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1. Introduction 

 

The dynamic deflection is widely considered as an 

important indicator for assessing the operational safety and 

structural damage of high-speed railway bridges. Hence, the 

dynamic deflection monitoring is also an important and 

indispensable part of Structural Health Monitoring (SHM) 
systems. In recent years, a large number of SHM systems 

have been implemented to obtain real-time structural 

information.  

In the past decades, considerable efforts have been 

devoted to structural displacement reconstruction in the 

field of deformation monitoring. The strain measurement 

was employed to reconstruct the structural displacement 

based largely on the modal transformation method (Bogert 

et al. 2003, Foss and Haugse 1995). Pisoni et al. (1995) 

studied a beam structure with two strain gages and 

predicted the displacement at different locations of the 
beam. Li and Ulsoy (1999) studied the high-precision 

measurement of displacement for the precision flexible line 

boring using strain gages. The strain measured by the Fiber 

Bragg Grating (FBG) strain sensor can also be applied to 

the dynamical displacement reconstruction of structures 

based on the transformation matrix of the modal approach 

(Kim et al. 2011, Rapp et al. 2009, Kang et al. 2007, Zhou  
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et al. 2019). Yang et al. (2017a) identified the full-field 

vibration modes of the structure from the video 

measurements, and then estimated the full-field dynamic 

strains based on the modal superposition method (Yang et 

al. 2019). In SHM systems of railway bridges, inclinometer 

sensors are usually employed for dynamic deflection 

monitoring. The traditional inclination-deflection principle 
is mostly based on mathematical theory, such as polynomial 

functions (Sousa et al. 2013), three spline interpolation 

principles (Xiong et al. 2018) and the combination of the 

orthogonal function and beam deflection constraint (He et 

al. 2014a, Hou et al. 2005). Shortcomings of these 

structural deflection reconstruction methods can be 

summarized as follows: (1) Most of the methods only 

consider the simple single-span beam structure. Although 

the relationship between deflection, strain, and modal 

shapes has theoretical solutions to a certain extent, the 

adopted approaches dealing with the ill-posed inverse 
problem are relatively simple; (2) With the increase of 

bridge spans, the undetermined parameters of the 

strain/inclination-deflection model increase dramatically. A 

large number of sensors are needed to meet the accuracy 

requirements of deflection prediction, which may result in a 

waste of material, labour, and financial resources. In 

addition, a large number of sensors can increase the 

occurrence of sensor anomalies, and the associated sensor 

maintenance may also be a major task for high-speed 

railway bridges; (3) The spatial correlation information 

hidden in strain/inclination measurements of different spans 
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is ignored. Therefore, to satisfy the deflection prediction 

accuracy of the large complex high-speed railway bridges, 

it is necessary to propose a novel inclination-deflection 

model that accounts for the ill-posed inverse problem. In 

general, the prediction accuracy of the inclination-
deflection model depends significantly on the placement of 

a limited number of inclinometer sensors for low cost and 

high efficiency. Thus, in order to obtain the most critical 

information with fewest inclinometer sensors, the 

installation positions of the inclinometer sensors need to be 

optimized to avoid the ill-conditioned modal matrix and 

improve the prediction accuracy.  

In the field of modal updating and damage 

identification, the optimal sensor placement has been 

extensively studied and successfully applied in SHM 

systems (Azarbayejani et al. 2008, Flynn and Todd 2010, 
Heo et al. 1997, Li and Kiureghian 2016, Lu et al. 2016, 

Papadimitriou 2002, Papadimitriou et al. 2000, 

Trendafilova et al. 2001, Udwadia 1994, Lei et al. 2013, Pei 

et al. 2018, Yi et al. 2012). These include the effective 

independence sensor placement method (Kammer 1996), 

the kinetic energy method (Heo et al. 1997), the Bayesian-

based framework method (Beck and Katafygiotis 1998), the 

information entropy-based method (Papadimitriou et al. 

