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1. Introduction 

 

Cable supported structures are widely and increasingly 
employed for large scale public structures, such as railroad 

stations, exhibition centers, gymnasiums and cable 

supported bridges. The flexible properties of those 

structures often cause serious wind induced vibration 

problems. Closely spaced modal frequencies and spatially 

complicated mode shapes are generally excited by ambient 

winds. The wind-induced fluctuating stress can lead to 

fatigue damage accumulation and result in structural failure 

without exceeding design wind actions (Repetto and Solari 

2001). All the facts render it a significant and complicated 

topic to deal with the vibration control of cable supported 
structures. Fujino (2002) studied the wind-induced vibration 

control for cable-supported bridges through three aspects: 

Structural, aerodynamic and mechanical remedies. The 

control remedies for girders, pylons and cables were 

introduced and discussed. Cardenas et al. (2008) proposed a 

3D nonlinear model to evaluate wind dynamic effects, 

damper locations and configurations for the vibration 

control of a real cable stayed bridge in Mexico. Zi et al. 

(2011) studied the modeling, analysis, and wind-induced 

vibration control of the cable-supporting system for the  
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large spherical radio telescope.  

Various control devices are extensively investigated and 

successfully applied to reduce excessive vibrations for 
cables and cable-supported structures such as viscous 

dampers (Zhou et al. 2019), tuned mass dampers (Abe and 

Fujino 1994, Fujino 2002, Tributsch and Adam 2012), 

inertial mass dampers (Lu et al. 2017, Wang et al. 2019b), 

eddy current dampers (Niu et al. 2018, Wang et al. 2020) 

and magnetorheological dampers (Duan et al. 2006, 2019a). 

The Tuned Mass Damper (TMD), as a kind of passive 

damper, is one of the simplest vibration control devices 

among them. It has many advantages, such as compactness, 

reliability, efficiency, low maintenance cost and free of the 

influence of high temperatures. However, efficiency of 
TMDs is highly frequency-dependent. A small offset of the 

tuning frequency may result in large reduction to the TMD 

performance. Xu and Igusa (1992) proposed a new design 

concept for the TMD using Multiple Tuned Mass Dampers 

(MTMD) with closely spaced frequencies to suppress 

vibration of a dynamic system. Abe and Fujino (1994) 

studied the characteristics and efficiency of the MTMD and 

found that the MTMD showed much better robustness than 

a conventional single TMD while maintaining more or less 

the same efficiency.  

In recent years, the effectiveness and application of 

MTMD have been widely studied and verified (Elias and 
Matsagar 2017). Debnath et al. (2016) proposed an 

approach for simultaneous control of major horizontal, 

vertical and torsional modes with MTMD, and verified the 

approach with a MTMD system installed on a large span 

truss bridge. Tao et al. (2017) performed a parametric 
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Abstract.  A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration 
control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the 
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composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. 

Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to 

enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried 
out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two 

optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with 
multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The 

computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal 
front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design 

options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors. 
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analysis for MTMD and found that the buffeting response 

of a long-span triple-tower suspension bridge can be 

effectively mitigated by utilizing reasonable design 

parameters for the MTMD system. Elias et al. (2017) 

investigated the effectiveness of the multi-mode control of a 
seismically excited building using distributed multiple 

tuned mass dampers at various floors. Wang and Shi (2019) 

successfully mitigated the human-induced vibration of a 

footbridge with a MTMD system. Wang et al. (2019a) 

found that MTMD systems demonstrated predominant and 

robust capacity of reducing structural vibrations under both 

crowd random excitations and rhythmic excitations.  

With the wide application of the MTMD, optimal design 

for the MTMD layouts and parameters turns out to be an 

important subject. Warnitchai and Hoang (2006) presented a 

new method for the optimal MTMD design, in which a 
numerical optimizer was introduced to effectively handle a 

large number of design variables. Miguel et al. (2016) 

presented a novel robust optimization method of MTMD 

using the firefly algorithm to consider uncertainties in 

system and excitation parameters. Hussan et al. (2018) 

studied the MTMD parameter optimization with the 

response surface methodology and verified it for a multi-

mode vibration control of wind turbine structures. Vellar et 

al. (2019) proposed a new methodology for simultaneous 

optimization of parameters and positions of MTMD for 

buildings subjected to earthquakes, and showed that the 

methodology considered uncertainties in the structural 
parameters, dynamic loads and MTMD design for MTMD 

robustness.  

For single-objective optimization problems, Sequential 

Quadratic Programming (SQP) methods have been widely 

used owing to its robustness and high efficiency in 

searching for the optimum solutions (Boggs and Tolle 2000, 

Martí 2003, Jin et al. 2010, Chung et al. 2012). In the SQP, 

an optimal solution is searched by minimizing a quadratic 

model of the objective function subjected to the linearized 

constraints. Simple heuristic methods, such as multi-start 

methods, are usually employed together with SQP to 
enhance the chance of obtaining a global optimum by 

randomly selecting a set of starting points in the hope that 

one of them is close to the global optimal solution (Martí 

2003, Zheng et al. 2006). Genetic Algorithms (GA) have 

also been extensively employed for various parameter 

optimization problems. It is a typical evolutionary algorithm 

using crossover and mutation operators along with random 

search techniques to avoid sticking in the local optimum 

(Holland 1975). Frans and Arfiadi (2015) proposed a hybrid 

coded genetic algorithm for the optimal design of MTMD, 

which utilized binary coded GAs to optimize the MTMD 

parameters and real coded GAs to optimize the location of 
the dampers. Chen et al. (2017) presented hybrid algorithms 

based on GA and pattern search algorithm for MTMD 

parameter optimization for a long span roof structure. 

Zahrai and Froozanfar (2019) adopted the GA for the 

MTMD parameter optimization to mitigate the seismic 

response of the Ahvaz cable-stayed bridge.  

Multi-objective optimization models are usually more 

common and suitable for engineering practice, which 

involve a set of conflicting sub-objectives to be optimized.  

 
(a) 3D view 

 
(b) Top view 

 
(c) Main truss 

 
(d) Cable truss 

Fig. 1 A cable-supported roof structure (unit: m) 

 

 

Etedali and Rakhshani (2018) employed a Multi-Objective 

Cuckoo Search (MOCS) method for simultaneous reduction 
of structural displacement responses, acceleration responses 

and the TMD mass ratio for a TMD parameter optimization 

problem. Lavan (2017) adopted the first-order multi-

objective optimization approach of Izui et al. (2015) to 

simultaneously minimize structural responses, the TMD 

mass and the TMD stroke for a TMD design. A fast elitist 

Non-dominated Sorting Genetic Algorithm (NSGA-II) was 

developed for the multi -objective optimization by 

introducing the notion of non-dominated sorting in GA, 

aiming at finding a solution set of Pareto optimal solutions 

(Siinivas and Deb 1994, Deb et al. 2002). And it has been 

widely employed in engineering problems for its good 
performance and high computation efficiency for multi-

objective problems (Jin et al. 2014, Kaveh et al. 2015, 

Nezami and Gholami 2016, Bagheri et al. 2018). Ok et al. 

