2012.09.004. 

Yaghoobi, H. and Yaghoobi, P. (2013), “Buckling analysis of 

sandwich plates with FGM face sheets resting on elastic 

foundation with various boundary conditions: an analytical 

approach”, Meccanica, 48(8), 2019-2035. 

https://doi.org/10.1007/s11012-013-9720-0. 

Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2018), “New 2D and 

quasi-3D shear deformation theories for free vibration of 

functionally graded plates on elastic foundations”, Compos. 

Part B, 159, 231-247. 

https://doi.org/10.1016/j.compositesb.2018.09.051 

Zarga, D., Tounsi, A., Anis, B., Bourada, F. and Mahmoud, S.R. 

(2019), “Thermomechanical bending study for functionally 

graded sandwich plates using a simple quasi-3D shear 

deformation theory”, Steel Compos. Struct., Int. J., 32(3), 389-

410. http://dx.doi.org/10.12989/scs.2019.32.3.389. 

Zenkour, A.M. (2005a), “A comprehensive analysis of functionally 

graded sandwich plates: Part 1-deflection and stresses”, Int. J. 

Solids Struct., 42(18), 5224-5258. 

https://doi.org/10.1016/j.ijsolstr.2005.02.015. 

Zenkour, A.M. (2005b), “A comprehensive analysis of    

functionally graded sandwich plates: Part 2-buckling and free 

vibration”, Int. J. Solids Struct., 42(18), 5224-5258. 

https://doi.org/10.1016/j.ijsolstr.2005.02.015. 

Zenkour, A.M. and Sobhy, M. (2010), “Thermal buckling of 

various types of FGM sandwich plates”, Compos. Struct., 93(1), 

93102. https://doi.org/10.1016/j.compstruct.2010.06.012.  

Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), “Bending 

analysis of FG viscoelastic sandwich beams with elastic cores 

resting on Pasternak’s elastic foundations”, Acta Mech., 212(3-

4), 233-252. https://doi.org/10.1007/s00707-009-0252-6. 

Zohra, A., Hadji, T.L., Daouadji, H. and Adda Bedia, E.A. (2016), 

“Thermal buckling response of functionally graded sandwich 

plates with clamped boundary conditions”, Smart Struct. Syst., 

Int. J., 18(2), 267-291. 

https://doi.org/10.12989/sss.2016.18.2.267. 

 

 

CC 

656