2000, Papadimitriou 2004), the intelligent optimization 

(Downey et al. 2018, Lian et al. 2013, Lin et al. 2018, Yang 

et al. 2017b, Yi et al. 2015, Zhou et al. 2015), etc. However, 

these optimal sensor placement methods are mainly focused 
on structural damage diagnosis and modal parameter 

identification. For displacement reconstruction and 

prediction, Zhang and Xu performed a sensor position 

optimization based on the principle of estimation error 

minimization (Zhang et al. 2011, 2014a). The optimal 

placement of FBG strain sensors also utilized the criteria of 

the conditional number minimization (Kim et al. 2011, 

Rapp et al. 2009), which required an exhaustive search to 

evaluate its performance for all sensor configurations to 

find the optimal solution. For the dynamical response 

reconstruction of structures, sequential sensor placement 
methods were proposed based on the state space equation 

(Hernandez 2017, Wang et al. 2014, Zhang and Xu 2016). 

The rank of Markov parameter matrix or the exhaustive 

search was usually employed to determine the initial sensor 

location. Then, one or multiple sensors were added at 

certain positions using a sequential placement algorithm 

based on the initial sensor locations (Wang et al. 2014, 

Zhang and Xu 2016). In this paper, for the large complex 

high-speed railway bridges with the degree of freedom over 

thousands, the inclinometer sensor is expected to capture all 

possible variable characteristics to provide more 

representative monitored dynamical deflections from 
thousands potential placement locations. Therefore, both 

data duplication and sensor expenses can be reduced by 

optimising reasonably the placement of the limited sensors.  

In this study, the optimal inclinometer sensor placement 

for dynamic deflection monitoring in high-speed railway 

bridges is investigated to minimise the associated error of 

the proposed inclination-deflection transformation model. 

The paper is organized as follows: Section 2 illustrates the 

theoretical background and procedures of the proposed 

deflection monitoring method, including the development 

of the inclination-deflection transformation model, error 

analysis, and inclinometer sensor placement optimisation; 

Section 3 presents the numerical simulation and 

experimental verification of a typical high-speed railway 
bridge to assess the accuracy and robustness of the 

proposed model; finally, conclusions are drawn in Section 

4. 

 

 

2. Deflection monitoring using optimised 
inclinometer sensors 
 

2.1 Inclination-deflection model establishment and 
prediction error analysis 

 
Considering that the inclinometer sensor position is 

expressed as 𝑑 = [𝑥, 𝑦, 𝑧]𝑇 , where x, y and z represent 

along-bridge, transverse-bridge, and vertical coordinates, 
respectively. The vertical displacement is often the main 

concern for the dynamic deflection monitoring of high-

speed railway bridges, and can be expressed as 

 

𝑣(𝑥, 𝑡) = 𝛷(𝑥)𝑞(𝑡) (1) 

 

where 𝑣 ∈ 𝑅𝑁×1,  𝑞 ∈ 𝑅𝑚×1  and 𝛷 ∈ 𝑅𝑁×𝑚  represent the 

deflection vector, generalized modal coordinates at time t 

and displacement mode shape matrix, respectively; 𝑁 and 

𝑚  are the numbers of candidate inclinometer sensor 

locations and the selected modes. The vertical inclination of 
the measuring points for bending beam structures, as widely 

used in high-speed railway bridges, can be expressed as 

 

𝜃(𝑥, 𝑡) =
𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
=

𝑑 𝛷 (𝑥)

𝑑 𝑥
𝑞(𝑡) = 𝛹(𝑥)𝑞(𝑡) (2) 

 

where 𝜃 ∈ 𝑅𝑀×1  and 𝛹 ∈ 𝑅𝑀×𝑚  indicate the vertical 

inclination vector at time t and candidate vertical inclination 

mode shapes, respectively.  