(2008) employed NSGA-II for the optimal performance 

design of a bi-TMD system considering both the 

effectiveness of the bi-TMD for the original structural 

system and the robustness of the bi-TMD under variations 

in the dynamic properties of the target structure. 

Pourzeynali et al. (2013) adopted NSGA-II for the robust 

multi-objective optimization design of a TMD for the  
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vibration control of tall buildings. The maximum 

displacement, velocity and acceleration of each floor were 

minimized simultaneously.   
In this paper, an optimal MTMD design method is 

presented for a cable-supported roof structure with long 

spans subjected to turbulent wind loads, which employs a 

multi-mode control of two dominating modes of the roof. 

Based on the previous study, the Multi-Objective Approach 

(MOA) is extended for the MTMD design, and a 

comparative study between Single Objective Approach 

(SOA) and MOA is performed. In Section 2, the structural 

characteristics, modal properties, and wind load conditions 

are introduced. Dynamic analysis is performed with modal 

superposition method for the turbulent wind loads simulated 
at various points on the roof by the Computational Fluid 

Dynamic (CFD) analysis. In Section 3, dominating modes 

are identified through the modal contribution analysis for 

the wind loads. The optimal MTMD design is achieved by 

two approaches. One is the SOA using the SQP with multi-

start method, and the other is the MOA using the NSGA-II. 

Optimization results and computation efficiency of the two 

design approaches are compared and discussed, verifying 

the advantage of the MOA. An average Pareto optimal front 

is obtained, from which the MTMD design parameters can 

be determined considering additional engineering 

considerations, such as the control performance, TMD 
installation, construction procedures and cost. In Section 4, 

the detail control performances of four MTMD design 

alternatives are examined, and an additional MTMD system 

is proposed regarding the second dominating mode for 

further reduction of the roof responses, particularly on the 

side spans. Finally, a summary and conclusions are given in  

 

 

 

Fig. 2 Mode shapes of the roof 

 

 

Chapter 5. 

 

 

2. Structure description and wind load conditions 
 

2.1 Structural characteristics  
 

The present canvas roof structure is supported by a bi-

directional cable system (Duan et al. 2019b). Three main 
steel trusses with main cables act as the main support 

system as shown in Figs. 1(a) and (c). Ten double-layer 

cable trusses act as the secondary support system as shown 

in Figs. 1(a) and (d). Length of the structure is 174 m, and 

the width is 135 m. The three main trusses divide the total 

length into four spans, with two middle spans of 54 m and 

two side spans of 27 m. 

The initial balanced shape of the roof is formed by the 

self-weight of the roof and the pretensions of cables. Modal  

Table 1 Dynamic characteristics of the cable-supported roof structure 

Modes Frequencies (Hz) 
Effective modal mass (kg) 

Mode shape descriptions* 
UX UY UZ 

1 0.447 209416 0 0 Vertical antisymmetric vibration 

2 0.533 0 1841460 25 Horizontal symmetric vibration 

3 0.534 527 4 0 Horizontal antisymmetric vibration 

4 0.564 0 25853 2 Horizontal symmetric vibration 

5 0.567 12 0 0 Horizontal antisymmetric vibration 

6 0.581 105 51135 23 Horizontal antisymmetric vibration 

7 0.582 2 704105 238 Horizontal symmetric vibration 

8 0.631 1139 208 232056 Vertical symmetric vibration 

9 0.662 628663 0 352 
Vertical antisymmetric vibration 
(along with horizontal vibration) 

10 0.689 181 2 108712 Vertical symmetric vibration 

11 0.735 2458 0 171 
Vertical antisymmetric vibration 
(along with horizontal vibration) 

12 0.759 27230 0 636 
Vertical antisymmetric vibration 
(along with horizontal vibration) 

13 0.810 12 0 936 Vertical symmetric vibration 

14 0.838 42 0 1367 Vertical antisymmetric vibration 

15 0.853 13 92 1509880 Vertical symmetric vibration 

 

*The main truss in the middle is regarded as the symmetric axis (Fig. 1(a)) 
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(a) 3D view of the CFD model 

 
(b) Wind directions 

Fig. 3 Wind load simulation 

 

 

 
(a) 45° wind load at Node A 

 
(b) 45° wind load at Node B 

Fig. 4 Examples of wind load histories:  

Vertical components 

 
 

analysis was performed, and 50 modes were extracted. 

Frequencies, mode shapes and effective modal mass are 

given for the first 15 modes in Table 1. Vertical vibration 

mode shapes are shown in Fig. 2. The effective modal mass 

in the jth direction is calculated by  

 

𝑀𝑒𝑓𝑓(𝑖,j) =
({𝜙}𝑖,𝑗

𝑇 [𝑀]{1}𝑗)2

{𝜙}𝑖,𝑗
𝑇 [𝑀]{𝜙}𝑖,𝑗

 (1) 

 

where {𝜙}𝑖,𝑗  is the mode shape vector of the ith mode in 

the jth direction; [𝑀] is the mass matrix of the structure; 

and {1}𝑗  is the load distribution vector with 1 in the jth 

direction and zero in the other directions. The vertical 

effective modal masses for the vertical symmetric modes 

(8th, 10th and 15th) are found to be much larger than the 

others in the vertical direction. Corresponding frequencies 
are 0.631, 0.689 and 0.853 Hz. 

 

2.2 Wind load conditions  
 

A CFD model was established for wind load simulation 

through modeling of the canvas roof and curtain walls (Fig. 

3(a)) (Duan et al. 2019b). Wind loads with a recurrence  

Table 2 Critical nodes under 5 wind load conditions 

Wind loads 0° 22.5° 45° 67.5° 90° 

Critical nodes in  
middle spans 

N1 N2 N3 N4 N5 

Critical nodes in  

side spans 
N6 N6 N6 N7 N8 

 

 

 

Table 3 Dynamic vertical displacements (3𝜎𝑘) of critical 

nodes 

Wind 
loads 

0° 
(m) 

22.5° 
(m) 

45° 
(m) 

67.5° 
(m) 

90° 
(m) 

Allowable 
values (m) 

Middle 
spans 

N1 0.070 0.073 0.235 0.091 0.073 

0.150 

N2 0.064 0.084 0.235 0.071 0.069 

N3 0.069 0.070 0.238 0.093 0.073 

N4 0.057 0.055 0.167 0.117 0.073 

N5 0.068 0.067 0.223 0.101 0.076 

Side 
spans 

N6 0.053 0.082 0.178 0.089 0.036 

0.108 N7 0.052 0.069 0.171 0.107 0.064 

N8 0.053 0.072 0.174 0.107 0.066 
 

 

 

interval of 50 years were simulated. The corresponding 10-

minute wind speed is 23.76 m/s. Five wind load conditions 

were considered, with five wind directions, 0°, 22.5°, 45°, 
67.5° and 90° (Fig. 3(b)). Wind force are provided at 590 

points uniformly distributed on the roof. The duration of 

wind loads is 200 seconds. Nodes A and B (Fig. 3(a)) are 

taken as examples to show the wind load time histories 

obtained by the CFD analysis (Fig. 4).  