Supposing that M inclinometer sensors are installed on 

high-speed railway bridges ( 𝜃 ∈ 𝑅𝑀×1  at time t), the 

inclination mode shape matrix 𝛹 ∈ 𝑅𝑀×𝑚  can be 

determined by the inclinometer sensor coordinates chosen 

from the N candidate inclinometer sensor locations (𝑀 ≪
𝑁). The generalized modal coordinate �̂�𝑚 can be solved 

using the Penrose-Moore generalized inverse as 
 

�̂�(𝑡) = 𝛹+(𝑥)𝜃(𝑥, 𝑡) (3) 
 

where 𝛹+(𝑥) = [𝛹𝑇(𝑥)𝛹(𝑥)]−1𝛹𝑇(𝑥) if 𝛹 ∈ 𝑅𝑀×𝑚  is a 

column full rank matrix and 𝛹+(𝑥) =
𝛹𝑇(𝑥)[𝛹(𝑥)𝛹𝑇(𝑥)]−1  if 𝛹 ∈ 𝑅𝑀×𝑚  is a row full rank 

matrix. Once the generalized modal coordinates are 

obtained, the deflection at any section of the bridge can be 

expressed as 
 

𝑣(𝑥, 𝑡) = 𝛷(𝑥)�̂�(𝑡) = 𝛷(𝑥)𝛹+(𝑥)𝜃(𝑥, 𝑡) (4) 
 

where 𝑣 ∈ 𝑅𝑃×1  and 𝛷 ∈ 𝑅𝑃×𝑚  indicate the reconstructed 

deflection vector and displacement mode shape matrix at  
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the section P of the bridge. From Eq. (4), the deflection 

reconstruction 𝑣(𝑥, 𝑡)  accuracy can be significantly 

influenced by the Penrose-Moore generalized inverse 

𝛹+(𝑥) and monitored inclination 𝜃(𝑥, 𝑡) errors.  

The Penrose-Moore generalized inverse 𝛹+(𝑥)  is 

uniquely determined by the degree of matrix morbidity of 

𝛹 ∈ 𝑅𝑀×𝑚 .   This error represents the deviation between 

the expected deflection prediction and the true testing 

results, and accounts for the system error of the proposed 

inclination-deflection model. According to Eq. (4), the error 

caused by the Penrose-Moore generalized inverse 𝛥𝛹+(𝑥) 

can be expressed as 
 

𝛿1(𝑣) = 𝛷(𝑥)𝛥𝛹+(𝑥)𝜃(𝑥, 𝑡) (5) 

 

The monitored inclination 𝜃(𝑥, 𝑡) is usually polluted 

with measurement noise𝑤, and can be expressed as 

 

𝜃(𝑥, 𝑡) = 𝜃(𝑥, 𝑡) + 𝑤 (6) 

 

where 𝑤 is assumed to be the zero-mean Gaussian noise 

with a variance of 𝜎2 . The reconstruction error 𝛿2(𝑣), 

which describes the testing error, is expressed as 

 

𝛿2(𝑣) = 𝛷(𝑥)𝛹+(𝑥)𝑤 (7) 

 

Combining Eqs. (4), (5) and (7), the total relative 
reconstruction error of deflection, when omitting high-order 

small quantities, can be expressed as 

 
𝛿(𝑣) = 𝛿1(𝑣) + 𝛿2(𝑣) = 𝛷(𝑥)[𝛥𝛹+(𝑥)𝜃(𝑥, 𝑡) + 𝛹+(𝑥)𝑤] (8) 

 

2.2 Optimal inclinometer sensor placement and 
modal orders 

 

From Eq. (8), both the system error and testing error of  

 

 

the proposed deflection prediction model depend mainly on 

the accuracy of the Penrose-Moore generalized inverse 

𝛹+(𝑥), that is, the degree of matrix morbidity of 𝛹 ∈
𝑅𝑀×𝑚. In this study, the row and column of the inclination 

mode shape matrix 𝛹 ∈ 𝑅𝑀×𝑚  are related to the selected 

inclinometer sensor coordinates and modal orders, which 

affect the accuracy and stability of the reconstructed 

deflection. The condition number is employed to measure 

the degree of matrix morbidity of 𝛹 ∈ 𝑅𝑀×𝑚 .  The 

reconstructed deflection is more accurate and stable when 

the condition number of 𝛹 becomes smaller. Therefore, 

the constructed smaller condition number matrix 𝛹 

requires inclinometer sensor placement optimization and the 

condition number should be selected to obtain the objective 

function. 

Furthermore, the information entropy (Papadimitriou et 

al. 2000, Papadimitriou 2004) was employed to measure the 
prediction accuracy of the inclination-deflection 

transformation model. According to Eq. (8), the 

reconstruction error of the deflection can be expressed as 

 

𝛿(𝑣) = 𝛿1(𝑣) + 𝛿2(𝑣) = [휀1;⋅⋅⋅; 휀𝑘 ; 휀𝑃]𝑇 (9) 

 

where the deflection error vector 휀𝑘(𝑘 = 1, 2,⋅⋅⋅, 𝑃) of the 

bridge section follows the Gaussian distribution with zero 

mean; and 𝑃 represents the number of concerned sections. 

Therefore, the average information entropy 𝛩 of deflection 

prediction errors can be expressed as 

 

𝛩 = (∑  
1

2
𝑙𝑛(2𝜋𝑒�̂�𝑘

2)

𝑃

𝑘=1

) /𝑃 (10) 

 

where �̂�𝑘
2 is the variance estimation of the error vector 

휀𝑘(𝑘 = 1, 2, ⋅⋅⋅, 𝑃).  

Taking into account the ill-posed inverse problem and  

 

Fig. 1 Flow chart of the optimal placement of inclinometer sensors using the GA 
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(a) The actual bridge 

 
(b) The FEM with axle loads of the high-speed train 

Fig. 2 5-span high-speed railway bridge 

 

 

deflection prediction accuracy, the objective function for 

deflection prediction can be established as follows 

 

𝑚𝑖𝑛
𝑀∈𝛤𝑢,𝑚∈𝛤𝑅

 𝐽 =
1

2𝑃
∑  𝑙𝑛(2𝜋𝑒�̂�𝑘

2)

𝑃

𝑘=1

+ 𝜆𝑐𝑜𝑛𝑑(𝛹𝑀×𝑚) (11) 

 

where 𝛤𝑢  denotes the set of candidate locations for 

installing the inclinometer sensors, 𝛤𝑅 denotes the set of 

candidate modal orders and 𝜆 represents the adjustment 

coefficient between the condition number of ΨM and 

information entropy of the error matrix. 𝜆  should be 

properly selected to achieve a balance between the two sub-

items for obtaining steady and reasonable solutions. Thus, 

the optimisation for deflection prediction accuracy aims to 

determine the sensor configuration with proper modal 
orders, corresponding to the minimum information entropy 

and condition number within all possible sensor locations 

and modal orders.  

For the high-speed railway bridge with the set of 

candidate placement locations 𝛤𝑢  and the set of mode 

shapes 𝛤𝑅 , an exhaustive search for all potential sensor 

placements with corresponding mode shapes is quite time-

consuming. In this study, the optimization problems, as 

shown in Eq. (11), can be solved by the Particle Swarm 

Optimization Algorithm (PSOA) (Lian et al. 2013, He et al. 
2014b), Genetic Algorithm (GA) (Cha et al. 2012, He et al. 

2013) and Artificial Fish Swarm Algorithm (AFSA) (Liu et 

al. 2019, Xu et al. 2019). All these algorithms are able to 

perform extensive searches on the global optimal sensor 

positions with the corresponding modal orders to prevent 

local optimal solutions. The flow chart of the optimal 

placement of inclinometer sensors using the GA is shown in 

Fig. 1. 

Before performing sensor placement and modal 

optimization, it is important to select a proper number of 

mode shapes as the candidate set. In this paper, according to 
previous studies (Zhou et al. 2019, Zhang et al. 2014b), the 

Cumulative Effective Modal Mass Participation Ratio 

(CEMMPR) is used to determine the number of candidate 

mode shapes. 