 

2.3 Dynamic analysis in time domain  
 

Two response components are involved in the wind-

induced vibration: 1) the static mean component and 2) the 

turbulent component. The expected peak vertical 

displacement 𝑈𝑘 of the 𝑘𝑡ℎ degree-of-freedom (DOF) of 

the structure under the wind load is obtained as 
 

𝑈𝑘 = �̅�𝑘 + 𝑠𝑖𝑔𝑛(�̅�𝑘)𝑔𝜎𝑘 (2) 
 

where �̅�𝑘 is the static mean response; 𝑠𝑖𝑔𝑛(�̅�𝑘) denotes 

the sign of �̅�𝑘; 𝜎𝑘 is the standard deviation of the vertical 

response; and 𝑔 is a peak factor, which is taken as 3 as in 

the wind engineering practice.  

This paper aims to reduce the dynamic responses of the 

roof structure. Thus, the turbulent wind-induced responses 

(3𝜎𝑘) are mainly taken into consideration. The first 20 

modes are used for dynamic analysis using the mode 

superposition method. Critical nodes with the maximum 

dynamic vertical displacements (3𝜎𝑘) under 5 wind load 

conditions are determined, and the results are listed in Table 

2. Locations of those nodes are shown in Fig. 1(b). The 

maximum responses at the critical nodes are listed in Table 

3, which shows that the wind with a direction of 45° is the 

critical wind load condition. The corresponding critical 

nodes are N3 in the middle span and N6 in the side span.  
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(a) Responses of N3 

 
(b) Responses of N6 

Fig. 5 Dynamic vertical displacement histories of  

N3 and N6 under 45° wind 
 

 

Dynamic vertical displacement histories at N3 and N6 

under 45°  wind are shown in Fig. 5. The maximum 

dynamic responses at two nodes are found to be 0.238 and 

0.178 m, which are larger than the allowable values of 0.15 

and 0.108 m as described in Section 3.3.1. Therefore, a 

MTMD system is considered for vibration reduction of the 

roof in this study. 

 

 
3. Optimal design of MTMD 

 

3.1 Design procedure 
 

The MTMD system consists of multiple small TMDs 

spread at multiple locations on the roof. The mass ratio μ is 

defined as the ratio between the total mass of the TMDs and 

the total mass of the roof structure 𝑚𝑠 = 2480000 kg. The 

mass distribution factor 𝛾 is defined as the ratio of the total 

mass of TMDs in the middle spans to the total mass of the 
MTMD system. All the TMDs in the middle spans share a 

same mass, denoted as 𝑚𝑚𝑖𝑑𝑑, and all the TMDs in the side 

spans also share a same mass, denoted as 𝑚𝑠𝑖𝑑𝑒. Then the 

mass of each TMD can be obtained by 

 

𝑚𝑚𝑖𝑑𝑑 =
𝑚𝑠 × 𝜇 × 𝛾

𝑛𝑚𝑖𝑑𝑑

 (3) 

 

𝑚𝑠𝑖𝑑𝑒 =
𝑚𝑠 × 𝜇 × (1 − 𝛾)

𝑛𝑠𝑖𝑑𝑒

 (4) 

 

where 𝑚𝑠 is the mass of the roof structure; and 𝑛𝑚𝑖𝑑𝑑 and 

𝑛𝑠𝑖𝑑𝑒 are the numbers of TMDs in the middle and side 

spans, respectively.  

The damping ratio (𝜉𝑇) of each TMD in the MTMD 

system is taken as identical for simplicity. Frequencies of 

TMDs (𝜔1 , … , 𝜔𝑛) are distributed uniformly within a range 

around the corresponding frequency of the structure for the 

enhancement of the robustness of the MTMD system 

against uncertainties of structural frequencies (Abe and 

Fujino 1994). The non-dimensional frequency bandwidth 

(𝐵) for a MTMD is defined as 

 

Fig. 6 MTMD design procedure 
 

 

𝐵 =  
𝜔𝑛 − 𝜔1

𝜔𝑠

× 100% (5) 

 

where 𝜔1  and 𝜔𝑛  are the lower and upper limits of TMD 

frequencies; and 𝜔𝑠  is the structural corresponding 

frequency of the roof.  

Therefore, four parameters of the MTMD and one 

property of the roof structure are involved in the design of 

the MTMD system: μ, γ, 𝜉𝑇 , 𝐵 and 𝜔𝑠 . Determination 

of these values as well as the development of the whole 
MTMD system are going to be conducted by following the 

procedure shown in Fig. 6:  

1. Modal contribution analysis is performed to find the 

mode with the largest contribution to the structural dynamic 

vertical displacements, which is defined as the dominating 

mode. The corresponding modal frequency is set as the 

structural dominating frequency, 𝜔𝑠, and the mode shape is 

used to determine the MTMD layout. Details of this step are 

shown in Section 3.2.  

2. Performance requirements for the MTMD system are 

set, involving the allowable dynamic vertical displacements 
of the roof structure, the allowable strokes of TMDs, the 

robustness level of the MTMD system and the limit of the 

mass cost. 

3. MTMD parameters are optimized with the 

consideration of the structural response reduction, TMD 

strokes, system robustness as well as the total mass closely 

related to the cost. Two methods are used for the parameter 

optimization. They are the SQP with multi-start (Boggs and 

Tolle 2000, Martí 2003) and the NSGA-II (Deb et al. 2002) 

as in Section 3.3. 

4. Finally, the MTMD system is developed and the 
system performance is verified (Section 4.1). If the 

structural vibration shall be mitigated further, additional 

MTMD systems may be considered for multi-mode control 

(Section 4.2). 
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(a) N1-N5 on the middle spans 

 
(b) N6-N8 on the side spans 

Fig. 7 Modal contribution analysis for N1-N8 

 
 
3.2 Dominating modes and MTMD layout 
 

Dynamic response of the 𝑘𝑡ℎ DOF in a 𝑁 degrees-of-

freedom structure can be computed effectively using the 

modal superposition method 

 

𝑈𝑘(t) = ∑ 𝑈𝑖,𝑘(t)

𝑙

𝑖=1

= ∑ 𝜙𝑖,𝑘𝑞𝑖(𝑡)

𝑙

𝑖=1

   (𝑙 ≪ 𝑁) (6) 

 

where 𝑈𝑖,𝑘(t) is the modal response time history of the 

𝑘𝑡ℎ DOF associated with the 𝑖𝑡ℎ mode; 𝜙𝑖,𝑘 is the modal 

displacement of the 𝑘𝑡ℎ DOF of the 𝑖𝑡ℎ mode; 𝑞𝑖(𝑡) is 

the modal coordinate of the 𝑖𝑡ℎ mode; and 𝑙 is the number 

of modes considered in the dynamic analysis. 

Similar to Eq. (2), the peak value of the modal response 

𝑈𝑖,𝑘  is defined as 

 

𝑈𝑖,𝑘 = �̅�𝑖,𝑘 + 𝑠𝑖𝑔𝑛(�̅�𝑖,𝑘)𝑔𝜎𝑖,𝑘  (7) 

 

where �̅�𝑖,𝑘  is the static mean modal contribution; 

𝑠𝑖𝑔𝑛(�̅�𝑖,𝑘)𝑔𝜎𝑖,𝑘 is the turbulent modal contribution; and 𝑔 

is taken as 3. 

In this paper, the mode with the largest turbulent modal 

contribution to the dynamic responses at the most critical 

nodes (N3 and N6) under the critical wind load condition 

(45° wind) is taken as the dominating mode. Modal 

contribution analysis was performed for all the critical 

nodes (N1-N8) under 45° wind load using the first 20 

modes. Results in Fig. 7 show that the modal contribution 

of the 8th mode, which is a vertical symmetric mode (Table 

1), is the most predominant among the 20 modes for the 
dynamic responses of all the critical nodes. The 10th and 

15th modes are also important to the nodes in the middle  

 

Fig. 8 Mode shape of the 8th mode 

 

 

 

Fig. 9 MTMD initial layout 

 

 

spans (N1-N5). On the other hand, the 10th, 12th and 15th 

modes also provide significant contribution to the nodes in 
the side spans (N6-N8). The mode shape of the 8th mode is 

shown in Fig. 8, and its frequency is 0.631 Hz as in Table 1. 

Accordingly, the initial MTMD layout is taken considering 

the points of the peak responses of the 8th mode shape, 

which results in 16 TMDs distributed in the middle and side 

spans (Figs. 8-9). 

 

3.3 Parameter optimization method 
 
3.3.1 Performance indices 
Five requirements are set for the MTMD system in this 

study: 1) the ratio of dynamic deflection of the roof to the 
span length is less than a prescribed value considering the 

structural safety; 2) large visible motion of the roof is 

prevented to avoid the anxiety of people inside the building; 

3) the strokes of TMDs are within an allowable value 

considering the installation space; 4) the robustness of the 

MTMD system is guaranteed against the uncertainty in the 

structural characteristics; and 5) the total mass of the 

MTMD system is limited to a prescribed value for an 

economic design. Considering all the above requirements, 

five performance indices are proposed for the MTMD 

design. 
The performance indices for dynamic responses of the 

roof in the middle and side spans and TMDs are 

 

𝑅𝑚𝑖𝑑𝑑 =
𝑧𝑚𝑎𝑥

𝑚𝑖𝑑𝑑

𝑧𝑎𝑙𝑙𝑜𝑤
𝑚𝑖𝑑𝑑  (8) 

 

𝑅𝑠𝑖𝑑𝑒 =
𝑧𝑚𝑎𝑥

𝑠𝑖𝑑𝑒

𝑧𝑎𝑙𝑙𝑜𝑤
𝑠𝑖𝑑𝑒  (9) 
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𝑅𝑡𝑚𝑑 =
𝑧𝑚𝑎𝑥

𝑡𝑚𝑑

𝑧𝑎𝑙𝑙𝑜𝑤
𝑡𝑚𝑑  (10) 

 

where 𝑧𝑚𝑎𝑥
𝑚𝑖𝑑𝑑 , 𝑧𝑚𝑎𝑥

𝑠𝑖𝑑𝑒  and 𝑧𝑚𝑎𝑥
𝑡𝑚𝑑  are the maximum dynamic 

vertical displacements in middle spans, side spans and 

TMDs; and 𝑧𝑎𝑙𝑙𝑜𝑤
𝑚𝑖𝑑𝑑 , 𝑧𝑎𝑙𝑙𝑜𝑤

𝑠𝑖𝑑𝑒  and 𝑧𝑎𝑙𝑙𝑜𝑤
𝑡𝑚𝑑  are the allowable 

values of those displacements. 𝑧𝑎𝑙𝑙𝑜𝑤
𝑚𝑖𝑑𝑑  and 𝑧𝑎𝑙𝑙𝑜𝑤

𝑠𝑖𝑑𝑒  are 

defined considering the allowable ratio of the dynamic 

deflection to the span length, 1/250 (Duan et al. 2019b), and 

the prescribed allowable visible dynamic deflection of the 

roof which is taken as 0.15 m 

 

𝑧𝑎𝑙𝑙𝑜𝑤
𝑘 = min {

𝑙𝑘

250
, 0.15 𝑚} , k = midd, side (11) 

 

where 𝑙𝑘 is the length of the 𝑘𝑡ℎ span (𝑘 = 𝑚𝑖𝑑𝑑, 𝑠𝑖𝑑𝑒). 

𝑧𝑎𝑙𝑙𝑜𝑤
𝑚𝑖𝑑𝑑  and 𝑧𝑎𝑙𝑙𝑜𝑤

𝑠𝑖𝑑𝑒  are obtained as 0.15 m and 0.108 m, and 

𝑧𝑎𝑙𝑙𝑜𝑤
𝑡𝑚𝑑  is taken as 1.0 m in this study. 

Robustness of a MTMD design is defined as 

 

𝑅𝑟𝑜𝑏𝑢𝑠𝑡 =
𝑟

𝑟𝑎𝑙𝑙𝑜𝑤

 (12) 

 

where 𝑟 is the robustness coefficient of the MTMD design; 

and 𝑟𝑎𝑙𝑙𝑜𝑤  is the allowable value. The robustness is 

evaluated by comparing the structural response reduction 

rates under different structural states with two modified 

values of pretensions in the cables as 

 

𝑟 =
1

2
(|

𝑟𝑟′𝑚𝑖𝑑𝑑 − 𝑟𝑟𝑚𝑖𝑑𝑑

𝑟𝑟𝑚𝑖𝑑𝑑

| + |
𝑟𝑟′𝑠𝑖𝑑𝑒 − 𝑟𝑟𝑠𝑖𝑑𝑒

𝑟𝑟𝑠𝑖𝑑𝑒

|) (13) 

 

where 𝑟𝑟𝑚𝑖𝑑𝑑 and 𝑟𝑟𝑠𝑖𝑑𝑒 are the response reduction rates 

of the maximum dynamic displacements in the middle and 

side spans with the initial cable pretension; 𝑟𝑟′𝑚𝑖𝑑𝑑 and 

𝑟𝑟′𝑠𝑖𝑑𝑒 are the response reduction rates with two modified 

cable pretensions to 80% and 110%. The corresponding 

frequency shifts in the first 20 modes are 3-10% and 2-5% 
under the two pretensions, respectively. 

The response reduction rate for a MTMD design is 

calculated by 

 

𝑟𝑟𝑘 =
𝑧𝑚𝑎𝑥,0

𝑘 −𝑧𝑚𝑎𝑥
𝑘

𝑧𝑚𝑎𝑥,0
𝑘 × 100%  (𝑘 = 𝑚𝑖𝑑𝑑, 𝑠𝑖𝑑𝑒) (14) 

 

where 𝑧𝑚𝑎𝑥
𝑘  and 𝑧𝑚𝑎𝑥,0

𝑘  are the maximum dynamic 

displacements at the 𝑘𝑡ℎ span (𝑘 = 𝑚𝑖𝑑𝑑, 𝑠𝑖𝑑𝑒) with and 

without the MTMD. The allowable value of the robustness 

index 𝑟𝑎𝑙𝑙𝑜𝑤  is taken as 35%. 