 
(a) The first mode shape 

 
(b) The second mode shape 

 
(c) The CEMMPR of the investigated bridge 

Fig. 3 The first 2 mode shapes and the CEMMPR of  

the investigated bridge 

 
 
3. Numerical simulation and experimental 

verification 
 

3.1 5-span high-speed railway bridge 
 

The investigated bridge in this study is a dual-use bridge 

with a four-lane railway lower deck and a six-lane highway 

upper deck, as shown in Fig. 2(a). The main bridge 

structure adopts a continuous steel truss beam with a total 

span of (128 + 3 × 180 + 128) m. The designed railway 

speeds for the passenger and freight lines are 250 km/h and 

120 km/h, respectively. The designated health monitoring 
system of the bridge consists of the sensor subsystem, data 

acquisition and transmission subsystem, data processing 

and control subsystem, central database subsystem, early 

warning and analysis subsystem, and user interface 

subsystem. The general diagram and sensor layout of the 

SHM system are shown in Fig. 2(a). A total of 157 sensors 

were installed on the bridge to monitor the environmental 

and loading conditions, global responses, and local 

responses. 

In this study, a three-dimensional (3D) Finite Element 

Model (FEM) of the investigated bridge was established 
using the software MIDAS/CIVIL 2017. In the FEM, the 

bridge deck was modelled by PLATE elements, the 

suspenders were modelled by TRUSS elements, and the 

other components were modelled by the cubic two-node 

BEAM elements. The bridge deck, main truss and 

transverse beams were connected by rigid connections. For 

the boundary conditions, the SJQZ spherical steel bearings 

at the 18 piers were simulated by fixed hinged supports that 

are capable of free rotation, unidirectional hinged supports 

that are capable of free rotation and transversal sliding, 

unidirectional hinged supports that are capable of free 

rotation and longitudinal sliding, bidirectional hinged 
supports that are capable of free rotation, transversal sliding  

(a)

(b)

哈尔滨工业大学

(a)

哈尔滨工业大学

(b)
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and longitudinal sliding, and their degrees of freedom were 

coupled in the simulation. In total, the FEM for the 

investigated bridge consists of 22673 BEAM elements, 96 

TRUSS elements, and 12896 PLATE elements. Fig. 2(b) 
shows the established 3D FEM for the investigated bridge. 

Since the modal shape derived from FEM has certain 

influence on the accuracy of dynamical deflection 

monitoring, the FEM should be updated according to the  

 

 

 

 

 

 

collected data to incorporate more comprehensively the 

static and dynamic characteristics of the real bridge. In this 

paper, the response surface method (Goswami et al. 2016) 

was employed for finite element model updating. The 
comparison of the identified and analytical modal 

parameters, showing that the absolute relative differences of 

most of the frequencies are within 5%, which means that 

the updated FEM can simulate the dynamical behavior of  

 

Fig. 4 Schematic of the positions of 20 inclinometer sensors on the bridge 

 
(a) The condition number of ΨM for different numbers of optimal sensors and λ 

 
(b) The information entropy ΘM for different numbers of optimal sensors and λ 

Fig. 5 The condition number of ΨM and information entropy ΘM for different numbers of optimal sensors and λ 

 

Fig. 6 Information entropy ΘM with different numbers of optimal sensors using the three optimization algorithms 

128 180 180 128180

Remarks:

1.Unit:m.

2.The      ,      ,     ,     ,      ,      represent the number of the pier.

3.The    represent the installation position of 20 inclinometer sensors which are numbered S1 to S20 from left to right.

618 619 620 621616 617

Schematic diagram of the installation position of 20 inclinometer sensors

621 620 619 618 617 616

S1toS3-S4-S5toS6 S7toS9-S10-S11toS13 S14toS16-S17-S18toS20
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actual bridge accurately to a certain extent. 