 

 

Table 4 Range of optimization parameters 

Parameters Range Interval 

μ 0.001 - 0.020 0.001 

γ 0 - 1.0 0.1 

𝐵 0.05 - 0.20 0.05 

𝜉𝑇 0.01 - 0.20 0.02 
 

Another performance index for the MTMD cost is 

introduced considering the MTMD mass ratio as 

 

𝑅𝑚𝑎𝑠𝑠 =
𝜇

𝜇𝑎𝑙𝑙𝑜𝑤

 (15) 

 

where 𝜇 is the mass ratio between the total TMD mass and 

the mass of the roof structure; 𝑚𝑠 = 2480000 kg; and 

𝜇𝑎𝑙𝑙𝑜𝑤  is the allowable ratio which is taken as 0.02. 

 

3.3.2 Single objective approach (SOA) 
Five objectives are involved in the parameter 

optimization to minimize the five performance indices 
introduced in 3.3.1. A common difficulty with the multi-

objective optimization is the appearance of objective 

conflicts – none of the feasible solutions allow simultaneous 

optimal solutions for all objectives (Siinivas and Deb 1994). 

The method of objective weighting is one of the classical 

techniques to solve such problems by combining multiple 

objectives with prescribed weights into a single objective 

function. Then the controlled variables are optimized 

through the minimization or maximization of the 

formulated objective function.  

The five objectives are divided into two groups: one for 

structural control performance (𝑅𝑚𝑖𝑑𝑑 , 𝑅𝑠𝑖𝑑𝑒 , 𝑅𝑡𝑚𝑑  and 

𝑅𝑟𝑜𝑏𝑢𝑠𝑡) and the other for the MTMD cost (𝑅𝑚𝑎𝑠𝑠). In this 

study, instead of one optimal MTMD design considering the 

control performance and MTMD cost simultaneously, a set 

of design options for various MTMD cost and the 

corresponding control performance are selected for the final 

decision making. Thus, an objective function for MTMD 

performance was formulated as  

 

min 𝐽(𝑥) = min (𝑤1𝑅𝑚𝑖𝑑𝑑(𝑥) + 𝑤2𝑅𝑠𝑖𝑑𝑒(𝑥) 
                      + 𝑤3𝑅𝑡𝑚𝑑(𝑥) + 𝑤4𝑅𝑟𝑜𝑏𝑢𝑠𝑡(𝑥)) 

         𝑠. 𝑡.  

         𝑥 = {𝜇, 𝛾, 𝐵, 𝜉𝑇}𝑇  

      𝑅𝑚𝑖𝑑𝑑 ≤  1,  𝑅𝑠𝑖𝑑𝑒 ≤  1,  𝑅𝑡𝑚𝑑 ≤ 1,  𝑅𝑟𝑜𝑏𝑢𝑠𝑡 ≤ 1 

(16) 

 

where  𝑥 is the MTMD parameter vector, in which 𝜇 is the 

mass ratio of the MTMD system; 𝛾 is the mass distribution 

factor; 𝐵 is the non-dimensional frequency bandwidth of 

the MTMD; and 𝜉𝑇  is the damping ratio of each TMD; and 

𝑤1 , 𝑤2, 𝑤3  and 𝑤4 are the prescribed weight factors for 

the performance indices.  

In this study, SQP algorithm is adopted for the 

optimization procedure (Boggs and Tolle 2000, Chung et al. 

2012). To search for the global minimum, the function 

MultiStart, which is provided by MATLAB Optimization 

Toolbox, was used with 100 start points uniformly 

distributed within the bounds using the fmincon ‘SQP’ 

algorithm (Martí 2003, MathWorks 2020).  

Parameter optimization was carried out for the single 
objective function related to the control performance as in 

Eq. (16) for a set of the prescribed MTMD costs (𝑅𝑚𝑎𝑠𝑠). At 

first a dataset was constructed for the dynamic responses of 

the structure-MTMD system by carrying out dynamic 

analyses for various combinations of the control parameters. 

The ranges and intervals of the parameters for dynamic 

analysis are shown in Table 4. In the optimization process,  
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Table 5 Weights for 𝐽(𝒙) 

No. Weight settings 

𝑤1 (0.25, 0.25, 0.25, 0.25) 

𝑤2 (0.28, 0.28, 0.21, 0.25) 

𝑤3 (0.28, 0.28, 0.23, 0.23) 

𝑤4 (0.28, 0.28, 0.25, 0.21) 

𝑤5 (0.30, 0.30, 0.15, 0.25) 

𝑤6 (0.30, 0.30, 0.20, 0.20) 

𝑤7 (0.30, 0.30, 0.22, 0.18) 

𝑤8 (0.30, 0.30, 0.25, 0.15) 

𝑤9 (0.30, 0.30, 0.27, 0.13) 

𝑤10 (0.35, 0.35, 0.15, 0.15) 

𝑤11 (0.35, 0.35, 0.20, 0.10) 
 

 

 

 

Fig. 10 Pareto fronts for 𝑤1 − 𝑤11 by SOA 

 
 

the computation of the performance indices and their 

gradients were carried out using interpolation of the pre-

computed values for the parameters in Table 4 for the 

computational efficiency.  

Eleven sets of weights for the performance indices in 

Eq. (16) were selected based on the reasoning that the 

weights for the roof responses shall be larger than those for 

the MTMD response and control robustness as shown in 

Table 5. For each weight set, optimization was performed 

for twenty mass ratios, from 0.001 to 0.020 with an interval 
of 0.001, and the relationship between the MTMD cost 

(𝑅𝑚𝑎𝑠𝑠) and the corresponding optimum performance were 

obtained as the Pareto front. Fig. 10 shows 11 Pareto 

optimal fronts, from which the average Pareto optimal front 

is obtained for the optimal MTMD design option 

considering the ambiguity of the weight selection. During 

the optimization process, it was found that when the mass 

ratio was equal to 0.001, no feasible solution existed. 

Fig. 10 shows that the control performance gets 

improved with the increase of the MTMD (mass) cost. The 

MTMD parameters shall be determined considering the 
trade-off between the control performance and MTMD cost 

along the average Pareto front. The maximum bend angle 

(Hansen and Oleary 1993) appears near the point with a 

𝜇 = 0.004. At the left of this point, the control performance 

(J in Eq. (16)) improves sharply with the increase of 𝜇. 

After this point, the gradient of the curve becomes smaller 

indicating a relative lower efficiency of the MTMD (mass) 

cost. Therefore, the design parameter combination with a 

mass ratio of 0.004 appears to be the most economical, 

although the final decision may be made considering the 

additional engineering factors by the decision maker. Four 

optimal design alternatives with 𝜇 of 0.002, 0.004, 0.012, 

and 0.02 are presented and discussed in detail in Section 

4.1. 

 

3.3.3 Multi-objective approach (MOA) 
MOA is employed in the optimal design of MTMD to 

investigate the effect of the weights more rigorously and 

also to verify the optimal solutions from the SOA given in 

Section 3.3.2. The MOA with five objective functions is 

defined as 
 

min [𝑅𝑚𝑖𝑑𝑑 (𝑥), 𝑅𝑠𝑖𝑑𝑒(𝑥), 𝑅𝑡𝑚𝑑 (𝑥), 𝑅𝑟𝑜𝑏𝑢𝑠𝑡(𝑥), 𝑅𝑚𝑎𝑠𝑠 (𝑥)] 
 𝑠. 𝑡.  