 

3.2 Optimization of inclinometer sensor placement 
and modal orders 

 
The row and column of the inclination mode shape  

 

 

 

 

 
 

matrix 𝛹 ∈ 𝑅𝑀×𝑚  are known to be related to the 

inclinometer sensor coordinates and modal orders. For the 

row of the matrix 𝛹 ∈ 𝑅𝑀×𝑚 ,  20 inclinometer sensors 

were permanently installed along the centreline of the 

railway bridge deck according to the experience of the 

engineers (as shown in Fig. 2(a)); while for the column of  

 

Fig. 7 The condition number of ΨM and information entropy ΘM with different numbers of optimal sensors using the GA 

 
(a) The optimised sensor locations 

 
(b) The optimised mode shape number 

Fig. 8 Optimization diagrams by the GA 

 

Fig. 9 Comparison of the theoretical and reconstructed quasi-static deflection for three key sections of the investigated bridge 
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Fig. 10 Schematic of the static loading test under three loading conditions (distance unit: m) 

 
(a) The first loading condition 

 
(b) The second loading condition 

 
(c) The third loading condition 

Fig. 11 Comparison between the reconstructed and measured bridge deflection 

2.75

7.75

5.25

33.75

5.25

33.75

Train load (DF4+11KZ70+DF4)

Heavy truck (40t x13)
Train load (DF4+11KZ70+DF4)

Train load (DF4+11KZ70+DF4)
Heavy truck (40t x13)

Heavy truck (40t x13)

The first load condition The second load condition The third load condition

621 620 619

128 180 180

618

Remarks:

1.Unit:m.

2.The       ,       ,        ,         represent the number of the pier.

3.The     represent the 13 measured points of the key sections.
618 619 620 621
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the matrix 𝛹 ∈ 𝑅𝑀×𝑚 ,  the vertical and torsional modes 

were extracted using the updated FEM by Ritz vector 

methods. Since the deflection under train loads is the most 
important indicator in bridge assessment, the first 2 mode 

shapes and the CEMMPR were calculated as shown in Fig. 

3. It can be seen from Fig. 3 that the CEMMPR of the first 5 

and 15 modes of the investigated bridge was more than 90% 

and 98%, respectively (Zhou et al. 2019, Zhang et al. 

2014b). However, the dynamical deflection monitoring of 

the investigated bridge showed that the deflection 

reconstruction (Eq. (4)) failed to achieve stable and 

acceptably accurate results using the 20 inclinations and 15 

mode shapes and thus, they can be employed as candidates 

for accurate deflection reconstruction optimization. 

In this study, the quasi-static inclination and deflection 
were generated by adding axle loads of a typical high-speed 

train to different locations of the updated FEM to simulate 

the train travelling at low speeds. The quasi-static inclin- 

 

 

ation of 20 candidate nodes and the deflection of the 
concerned sections can be treated as measurements and 

objectives of deflection monitoring, respectively (as shown 

in Fig. 4). 

Since the adjustment coefficient 𝜆 has great influence 

on the optimization results, the 10, 15 and 20 optimal 

inclination sensors with the corresponding modal orders 

were optimized with 𝜆 range from 0 to 1. The condition 

number of the inclination mode shape matrix 𝛹 ∈
𝑅𝑀×𝑚  and the information entropy of the deflection error 

between the FEM and inclination calculated are shown in 

Fig. 5. It can be seen from Fig. 5 that the condition number 

decreases as the 𝜆 increases, while the information entropy 

shows the opposite trend. When 𝜆 is selected between 0.01 

and 0.02, the condition number of ΨM is reduced to several 

tens and tends to be stabilized, with 2% of relative error for 

the information entropy. Thus, the adjustment coefficient 𝜆 

was chosen at 0.02 in this study.  

 
(a) The inclination of the sensor S2 

 
(b) The reconstructed bridge deflection at location S4 

 
(c) The reconstructed bridge deflection at location S17 

Fig. 12 Dynamic response of the bridge at a speed of 5 km/h 
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With the quasi-static inclination and the deflection 
extracted from the updated FEM, the PSOA, GA and AFSA 

were used to optimize the sensor location and the 

corresponding mode shapes orders. Fig. 6 illustrates the 

information entropy ΘM for different numbers of optimal 

sensors. As can be observed from Fig. 6, the information 

entropy ΘM decreases first and then becomes stabilized with 

the increase of sensor number. In general, the three 

optimization algorithms demonstrate nearly the same 

results. Compared with the PSOA and AFSA, the 

information entropy ΘM from the GA is relatively low in 

most cases and thus, the GA was selected as the primary 
optimization algorithm in this study.  

The information entropy ΘM and condition number of 

ΨM are illustrated in Fig. 7 for different numbers of optimal 

sensors ranging from 3 to 20 using the GA algorithm. It can 

be seen from Fig. 7 that as the number of optimal sensors 

increases, the condition number of ΨM demonstrates some  

 

 

early fluctuations and then tends to become stabilized.  
When the number of optimal inclinometer sensors is 

greater than 8, the information entropy ΘM falls into a 

relative error level of 2% and remains stabilized. In 

addition, the condition number of ΨM is less than 14, 

showing that the ill-posed degree of matrix ΨM is well 

controlled.  

The optimized sensor locations by the GA is shown in 

Fig. 8(a). It can be observed that the positions of the 

optimal sensors vary significantly as the sensor number 

increases, rather than a process of simply adding sensors 

over the original sensor configuration. The variation in the 
numbers of optimal sensor configurations can also reflect 

the spatial correlation information between each sensor, 

indicating that the optimized sensor configuration can 

represent the information contained in all sensors. The 

corresponding mode shape orders are shown in Fig. 8(b). As 

shown in the figure, some mode shapes are rarely or never  

 
(a) The inclination of the sensor S2 

 
(b) The reconstructed bridge deflection at location S4 

 
(c) The reconstructed bridge deflection at location S17 

Fig. 13 Dynamic response of the bridge at a speed of 180 km/h 
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selected, such as the modes 4 and 7, this suggests that they 

can significantly increase the morbidity of the modal matrix 

ΨM. 

Fig. 9 shows the comparison between the theoretical and 

reconstructed quasi-static deflection of three key sections of 

the investigated bridge using 8 optimal sensors by the GA. 

As illustrated in Fig. 9, the reconstructed deflection is 

generally identical to the theoretical result, showing that the 

optimal sensor locations with the corresponding orders can 

achieve an accurate and effective deflection monitoring. 

The 621 pier location on the x-coordinate represents where 

the first axle load of the high-speed train is introduced, 

whereas 𝐿𝑇 + 𝐿𝐵 indicates where the last axle load of the 

high-speed train is removed.  

 

3.3 Verification with static loading test 
 

Prior to the official operation of a bridge, static and  

 

 
dynamic loading tests should be performed according to the 

design code requirements. Fig. 10 shows three loading 

conditions for the static loading test, including axle loads 

and loading positions. The train load DF4 + 11KZ70 + DF4 

and load from 40 t × 13 heavy trucks were both applied to 

the railway line. During the test, the deflection of key 

sections was measured by the electronic total station 

system. 

In this static loading test, the inclinations measured by 

different optimized inclinometer sensor numbers (i = 8, 12, 

16, 20) can be used to predict the deflection of the key 

sections of the bridge. As can be seen from Fig. 11, under 
each loading condition, the reconstructed deflection of 

different numbers of optimal sensors agrees well with the 

measured values, showing that the inclination-deflection 

transformation model proposed in this paper is accurate and 

robust under the static loading condition.  

 

 
(a) The inclination of the sensor S2 

 

(b) The reconstructed bridge deflection at location S4 

 
(c) The reconstructed bridge deflection at location S17 

Fig. 14 Dynamic response of the bridge at a speed of 250 km/h 

600



 
Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement 

3.4 Verification with dynamic loading test 
 

After the completion of the 5-span high-speed railway 

bridge, the dynamic characteristics of the bridge was 

assessed to test the dynamic response of the test train when 
passing through the bridge at various speeds, to judge the 

working state of the bridge structure under dynamic 

loadings, to analyse and evaluate the stability of the test 

train passing through the bridge, and the dynamic 

performance of the bridge. The test train adopts the high-

speed comprehensive inspection vehicle deployed by China 

Railway Corporation, and consists of 8 carriages in total. 