 𝑥 = (μ, γ, 𝐵, 𝜉𝑇)𝑇 
𝑅𝑚𝑖𝑑𝑑 ≤1, 𝑅𝑠𝑖𝑑𝑒 ≤ 1, 𝑅𝑡𝑚𝑑 ≤ 1, 𝑅𝑟𝑜𝑏𝑢𝑠𝑡 ≤ 1,  𝑅𝑚𝑎𝑠𝑠 ≤ 1 

(17) 

 

where the ranges of the control parameters are same to the 

SOA cases shown in Table 4.  

The non-dominated sorting genetic algorithm is used to 

obtain the Pareto-optimal solutions (Siinivas and Deb 1994) 

in this study. More specifically, the fast elitist NSGA-II is 

employed to reduce the computational complexity of the 

NSGA by introducing a fast non-dominated sorting 

approach (Deb et al. 2002). In the NSGA-II, the parent 
population of size 2N is sorted based on the non-

domination. Each solution is assigned a non-domination 

Rank (1 is the best rank) and a crowd distance (Cd) 

measuring the density of solutions in the neighborhood. 

Tournament selection, recombination, and mutation 

operators are carried out to create a child population of size 

N. Then the parent and child population are combined and 

sorted, and the individuals with lower Rank and larger Cd 

within the combined population are selected to form the 

parent population for the next generation (Deb et al. 2002).  

In this study, the size of the parent population is taken as 
2N = 1000, and the maximum generation is G = 1000. A list 

of alternative solutions sorted with Rank and Cd is obtained 

in the final generation. Ten of the non-dominated solutions 

in the order of Cd are shown in Table 6. Obviously, the 

sequence of solutions sorted with Rank and Cd may be 

different from the sequence of preference in engineering 

practice. Although the non-dominated optimal solutions 

with respect to five objectives were obtained, it is still 

difficult to select proper MTMD parameters among 

hundreds of Pareto solutions. Therefore, the MOA solutions 

in a 5-dimensinoal space of objective functions are 

projected into a 2-dimensional sub-space consisting of the 
weighted control performance (J in Eq. (16)) and the 

MTMD cost (𝑅𝑚𝑎𝑠𝑠) for each of eleven sets of the weights 

listed in Table 5 as in the SOA. For a weight set (𝑤1), the 

optimal solutions and the Pareto optimal front in the 𝐽 −
𝑅𝑚𝑎𝑠𝑠 space are shown in Fig. 11, which results in a very 

consistent Pareto front to the one by the SOA, although 

several solutions are not captured. Similarly to the SOA, the 

average Pareto optimal front is obtained by combining the  
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Fig. 11 𝐽(𝒙)  𝑣𝑠 𝑅𝑚𝑎𝑠𝑠 for 𝑤1 

 

 

 

Fig. 12 Pareto fronts for 𝑤1 − 𝑤11 by MOA 

 

 

 

Fig. 13 Comparison of average Pareto fronts by SOA 

and MOA 

 

 

results for eleven different sets of weights as in Fig. 12. The 

averaging operations eliminate the influence of solutions 

that are not captured in MOA. Thus, the average Pareto 

optimal front is found to be in excellent agreement with the 

one from the SOA as in Fig. 13, which verifies the 

consistency in the optimization solutions by two 
approaches. As in the SOA, four MTMD design alternatives 

(#1 - #4 in Fig. 13) are selected based on the average Pareto 

optimal front for further investigation of the control 

performance in detail. They are the cases corresponding to 

four different values of the MTMD mass ratios (𝜇) as 0.002, 

0.004, 0.012 and 0.02. 

The computation time of MOA and SOA are 860 s and 

13290 s, respectively. In MOA, after the non-dominated 

solution set is obtained by NSGA-II with N = 500 and G = 

1000, the objective function J for eleven weight sets can be 

easily computed by linear combinations of the performance 
indices for the 1000 non-dominated solutions. However, in 

SOA, the SQP integrated with multi-start algorithm using 

100 start points shall be carried out repeatedly for eleven 

weight sets, and the computation time is about 1200 s for 

each weight set. The computational efficiency of the MOA 

using NSGA-II is expected to be more apparent compared 

with the SOA using the SQP with multi-start, as the number 

of the objective functions increases. 

 

 

4. MTMD system and performance 
 
The control performances on the roof responses are 

investigated for four MTMD design alternatives (MTMD1: 

#1 - #4 in Fig. 13) developed mainly for the 8th mode of the 

roof structure in the vertical direction as in Section 3. Then 

an additional MTMD system (MTMD2) is introduced for 

the 15th mode for the further improvement in the control 

performance.  

 

4.1 Single-mode control with MTMD1 
 

As discussed in Sections 3.3.2 and 3.3.3, four design 
alternatives for MTMD1 shown in Fig. 13 were selected 

based on the shape of the average Pareto optimal front.  

Table 1 Dynamic characteristics of the cable-supported roof structure 

No. 𝜇 γ 𝐵 𝜉𝑇 𝑧𝑚𝑎𝑥
𝑚𝑖𝑑𝑑  (m) 𝑧𝑚𝑎𝑥

𝑠𝑖𝑑𝑒   (m) 𝑧𝑚𝑎𝑥
𝑡𝑚𝑑  (m) 𝑟 (%) Rank Cd* 

1 0.02 0.9 0.20 0.19 0.095 0.077 0.500 19 1 Inf 

2 0.013 0.6 0.05 0.07 0.147 0.108 0.720 8 1 Inf 

3 0.014 0.3 0.05 0.11 0.131 0.106 0.472 9 1 0.116 

4 0.012 0.0 0.18 0.11 0.138 0.065 0.390 35 1 0.092 

5 0.011 0.3 0.20 0.17 0.109 0.090 0.689 12 1 0.090 

6 0.012 0.1 0.05 0.18 0.137 0.090 0.370 21 1 0.089 

7 0.008 1.0 0.05 0.17 0.125 0.099 0.598 16 1 0.088 

8 0.013 0.3 0.20 0.18 0.105 0.084 0.610 18 1 0.080 

9 0.002 0.8 0.17 0.12 0.111 0.089 0.880 29 1 0.069 

10 0.004 0.0 0.20 0.14 0.125 0.076 0.570 30 1 0.066 

 

* Crowd distance of boundary points within a non-domination front is denoted as ‘Inf’ (Deb et al. 2002) 
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MTMD1 parameters and their control performance are 

shown in Table 7. The layout of MTMD1 is shown in Fig. 

9. Performance on the detail roof responses are investigated 

for four design options in this section. 

I. Dynamic displacements at critical nodes:  The 

dynamic vertical displacements (3𝜎) and reduction rates 

at critical nodes (N1, …, N8) are calculated under 45° 

wind for each of four MTMD1 design options and the 

results are shown in Tables 8-9. It can be found that  

 

 

 

 

 

 

 

 

 

 

dynamic responses are smaller than the allowable values at 

all nodes after introducing any of the design options. The 

response reduction rates are in the range of 34-67%. 

Apparent enhancement can be found in the response 

reduction rates, when the MTMD1 mass ratio (𝜇) increases 
from 0.002 to 0.004 (i.e., from Options 1 to 2). However, 

with the increase of the mass ratio from 0.004 to 0.020 (i.e., 

from Options 2 to 4), improvements of the response 

reduction rates between two options are arbitrary and small,  

Table 7 Design alternatives and control performance of MTMD1 

No. 𝜇 γ 𝐵 𝜉𝑇 𝑧𝑚𝑎𝑥
𝑚𝑖𝑑𝑑  (m) 𝑧𝑚𝑎𝑥

𝑠𝑖𝑑𝑒  (m) 𝑧𝑚𝑎𝑥
𝑡𝑚𝑑  (m) 𝑟 (%) 

#1 0.002 1.0 0.20 0.11 0.116 0.095 0.921 19 

#2 0.004 0.3 0.20 0.19 0.106 0.075 0.723 22 

#3 0.012 0.3 0.20 0.11 0.114 0.066 0.431 23 

#4 0.020 0.9 0.10 0.18 0.103 0.071 0.213 17 

Max. allowable 0.020 1.0 0.20 0.20 0.150 0.108 1.000 35 

 

Table 8 Dynamic vertical displacements (3𝜎) of critical nodes 

Design options N1 (m) N2 (m) N3 (m) N4 (m) N5 (m) N6 (m) N7 (m) N8 (m) 

w/o MTMD 0.235 0.235 0.238 0.167 0.223 0.178 0.171 0.174 

#1 (𝜇 = 0.002) 0.099 0.111 0.103 0.110 0.110 0.092 0.093 0.095 

#2 (𝜇 = 0.004) 0.082 0.083 0.085 0.090 0.088 0.075 0.065 0.067 

#3 (𝜇 = 0.012) 0.089 0.093 0.092 0.097 0.098 0.065 0.057 0.059 

#4 (𝜇 = 0.020) 0.079 0.077 0.081 0.093 0.086 0.070 0.063 0.065 

Max. allowable 0.150 0.108 

 

Table 9 Reduction rates of dynamic vertical displacements of critical nodes 

Design options N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%) N7 (%) N8 (%) 

#1 (𝜇 = 0.002) 58 53 57 34 51 48 45 45 

#2 (𝜇 = 0.004) 65 65 64 46 61 58 62 62 

#3 (𝜇 = 0.012) 62 60 62 42 56 63 67 66 

#4 (𝜇 = 0.020) 66 67 66 45 61 61 63 63 

 

Table 10 Reduction rates of dynamic vertical displacements under 80% cable pretensions 

Design options N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%) N7 (%) N8 (%) 

#1 (𝜇 = 0.002) 46(-12) 47(-6) 46(-11) 29(-5) 34(-17) 39(-9) 39(-7) 38(-7) 

#2 (𝜇 = 0.004) 51(-14) 54(-11) 51(-13) 57(+10) 46(-15) 47(-11) 47(-16) 46(-16) 

#3 (𝜇 = 0.012) 50(-12) 52(-8) 50(-12) 50(+8) 41(-15) 37(-26) 51(-15) 51(-15) 

#4 (𝜇 = 0.020) 48(-18) 49(-18) 48(-18) 55(+10) 48(-13) 44(-16) 51(-12) 50(-12) 

 

Table 11 Reduction rates of dynamic vertical displacements under 110% cable pretensions 

Design options N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%) N7 (%) N8 (%) 

#1 (𝜇 = 0.002) 44(-14) 43(-9) 43(-14) 28(-7) 38(-12) 32(-16) 32(-14) 32(-14) 

#2 (𝜇 = 0.004) 52(-13) 52(-12) 51(-13) 27(-19) 45(-15) 44(-14) 50(-12) 49(-12) 

#3 (𝜇 = 0.012) 46(-16) 48(-12) 46(-16) 32(-9) 40(-17) 52(-11) 57(-9) 56(-10) 

#4 (𝜇 = 0.020) 49(-17) 50(-17) 48(-18) 43(-2) 51(-10) 52(-9) 47(-16) 50(-13) 
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(a) MTMD1: 8th mode 

 
(b) MTMD2: 15th mode 

 
(c) MTMD layouts 

Fig. 14 MTMD layout for multi-mode control design 

 

 

Table 12 MTMD parameters for multi-mode control system 

Design 
options 

MTMD1 MTMD2 

μ1 γ1 𝐵1 𝜉𝑇
1  μ2 γ2 𝐵2 𝜉𝑇

2 

#1 0.002 1 0.2 0.11 0.001 0 0.10 0.17 

#2 0.004 0.3 0.2 0.19 0.001 0 0.05 0.19 

#3 0.012 0.3 0.2 0.11 0.001 0 0.20 0.18 

#4 0.02 0.9 0.1 0.18 0.001 0 0.15 0.19 
 

 

 

Table 13 Optimal MTMD systems: Masses, layouts, and 

frequencies of TMDs 

Design 
options 

MTMD1 

(𝜔𝑇𝑀𝐷1 = 0.631 Hz) 

MTMD2 

(𝜔𝑇𝑀𝐷2 = 0.835 Hz) 

Middle spans Side spans Side spans 

#1 

(𝜇 = 0.003) 
8 @ 620 kg ----* 8 @ 310 kg 

#2 

(𝜇 = 0.005) 
8 @ 372 kg 8 @ 868 kg 8 @ 310 kg 

#3 

(𝜇 = 0.013) 
8 @ 1116 kg 8 @ 2604 kg 8 @ 310 kg 

#4 

(𝜇 = 0.021) 
8 @ 5580 kg 8 @ 620 kg 8 @ 310 kg 

 

*Notes: All TMDs of MTMD1 in Option 1 are allocated to the 

middle spans. 𝜔𝑇𝑀𝐷1 and 𝜔𝑇𝑀𝐷2 are central frequencies among 
TMDs in MTMD1 and MTMD2. Locations of TMDs are shown in 
Fig. 14. 

 

 

as discussed similarly based on the average Pareto optimal 

front in Fig. 10. Therefore, Option 2 with the mass ratio of  

 

Fig. 15 Dynamic vertical displacements (m) at critical 

nodes for several design options 
 
 

 

Fig. 16 Reduction rates (%) of dynamic vertical 

displacements of critical nodes for several 

design options 

 
 

0.004 can be selected as the best solution of MTMD1 for 

the structural response mitigation. 

II. TMD strokes: The maximum dynamic strokes of 

TMDs are found as 0.921, 0.723, 0.431 and 0.213 m for 

four MTMD1 designs, which are smaller than the allowable 

value of 1.0 m. The results also indicate that the increase of 

the mass ratio leads to better performance on the TMD 
stroke. The static elongation of all TMDs are consistently 

0.624 m, because the TMD stiffness increases 

proportionally to the TMD mass. 

III. Robustness: Variations of the structural 

characteristics are simulated by changes in the pretensions 

of cables. Two structural states are considered: one with 

80% of the initial pretensions in cables, and the other with 

110% of the initial pretensions. The response reduction 

rates at critical nodes under the two structural states are 

shown in Tables 10-11. Values in parentheses are the 

differences in the reduction rates from those of the initial 

structural state. The maximum difference is found as 19%. 
However, the response reduction rates still remain as high 

as 27-57% under the variations of the pretensions, while the 

reduction rates were in the range of 34-67% for the original 

structure. 