The speed grade test was carried out on October 14, 2018, 

by recording the bridge-head time and the bridge-tail time 

when the high-speed train passes the bridge during the 

dynamic load test. The bridge-head time represents the time 
when the train head reaches the bridge, whereas the bridge-

tail time represents the time when the train tail leaves the 

bridge. 

The three maximum speeds (unable to achieve absolute 

uniform speeds) of the train on the bridge were 5 km/h, 180 

km/h, and 250 km/h, respectively. The sampling frequency 

of the inclinometers was 10 Hz. The measured inclinations 

were interspersed with many high-frequency signals (as 

shown in Fig. 12(a)) and the Butterworth low-pass filter 

was employed to retain the low-frequency signals, which 

correspond to the spatial distribution of the train wheelbase 

and the speed of the train when passing the bridge.  
Figs. 12-14 show the comparison of the dynamic 

response of the bridge under different speeds. As shown in 

Fig. 12, when the speed of the train is 5 km/h, the 

inclination and reconstructed deflection variation can be 

obviously observed as each axle weight of the train passes 

the corresponding location. The 8 carriages of the test train 

can be simplified into 9 axle weights, which is consistent 

with the 9 peaks of the inclination and reconstructed 

deflection in Figs. 12(a)-(c). Moreover, the theoretical 

quasi-static deflection of the low-speed train was extracted 

from the FEM, showing close agreement with the trend of 
the reconstructed deflection. From Figs. 13 and 14, as the 

train speed increases, the impact force from the train 

increases accordingly, along with the increase of the 

predicted deflection. In addition, the predicted deflection 

has low volatility under different numbers of optimal sensor 

configurations, demonstrating the robustness of the 

proposed algorithm. 

 

 

4. Conclusions 
 
This paper provides a dynamic deflection monitoring 

method with the optimal inclinometer sensor placement for 

high-speed railway bridges. Based on the measured vertical 

inclinations from limited inclinometer sensors, the 

deflection shapes are reconstructed using a general 

inclination-deflection transformation. The following 

conclusions are obtained: 

•  A general inclination-deflection model is proposed 

and its prediction error is measured by the information 

entropy. By adjusting the condition number of the modal 

matrix to control the ill-conditioned degree, the genetic 

algorithm is used to optimize the sensor placement and 

selected mode shapes. The optimization results indicate that 

a sufficient number of sensors can be used to achieve an 

acceptable prediction accuracy for the proposed inclination-
deflection model, and the ill-conditioned degree of the 

modal matrix can also be well controlled. 

• The sensor placement schemes using three different 

optimization algorithms are discussed. Compared to the 

other two algorithms, the optimized sensor configuration 

scheme by the genetic algorithm shows the highest 

accuracy. When the number of sensors increases to a certain 

degree, the required prediction accuracy of the developed 

inclination-deflection model can be achieved and remains 

stabilized. The optimal sensor layout proposed in this study 

can improve the prediction accuracy of the inclination-
deflection model, save the installation cost, and provide a 

reference for the maintenance of the inclinometer sensor. 

Results from the numerical simulation and experimental 

validation of the 5-span high-speed railway bridge show 

that the reconstructed shapes from the proposed method 

agree well with the real ones. 

In traditional approaches, the number and location of 

inclinometer sensors often depend on the actual experience 

of the engineers. The optimal sensor placement method 

proposed in this paper can provide arrangements of the 

inclinometer in a more systematic and reasonable fashion. It 

also shows that the inclination-deflection model proposed in 
this paper can provide fundamental guidelines for the 

construction of the dynamic deflection monitoring system 

for high-speed railway bridges using the finite element 

numerical simulation. 
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