 

4.2 Muti-mode control with MTMD1 and MTMD2 
 

MTMD1 developed in Section 4.1 is for the 8th mode. 

New MTMD2 is designed for further mitigation of the roof 

responses on the side spans, of which the maximum 

response is fairly close to the allowable value of 0.108 m  
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particularly for Design Option 1 as shown in Table 8. In this 

study, the advantage of multi-mode control over single-

mode control method is explored. The 15th mode was 
determined as the dominating mode based on the modal 

shape and the modal contribution to the nodes (N6-N8) on 

the side spans shown in Figs. 2 and 7(b). The 8th and 15th 

mode shapes with MTMD layout for the multi-mode control 

design are shown in Fig. 14. 

Optimal MTMD design is developed for each of four 

MTMD1 design options obtained in Section 4.1, while the 

mass ratio of MTMD2 is fixed as 0.001. The optimal 

solutions are shown in Table 12. The corresponding 

properties of the four MTMD design are shown in Table 13. 

The detail performance of those four multi-mode control 
designs are examined as follows. 

I. Dynamic displacements of critical nodes: Dynamic 

vertical displacements (3𝜎) and response reduction rates at 

critical nodes (N1, …, N8) were evaluated under 45° 

wind. Figs. 15-16 show that the roof responses on the side 

spans (N6-N8) reduce significantly compared with the 

results with only MTMD1. On the other hand, the responses 

on the middle spans remain almost the same. The maximum 

additional reductions of the side span responses are found to 

be 17, 19, 12 and 11% with four MTMD2 design options, 
which indicates a considerable improvement by adding 

MTMD2 with a small mass ratio of 0.001. Consequently, 

the multi-mode control options tend to provide close or 

even better performance on structural response reduction 

with smaller mass ratios compared with single-mode 

control options as shown in Fig. 16. For example, the multi-

mode control option #2 (total 𝜇 = 0.005  in Table 13) 

gives larger response reduction rates in side spans and 

similar response reduction rates in middle spans compared 

with the single-mode control option #3 (𝜇 = 0.012  in 
Table 7). Thus, the multi-mode control options are preferred 

in this study for their higher efficiency in the MTMD mass 

and cost. 

II. TMD strokes: The maximum dynamic strokes of 

TMDs are 0.916, 0.700, 0.410 and 0.216 m with the four 

additional MTMD2 design options, which are practically 

unchanged from those with MTMD1 only. The static  

 

 

 

 

elongations of TMDs are 0.624 and 0.329 m for MTMD1 

and MTMD2, respectively. 

III. Robustness: The response reduction rates at critical 
nodes are examined under two varied structural states with 

80 and 110% cable pretensions, and the results are showed 

in Tables 14-15. Through comparison with the results with 

only MTMD1 in Tables 10-11, it can be observed that the 

addition of MTMD2 results in significant improvements in 

the robustness of the nodal displacements on the side spans, 

while it causes little changes to the nodes on the middle 

spans.  

Four optimal design options for MTMD have been 

proposed and investigated for the multi-mode control 

system. Option 2 with mass ratios of 0.004 for MTMD1 and 
0.001 for MTMD2 seems to be the best solution for 

structural response mitigation with good control 

performance with low cost. However, its maximum TMD 

stroke is rather high (0.70 m), thus Option 3 with a smaller 

TMD stroke (0.41 m) but with a higher mass ratio (0.012 

and 0.001) can be also a reasonable candidate. All of four 

design options exhibit similar satisfactory robustness. The 

final design may be determined based on the results of the 

Pareto optimal front and other engineering factors such as 

project budget, TMD installation, and construction 

procedures. 

 
 

5. Conclusions 
 

An optimal design method for a MTMD system is 

presented for wind induced vibration reduction of a large-

scale cable-supported roof structure. Main procedures and 

conclusions of the study are summarized as follows: 

1. Two dominating modes of the roof structure were 

identified as the 8th and 15th modes through the modal 

contribution analysis for the wind loads. Accordingly, a 

multi-mode MTMD system was developed consisting of 
two sub-systems (MTMD1 and MTMD2), which were 

tuned to those frequencies. 

2. Multiple objective functions are introduced for 

MTMD design regarding the structural responses, TMD 

Table 14 Reduction rates of dynamic vertical displacements under 80% cable pretensions 

Design options N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%) N7 (%) N8 (%) 

#1 (𝜇 = 0.003) 46(-12) 47(-5) 46(-11) 32(-2) 35(-16) 52(-12) 52(-9) 53(-8) 

#2 (𝜇 = 0.005) 47(-18) 53(-12) 46(-19) 58(+11) 43(-18) 62(-11) 62(-20) 61(-20) 

#3 (𝜇 = 0.013) 49(-13) 53(-8) 49(-12) 50(+8) 40(-16) 61(-14) 61(-14) 60(-15) 

#4 (𝜇 = 0.021) 48(-18) 49(-18) 47(-19) 55(+11) 47(-14) 53(-17) 65(-9) 64(-10) 

 

Table 15 Reduction rates of dynamic vertical displacements under 110% cable pretensions 

Design options N1 (%) N2 (%) N3 (%) N4 (%) N5 (%) N6 (%) N7 (%) N8 (%) 

#1 (𝜇 = 0.003) 44(-14) 43(-9) 43(-14) 28(-6) 38(-12) 57(-7) 61(-1) 62(+1) 

#2 (𝜇 = 0.005) 52(-14) 52(-13) 51(-14) 28(-19) 46(-15) 64(-8) 73(-8) 74(-6) 

#3 (𝜇 = 0.013) 47(-15) 48(-12) 47(-15) 33(-9) 40(-16) 69(-6) 67(-7) 68(-7) 

#4 (𝜇 = 0.021) 51(-15) 50(-17) 50(-16) 44(-0) 54(-8) 66(-3) 65(-8) 72(-1) 
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strokes, robustness, and mass cost. Two optimization 

approaches are used for the MTMD parameters: single 

objective approach using SQP with Multi-start, and multi-

objective approach using NSGA-II. A Pareto front was 

obtained regarding MTMD performance and cost for 
decision making. The computation efficiency of the MOA is 

found to be superior to the SOA requiring repeated 

computations for many sets of weights on the multiple 

performance indices. 

3. Four design options with different mass ratios were 

selected and their control performance were analyzed. The 

best option is found as a system consisting of MTMD1 and 

MTMD2 with mass ratios of 0.004 and 0.001. The 

corresponding structural response reduction rates are as 

high as 65% and 81% on the middle and side spans. The 

maximum TMD stroke is found as 0.70 m, thus another 
design option with the higher mass ratios (0.012 and 0.001 

for MTMD1 and MTMD2) may be considered as an 

alternative to reduce the TMD stroke to 0.41 m. The control 

performance is found to be very robust against the 

uncertainty in the modal properties of the roof structure 

owing to the frequency bandwidth introduced in the MTMD 

design. 

4. The final MTMD design may be determined based on 

the results of the Pareto optimal front with other 

engineering considerations, such as available budget, 

MTMD installation, and construction procedures. 
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